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About this tutorial

This tutorial is intended for the
user who, although not formally
trained in optics, must make use of
optical components to solve a
probiem. The text provides an
elementary review of classical and
modern optics emphasizing physical
insight over mathematical deriva-
tions. The intent is to acquaint the
reader with practical applications of
commonly available optical compo-
nents. Due to the constant advance of
optical science, no catalog can aspire
to be the complete textbook of optics
technology. For this reason, Newport
refers the interested reader to the
following texts:

Optics, Eugene Hecht and Alfred
Zajac, Addison-Wesley Publishing
Co., 1979.

Elemnents of Modemn Optical Design,
Donald C. O'Shea, John Wiley &
Sons Inc., 1985.

Concepts of Classical Optics, 1.
Strong, Freeman, 1958.

The following material was
written expressly for Newport
Corporation by Dr. William Bridges,
Carl F Braun Professor of Engineering
at the California Institute of Technol-
ogy. Dr. Bridges is an OSA fellow and
has made numerous contributions to
the fields of lasers and electro-optics.
His aid in preparing this section is
gratefully acknowledged.

Many of the {llustrations used in
this tutorial were adapted with
permission from the book Optics,
Eugene Hecht and Alfred Zajac,
Addison-Wesley Publishing Co., 1979.
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The velocity of light, ¢, in a
vacuum is about 3x10® meters per
second. In other media - for example,
glass - the velocity is less. The ratio of
c to the actual velocity is called the
refractive index, n. Thus, in glass
with index 1.5 light travels at about
2x10% meters per second (fig. 1).

o poha| o jehouass

LT

3x10=5%: 210 gs

Tkl

n=1.0 n=15
Figure 1.

The color of the light and its
frequency in oscillations per second,
or Hertz, is the same in both media.
For example, the frequency of red
helium-neon laser light is about
474x10°2 oscillations per second or
474 Terahertz. Since the frequency is
the same in both glass and air, the
wavelength must decrease by the
same ratio as the velocity, as indi-
cated in the figure. Thus, the helium-
neon laser wavelength of 633 nanome-
ters is reduced to 422 nanometers in
glass. Typically, glasses and transpar-
ent plastics have refractive indices
ranging from 1.45 to 2.

We may gain a simple physical
picture of this “slowing down” of light
in a transparent medium if we picture
a medium composed of individual
atoms or molecules that can interact
with the passing light wave by
absorbing and reemitting the light.
This absorbed and reemitted light is
added to the component passing
through at ¢ in such a way that the
sum is continually phase retarded
with respect to the component at c.
This continuous phase retardation is
equivalent to a phase velocity less
than c.

Snell’s Law describes the
change in the direction of propaga-
tion that occurs when light crosses
an interface between two different
materials at an angle other than 90°
to the interface. The wavefronts must
match at the interface, so the direc-
tion of the wave in the medium with a
higher refractive index must turn
toward the normal (fig. 2).
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Figure 2.

Dispersion is the term charac-
terizing materials whose refractive
index changes with wavelength. All
glasses exhibit dispersion to one
degree or another, and this property
can be both troublesome and helpful
in optical systems. Dispersion allows
us to separate wavelength compo-
nents in a prism spectrometer, for
example, but it can be harmful if it
separates those components around
a white-light image in a telescope
with simple glass lenses.

We have pictured the physical
origin of the refractive index in terms
of the interaction of light with an
array of atoms or molecules in a
material such as glass. Dispersion
occurs because those interactions are
wavelength dependent. The atoms or
molecules are characterized by their
resonant frequencies, where they
interact most strongly with light. At
these resonances, light is strongly
absorbed, and the materials are
usually quite opaque, Typically, the
strong resonances in the glass are in
the vacuum ultraviolet region, corre-
sponding to wavelengths near 100
nm. At longer wavelengths, in the
visible region, the interactions are
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typically much weaker, in the “tails”
of the strong resonances, and the
materials become transparent.
However, the interaction with these
resonance tails and the phase shifts
introduced therefrom increase as the
wavelength decreases. Thus, such
transparent materials have a higher

- refractive index at shorter wave-
lengths {fig. 3).
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Normal Dispersion is the term
applied to the increase in refractive
index with decreasing wavelength.
The adjective “normal” is a legacy
from the past, when it was used to
distinguish this situation from
“anomalous dispersion”, that is, a
decrease in index with a decrease in
wavelength. Today, we understand
that there is nothing anomalous
about “anomalous dispersion”; it is
simply another portion of the
resonance curve. A more complete
discussion of the physical origins of
refractive index and dispersion is
given in Chapter 3 of Hecht and Zajac.

A Prism is perhaps the most
well known optical component
exhibiting dispersion in optics. The
ability of a prism to disperse the
spectrum was already known in the
late 1600's. To find the deflection of a
light beam by a prism we simply
apply Snell’s law at each surface,
being careful to use the correct
refractive index for each wavelength,

The resulting deviation d is given by
(fig. 4):

5 =0, + sin’! [(sino)(n? -sin’8)"?
- sinfcosa] - o

Note that d is a minimum when
the light path in the prism is perpen-
dicular to the bisector of the prism
angle, that is, when the incident and
exit angles are equal, as shown in
figure 4. Minimum deviation is
commoniy used when a prism is
employed to disperse lightina
spectrometer. This condition also
produces a minimum spatial distor-
tion of the exit beam: If the incident
beam is circular in cross section, the
exit beam will also be circular at
minimum deviation. Tilting the prism
off minimum deviation spreads out the
spectrum even more, but also broad-
ens a circular beam into an elliptical
one so that the separation of the
wavelengths is actually no better.

Reflection of light from glass
surfaces can also be useful or harmful
in optical systems. If light strikes an
interface between two different
materials, a fraction R will be re-
flected and a fraction T will be
transmitted. If the materials on both
sides of the interface are lossless, then
R+ T= 1. The values of R and T are
functions of the refractive indices of
the two materials and the angle and
polarization with which the light
strikes. These fractions may be
caiculated by properly matching the
electric and magnetic fields of the
light waves at the interface. The
resulting relationships are called
Fresnel’s equations. For a derivation
of these equations, see Chapter 4 of
Hecht and Zajac.

The plane of incidence is
defined as the plane containing the
direction of the incident light and the
normal to the surface. We take the
direction of polarization as the
direction of the electric field. We then
distinguish two cases: (1) the incident
light is polarized in the plane of
incidence, usually denoted by sub-
scripts “paraltel”, *p” or “|I", and (2)
the incident light is polarized perpen-
dicular to the plane of incidence,
usually denoted by subscripts
“perpendicular”, *s" (from the German
“senkrecht™ or “L", The reference
guide shows R, and R, as functions of
the angle of incidence for a glass with
n=15.

As shown on page N-26, when
light is incident from the air side of an

air-glass interface some notable
features are seen:

1 - The reflectivity R is the same at
normal incidence for both polari-
zations, as it should be, since the
plane of incidence is undefined if
the direction of propagation is the
same as the normal to the
surface. The value of the reflectiv-
ity for normal incidence is

2
R (n,-n,)
- 2
(n;+n,)
or about 4% for n, = 1.0 (air)
and n, = 1.5 (glass).

2 - The reflectivity R Is unity for both
polarizations at grazing incidence
@ =90°, hence the mirror-ike
quality of any glass surface, inde-
pendent of the index of refraction.

3 - The reflectivity of light polarized
parallel to the piane of incidence
is exactly zero at a particular
angle, called Brewster's angle or
the polarizing angle:

B = arctan[k}
n,

The former name honors the
discoverer of this important phenome-
non, and the latter refers to an
application: If unpolarized light is
incident on a glass surface at
Brewster’s angle, the light reflected is
polarized completely perpendicular to
the plane of incidence. Of course,
according to the curves onily about
15% of the perpendicularly-polarized
light is reflected at Brewster's angle,
$0 this may not be the best way to
produce polarized light. But even this
small amount is the reason that
polarizing filters can be used to
reduce the glare from photographs of
automobile windshields and water;
The reflected light is partially polar-
ized by reflection near Brewster's
angle. Aside from producing polarized
light in nature and the laboratory, the
Brewster's angle phenomenon is used
for optical windows where even the
small 4% normal-incidence loss would
be prohibitively large, for example the
vacuum-sealing windows inside a gas
laser resonator. With a carefully
oriented Brewster's angle window, the
residual losses which are due to
scattering, absorption and bulk
inclusions, can be made smaller than
0.1% with care. Of course, if your
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application for a low-loss window
requires other than linear polariza-
tion, then Brewster’s angle windows
are not appropriate; Normal windows
with good antireflection coatings are
the usual solution.

The curves shown in the
Reference Guide (pg. N-26) give the
fraction of the light intensity that is
reflected. The fraction of the electric
field refiected depends upon the
indices of the two media and the
relative projected area of incidence.
Further, electric field reflection
coefficients will determine phase
differences between incident and
reflected waves. Full equations are
given in Chapter 4 of Hecht and Zajac.
Thus R + T=] is an expression of the
conservations of energy, but r+t is not
equal to one, where the lower case
letters stand for the field amplitude re-
flection and transmission coefficients.

Also on page M-22 are reflec-
tance curves for the same glass-air
interface, but with the light incident
from the glass side. Brewster's angle is
again evident in the figure, but at
about 34° instead of 56°, in order to
satisfy Snell's law across the bound-
ary. Note that 34%56°=90°, This
provides a handy way to remember
Brewster's angle: The angle between
transmitted P-pol and reflected 5-pol
bearmns is 90°. The figure also shows
the same reflectivity for both polariza-
tions at normal incidence, =4%, the
same as the air-glass interface.

The new feature is that the
reflectivity goes to unity at an angle
less than 90°, about 42° for glass with
n=1.5. This is known as the critical
angle. For angles greater than the
critical angle, the light is 100%
reflected interior to the glass, hence
the phenomenon is called total
internal reflection or TIR. We can
understand this phenomenon readily
from Snell’s law, if we note that light
incident at the critical angle from the
glass side corresponds to a transmit-
ted angle of 90°:

n,sin 8. =n,sin(90°)=n,

0. =arcsin (hJ
n,

8. =~42°n, =(air),n, = 1.5(glass )

Angles of incidence greater than
the critical angle yield no solutions to
Snell's law in real numbers. The light
has no place to go, so to speak. Total
internal reflection is often used when
reflectivity values near 100% are
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required. TIR is by itself lossless; The
only losses are caused by scattering
or absorption by defects or contami-
nation of the dielectric surface. One
disadvantage in using TIR mirrors are
that the reflection takes place inside
the glass medium. There may be
some losses or reflections associated
with getting the light into the glass in
the first place. Since the critical angle
for most common glasses is of the
order of 42°, it is common to use 45°
as the incident angle, thus turning the
light through 90°. Roof prisms and
cornercube reflector are thus made,
using two TIR reflections. Roof prisms
are also used in pairs, with four TIR
reflections to displace a light ray
without deviation, as in binoculars .

Figure 5.

The small amount of light
reflected from an air-giass interface
may not seem important, but it can
make the difference in critical
applications. The Reference Guide
curves show that at near normal
incidence the amount of light re-
flected is only about 4%, However, it
is quite common for an optical
system to contain five or more lenses,
for a total of ten or more glass-air
interfaces. The light transmitted
through such a sequence would be
(1-.04)'°, or about 66%. This amount
of lost light might be critical to your
optical system in two ways: the loss
itself, or the damage the missing 34%
might do bouncing around from
surface to surface inside! A modern

multi-element camera lens, for
example, would suffer greatly on both
counts if nothing were done. Fortu-
nately, it is possible to coat optical
surfaces with layers of dielectric
materials a fraction of wavelength
thick to greatly reduce the amount of
light reflected. In the simplest case of
a single layer coating, the reflection
from the aircoating interface is
exactly canceled by the reflection
from the coating-glass interface. To
do this, both amplitude and phase
must be correct, requiring two
degrees of freedom: the thickness and
the refractive index of the coating.
For exact cancellation, the refractive
index of the coating must be the
geometric mean of the refractive
indices of air and glass, or Vg, ,
and the thickness must be one
quarter wavelength, measured in the
coating material. Such a coating can
exhibit exactly zero reflection at only
one wavelength, that for which the
thickness is A/4. Since we may be
unabie to find a material with a
refractive index of exactly Vn_ , . we
may also be unable to obtain exactly
zero reflection at any wavelength. To
gain the additional degrees of
freedom necessary to use practical
coating materials and to tailor the
wavelength response, modern
antireflection coatings are usually
made up of a number of layers of
differing index and differing thick-
nesses. Three such coatings are
common in optics:

A single A/4 coating of MgF,,
with R<1.3% on glass of index 1.5.

A multi-layer broad-band
coating, with R<0.5% average over a
300 nm band.

A narrow-band “Vcoating” for
specific laser wavelengths, with
R<0.2% at the design wavelength.

To return to our example of the
five element lens with ten glass-air
surfaces, we would have overall
transmissions of 88%, 95% and 98%
respectively if all of the surfaces were
coated with one of the three coatings
listed above. If the above lens were
designed to be a laser collimator, a
50% increase in transmitted energy
would be realized by coating the
lenses with a V-coat. Since laser (or
any) optical energy is considerably
more expensive than coating, anti-
reflection coatings are a very cost
effective method of improving
performance,
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Lenses

Lenses are some of the most
common eiements in optical systems.
Refraction at a curved surface can be
used to converge or diverge a beam of
light, form an image or take a Fourier
transform, among other things, The
most obvious attributes that a lens
possesses are its diameter and its
focal length (the distance from the
lens at which parallel rays converge
to a common point); and, of course,
whether the lens is positive (con-
verges paralle] rays) or negative
(diverges parallel rays), It would
greatly simplify optics if this were all
we needed to specify when buying a
lens. Alas, there is no single lens with
a given diameter and focal length that
fits everyone's application. The art of
optical design is to specify the right
lens parameters for the specific job at
hand.

For example, we've already seen
that the index of refraction of glass is
a function of wavelength. Because of
this dispersion, the focal length of a
stmple glass lens is different for
different colors. This property,
termed chromatic aberration, would
be of little concern if you are using a
monochromatic source like a laser in
your system, but it might be of critical
concern if you are trying to design a
telescope that will work with white
light.

Another situation is illustrated
below. We usually think of an “ideal
lens” as imaging faithfully the informa-
tion in one plane onto another plane.
But what if your application requires
imaging the surface of a sphere onto a
plane? The “ideal” lens wouldn't be
tdeal for your needs at all.

THE ODD REQUIREMENT

Figure 6.
To pick the right lens, you must

first know exactly what you want it to
do, and how well you need to do it.
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Why “how well?” Can't we do the job
exactly? Unfortunately, even'if your
application called for imaging a plane
onto a plane, you will still not be able
to find the “ideal” lens that will do the
job perfectly. You can come as close
as you wish, depending on how much
money you wish to spend on the job.
But the art of optical design is in doing
the job as well as needed for the
minimum cost,

The Cost of a lens is influenced
by many factors. First, it is much less
expensive to make a lens with
spherical or plane surfaces than any
other shape. The curved surfaces on
a lens are usually made by grinding
the initially flat glass blank against a
tool with the desired radius of
curvature. Many lenses are usually
ground at the same time by a single
tool for the sake of economy. It is
easy to see that only spherical
surfaces can slide freely over one
another in such a situation. This
simple physical fact makes accurate
spherical surfaces the natural
product of the grinding process.

It is possible to grind other
shapes, called aspheric surfaces, by a
varlety of special techniques, but
invariably these must be ground one
at a time, greatly increasing the cost
of the lens. And since aspheric
surfaces may possess a unique
symmetry axis, there is an increased
cost associated with aligning the axes
of the two sides of an aspheric lens if
both the sides are aspheric. With two
spherical surfaces, there is no such
critical alignment.

Material selection is also an
important factor in lens cost. Glass
comes in a wide variety of grades and
optical parameters, Among the
important parameters is the wave-
length range of low-loss transmission.
Glasses which transmit well in the
ultraviolet or infrared portion of the
electromagnetic spectrum generally
are more expensive than those which
transmit only in the visible portion.
Pure fused silica is often used for UV
and IR applications, since it has the
widest wavelength transmission
range of all silica-based glasses. Even
here, however, there are different
grades of fused silica in which certain
impurities are specifically controlled
to reduce absorption at specific
wavelengths. If your optical system
must operate near one of these
absorption regions, you may have to
select lenses made from ultra-pure

material, and this requirement will
increase the cost of the lenses,

Optical Homogeneity of the
glass required for your lens will also
affect the cost. Glasses are specified
by their striae specification, a
measure of how uniform the refrac-
tive index is throughout the glass.
Striae manifest themselves as streaks
of slightly differing refractive index,
frozen in the glass as it cooled. They
may or may not be important in your
optical system. Optical glasses such
as BK-7 can be made striae-free by
annealing. It is more difficult to make
striae-free pure fused sllica because
of its much higher melting tempera-
ture, so premium fused silica lenses
are typically more expensive than
their BK-7 counterparts,

Cosmetic quality specifica-
tions also affect the cost of a lens.
Surface quality is usually specified as
the scratch and dig number - such as
20-10 or 10-5 - which represents the
visibility of scratches and digs (short
pit-like defects) over the aperture of
the optic. Highly polished surfaces
are created by successively decreas-
ing the coarseness of the grinding
compound grains as the surface
forms. More changes of abrasive and
longer polishing times are required to
achieve finer surfaces. Close toler-
ances on surface finish result in
higher lens cost not only from the
longer polishing time, but also from
the inspection process necessary to
certify the specification.

The usual reason for specifying
good surface finish is to reduce
scatlered light in the optical system.
You should evaluate how your system
is affected by scattered light before
specifying a scratch and dig number.
For example, scratches and digs are
large in comparison to an unex-
panded laser beam, Optics for such
applications usually require the best
surfaces obtainable to reduce
scattering losses. At the other
extreme, lenses for a recollimating
telescope may well be quite tolerant
of scattered light, and the least
expensive standard specification may
suffice.

The size of alens also greatly
affects its cost. There is a “cheapest
size,” on the order of one inch in
diameter for ordinary glass lenses,
where fabrication costs roughly equal
material costs. Lenses larger than
this are more costly since they
require more material, and fewer can
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be manufactured at a time, Lenses
smaller than the most economical
size also become expensive, because
they are harder to handle, and
dimensional tolerances are harder to
maintain.

Tolerances on dimensions
directly affect the cost of a lens. Di-
ameters can usually be ground quite
precisely, within a few thousandths of
an inch with commonly available
equipment. However, tight tolerances
on focal length require custom
tooling to generate the correct radius
of curvature and constant testing of
the finished lenses against master
test plates. A large quantity of lenses
must be manufactured before the
custom tooling and test plate cost is
offset. It is less expensive to use stock
values of focal length and build adjust-
ment into your optical system than it is
to order a custom lens. As we will see
later, it may be advantageous to use
two inexpensive stock lenses to do
the job of one expensive custom lens,
and gain some additional degrees of
freedom to deal with aberrations in
the bargain.

Shorter focal length lenses are
also generally more expensive than
longer focal length lenses, although a
better measure is the ratio of focal
length to diameter, termed the £
number and often written f/. For
example, a 50 mm diameter lens with
a focal length of 200 mm would be
described as an /4 lens. Generally,
the smaller the f/, the more costly the
lens. Note that the {/ of a lens may be
different depending on its use. If you
use only the central 10 mm of the
above lens, for example, then you are
using it at f/20, not the {/4 that it is
capable of at its full diameter.

To restate it: The art of optical
design is to find the lowest-cost lens or
combination of lenses that will meet alf
of the system requirements. We hope
the discussion and examples given in
the foliowing sections will help in
your selection of stock lenses that
will do the job. However, as noted in
the following sections, your require-
ments may be sufficiently demanding
that you will require custom lenses
and the aid of a lens design profes-
sional. If that is the case, it would still
be a good idea to try the design first
yourself, with stock lenses, so that
you can better discuss your require-
ments with the lens-maker or design
professional.
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Some Lens Basics

Consider the convex lens shown
in figure 7. If we illuminate from the
right with a collimated beam of light
parallel to the optical axis, the beam
will come to a focus a distance fto the
left of the lens.

£l
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Figure 7.

For the ideal lens, all rays are
turned through the correct angle o
upon passing through the lens so that
they cross the optical axis at the same
point F

Of course, such an ideal conver-
gence of all rays to a single point as
shown does not occur exactly for a
lens with spherical surfaces. The
departures from this idealized picture
are discussed later as aberrations. For
now, however, we observe that if the
angles ¢ are all so small that we may
reasonably approximate sin g by g,
then the lens behavior wiil be ideal as
shown. This mathematical approxima-
tion is termed the paraxial
approximation and gives rise ta
Gaussian optics or Firstorder theory.
Rays which remain sufficiently near
the optical axis to satisfy the approxi-
mation are termed paraxial rays.
Snell's law in this same approximation
becomes

ne =n,ge,

The figure shown above also
usually raises the question: “From
what point on the lens do | measure
F?” In the thin lens approximation, a
single plane can be used to define the
position of the lens along the optical
axis. Later we shall explore the more
general case of the thick lens and then
see under what conditions we are
allowed to make this thin lens approxi-
mation.

If, instead of the situation illus-
trated tn figure 7, we were to place a
tiny point source of light at a distance
Fto the left of the lens (fig. 8), we
would produce a collimated beam of

light emerging to the right. Note that
the rays are the same.

.

Figure 8.

The outermost ray is turned through
the same angle @ as in the previous
figure. Light rays are reversible in
their transit through an opticat
system.

Figure 8.

If we were to move the point
source of light to the left to a point 5,
farther from the lens than F as shown,
then the outermost ray emerging
from the lens would no longer be par-
allel to the axis, but instead cross the
axis at a finite distance s, to the right
of the lens (fig. 9). The same would
be true of all the other rays. The
relationship of these two points and
the focal length of the lens is given by
the famous Gaussian Lens Equation:

Finally, if we move the point
source at s, a very long distance to
the left, or infinity (fig. 10), then the
light will arrive at the lens in parallel
rays, and will come to a focus at a
distance Fto the right of the lens. For
the thin lens approximation the
distance F'is the same in both figures
8 and 10 measured from the position
of the thin lens.

’\nij/'/
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Figure 10.
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When the lens is “too thick” to
meet this approximation (or too
curved, or is a compound lens made
up of two or more thin lenses), we
may still retain the concept of
symmetrical focal distances F, but we
now must measure them from two
different positions in the lens, called
the principal planes, H, and H, (fig.
1.

The principle planes are shown
in figure 11 as falling inside the lens
at distances P, and P, from the
vertices, the points V, and V, where
the optical axis intersects the two
lens surfaces. The focal lengths BFL]
and BFL2 measured from the lens
surfaces are not in general equal,
while the effective focal length £
measured from the principal planes is

L & » ”»
» »
Figure 12.
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the same on both sides of the lens.
The Gaussian lens equation relating
the object and image distances, 8,
and s,, to the focal length F holds as
well for the thick lens.

The principal planes need not
fall inside the lens itself. For some
lenses one or even both of the
principal planes may fall outside the
lens as shown in figure 12.

Imaging is perhaps the most
common use of a lens. In the figures
above, we have shown lenses

bringing all the rays from a point light

source on the optical axis to a point
focus, also on the optical axis. If we
were to have an extended luminous

object such as the light bulb shown in

figure 13, then rays from each point
on the object would be brought to
focus so as to form an image of the
object on the other side of the lens.
Our previous description of an
ideal lens implied that it would
faithfully transfer paints in an object
plane onto an image plane. However,
figure 13 correctly shows that a lens
actually images a three<dimensional
object into a three-dimensional image.
However, portions of the object that
the lens cannot “see” cannot be part
of the image. The figure also indicates
several other things about the image-
forming process with a positive lens.

~ The object and image are on
opposite sides of the lens. For
this situation we say the image is
“real.” That is, an observer on the
side of the lens opposite the
object can reach out and “touch”
the image without hitting the
lens.

— The image is inverted. Though
not obvious from the picture, the
image is also inverted right to left.

— The image is nof inverted front to
back. That is, points on the front
of the object as seen by an
observer looking through the lens
are also seen as being on the
front of the image.

— The image is not necessarily the
same size as the object. The lens

Figure 13

Figure 14.
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can magnify or minify depending
on how far the object and image
are from the lens.

Only when the object and image
distances are equal will the object
and image sizes by equal.

We may draw similar conclu-
sions about the image formation
process for a negative lens (fig. 14).

The idea of a negative Jens
forming an “image” may seem a bit
foreign the first time you think about
it. By “image” we mean the locus of
points where the rays from the object
converge. Rays from an object point
diverge after passing through a
negative lens. If we extend these di-
verging rays in the reverse direction
they intersect in a point, which we
call an image point. With that definl-
tion of image we may then observe;

— The image is on the same side of
the lens as the object. We say the
image is "virtual” because a
viewer on the side of the lens op-
posite the object can’t get his
hands on it.

— The image is erect and not
inverted right to left.

— The image is not inverted front to
back, identical to the positive
lens.

- The image is always smaller than
the object. no matter where the
object is located, and is always
located within the focal length, F,
of the lens.

The concept of a virtual image
is also required to fill in a gap in the
description of the positive lens:

— {f the object is within the focal
length of the lens, the image will
be erect, virtual and larger than
the object. Drawing the ray dia-
gram that shows this is left as a
lunch napkin exercise for the
reader.

Magnification of an image by a
lens depends on where we place the
object, as we've just seen, By using
the Gaussian lens equation and a little
geometry we can show that the
magnification, M, is

S')
M. = s,

— The ratio of the image and object
distances to the lens. The
negative sign simply reminds us
that the image is inverted ("nega-
tive™) if these distances are both
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positive. We note that this
“magnification” can be greater or
less than unity, depending on the
ratio of the distances. _

Another quantity that we
should like is the longitudinal or
axial magnification, M, ,which is
given by

M =M,

Here the negative sign simply
signifies that points on the object
nearest the observer are also nearest
the observer on the image; that is,
the image is always orthoscopic. The
important feature to note is that
objects are not magnified equally in
all three dimensions: If an object has
a lateral magnification of two, the
longitudinal magnification will be
four. The light bulb image shown in
the figures above should actually
appear relatively fatter in the magni-
fied image and relatively skinnier in
the minified image.

While such distortion may
strike you as not being very “ideal”
for an ideal lens if you are a photogra-
pher, you should be thankful that
nature works this way, How otherwise
would you be able to focus on a dis-
tant scene with trees in the fore-
ground and mountains in the dis-
tance? By minifying the mountains by
the ratio of about 50 mm (a typical
camera lens image distance) to many
miles, you have also flattened the
longitudinal extent of the image by
the square of that ratio!

Lenses can be combined to
perform a variety of tasks. The
paraxial imaging properties of a
sequence of thin lenses can be found
by successive application of the
Gaussian lens formula. For example,
the image location and magnification
of two positive lenses spaced by a

distance d (fig. 15) is found by first
calculating the image distance 5, of
the first lens, and then using this
image as the object of the second
lens, located at a distance of s, =d-s,,.
The resulting distance from the
second lens to the final image is

Ed-Fso R

_ (SOI“F‘:)
~d _F?."'SOIFI

(801~}

where F| and F, are the foca!
lengths of the two thin lenses.

The second lens can be thought
of as simply magnifying the image
from the first lens, which in turn is a
magnified image of the object. The
overall transverse magnification is
then simply the product of these two
magnifications:

Si

M'r # MTlMTz

The actual size of the image and
whether it is inverted or erect de-
pends on the magnitudes and signs of
both magnifications. In the situation
illustrated in the figure, both M., and
M., are negative, so M, is positive
and the final image is erect. The fig-
ure also has IM [ <1, IM,,!>1, and
IM;1>1. If the same lenses were
spaced by a distance d less than the
sum of their focal lengths, then the
overall magnification would be
negative and the resulting image
would be inverted.

The simple relation of trans-
verse magnification to the object and
image distances for a single thin lens
no longer holds; that is,

5
Mpz-=L

L:
L. P.
5.
5 Sy eritee
- F -, 5.
B} d
Figure 15
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The reason is that the combina-
tion of two thin lenses with a space d
in between is no longer a thin lens. In
fact,
Esy

M,=——2
; d(sm 'ﬁ)‘smﬁ

If we put the two lenses in
contact, d=0, then this expression
reverts to the previous thin lens
formula for the magnification.

Ancther consequence of the
thick lens nature of the two lens com-
bination, usually termed a spaced
doublet, is that the focal lengths of the
combination are no longer the same
when measured from the surfaces of
the lenses. This is because the
comnplete lens is now “thick.” As in
any thick Jens, we can find principal
planes #, and H, for the combination
so that we can speak of an overall
focal length F for the doublet that is
the same on both sides of the lens
when measured from these principal
planes. The focal length F can be
expressed in terms of the focal
lengths of the individual thin lenses

The exact principal plane
locations are given in Chapter 5 of
Hecht and Zajac. However, when
simple lenses are used in common
laboratory mounts the above equa-
tion is adequate for initial trial
designs.

A special case commonly
encountered is two thin lenses
spaced by the sum of their focal
lengths, typically used to change the
diameter of a collimated laser beam
(fig. 16).

I'-F,-}-—F,—u

:_‘I\( \ o
o

Figure 16.

We would have a bit of trouble
applying the formulas given above for
the spaced doublet, since the
intermediate image has zero size (in
the geometric optics limit), so that
M. =0 and M, ,=co, and their product is
indeterminate. However, the paths of
the rays are particularly simple,
forming similar triangles on either
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side of the intermediate focus, so we
may readily conclude that the overall
transverse magnification is:

F

Mp=-L
T Fz

As a specific example, suppose
we wished to expand the beam from a
small helium-neon laser, with a
Gaussian beam diameter of (.63 mm
to a diameter of 10 mm. We would
then need to select a pair of lenses
with a ratio F/F,=16. A good pair of
simple plano-convex lenses would be:

Newport Part # F Diameter
KPX019% 254mm  6.35mm
KPX115 400 mm 254 mm

The lenses would be spaced by
the sum of their focal lengths,

425.4 mm. We will want to orient the
lenses with their convex sides out-
ward to minimize spherical aberra-
tion, as discussed later. The diame-
ters of these lenses are large enough
to accommodate the laser beam as it
enters and exits.

In this example we must be
careful how we measure the lens
separation when we actually con-
struct the doublet. You will note in
the catalog that the lenses given in
these examples have slightly different
values given for front and back focal
distances, (listed as BFL1 and BFL2 in
the table). This tells us that the
lenses are not completely “thin.” We
will need to measure the effective
focal length, F, from the principal
planes of these lenses. The columns
PI and P2 in the catalog listing give
the location of the principal planes
with respect to the physical surfaces
of the lens. The principal plane for
the planar surface of the KPX019 lies
2.23 mm inside the tens, measured
from that surface. (The negative sign
means inside the surface.) For the
KPX115 the principal plane lies
2.23 mm inside the planar suriace.
Thus, we would properly space the
two planar surfaces by the sum of the
two values of BFL2 given for these
lenses:

23.16 mm + 397.76 mm = 420.92 mm

You should also note that these
distances are all measured on the
optical axis. Lenses are usually
mounted at their peripheries, so the
offset of the periphery must be taken
into account if you are designing a

fabricated mount. If you are putting
together a laboratory setup with
individual lens holders then you will
have enough freedom to compensate
for this small difference.

Ray tracing is an alternative
method of evaluating the perform-
ance of a lens or a system of lenses,
Consider a sequence of optical
surfaces separating regions of
differing refractive index 1, by axial
spacings t, as shown in fig.17.

Kl.‘ | _/ Tl } -fl" \
nJ—T n| n}ﬁ
Figure 17

The surfaces may be spherical
or aspherical, but their shapes must
be known and described by given
equations or numerical data. We may
determine the path of any ray
through this optical system with only
two kinds of calculations: how a ray
propagates between surfaces and
how it changes passing through a
surface. By repeating these two
calculations, we can work our way
through the system. We can do this
with pencil and paper or an elec-
tronic computer; either method is
called “ray tracing.”

In free space, rays travel in
straight lines. We can write the
equations describing the transit
between surfaces in “input-output™
form as shown in fig. 17.1:

Figure I7.}

To be precise, we should use
the actual separation of the two
points of intersection rather than the
axial spacing of the surfaces, t. but
usually the error is small,

The calculation describing how
rays change passing through a
surface is simply the application of
Snell’s law to the particular surface.
This is written schematically in fig
17.2:
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Figure I7.2

The function Sn represents the
calculation of Snells law at the point
the ray pierces the surface: it will
depend on the radius and slope of the
input ray, the relative refractive
Indices, and the shape of the surface,

To find the overall object and
image distances for a complicated
sequence of lens surfaces by ray
tracing, simply originate a ray on axis
(r=0) at the position of the object and
trace it through the system until it
exits. The image will be located where
this exiting ray next crosses the axis.
If the ray also crosses the axis inside
the lens sequence, you will have
found the intermediate images as
well. Any slope U, may be used for
the calculation, but different slopes
will give slightly diiferent positions
for the image; this is one measure of
the aberration of your lens system.

We can also find the transverse
magnification of the lens system by
choosing an off-axis point on the
object (finite r) and tracing it through
the system until it reaches the image
position (determined previously.) The
transverse magnification is then the
radius at the image divided by the
initially chosen radius.

For simple spherical surfaces
and paraxial rays, the input-output
equations for a surface transit can be
greatly simplified, and the sequentiai
computation for ray tracing can be
reduced to the multiplication of 2x2
matrices, the so-cailed “ABCD”
matrices from radio-frequency
transmission line theory:

rﬂul - A B r:‘n
u out - C D u in
Figure 17.3 gives the ABCD
matrix for a spherical surface of
curvature radius R.
The equations describing

Propagation in free space between
surfaces is already in ABCD form:

oo Mo Y1)
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Figure 17.3

We can do many interesting
calculations with these simple 2x2
matricies. For example, we can
combine the ABCD matricies for two
sphericaisurfaces separated bya
thickness t to find the ABCD matrix
for a thick lens;

A=1-
R;n
=t
n
1 t(n-i)2
C:- 1) ——-—
(n )[, R, J+ R, Rn
t(n~1
p=y. tn-1)
R.n
Figure 174

It is handy to note that il
ABCD matricies, for individual
elements or a complicated optical
system, have the property:

AD - BC = nin/nout

This relation can be used as a
check on your calculation after multi-
plying together a long chain of 2x2
matricies.

The simple recursive nature of
the calculation is ideal for solution by
available personal computer spread-
sheet programs. For more informa-
tion on ray tracing and ABCD
matricies and their applications, see
the texts by Hecht and Zajac, or
('Shea, or Chapter 15 of Lasers by A.
E. Siegman, University Science Books,
1986,

In our discussion of lenses, we
have said little about the diameters

required, yet this is an important
feature of the lens in determining its
cost. In the example of the laser beam
expanding doubiet it was clear that
the lenses had to be large enough to
pass the desired input and output
beam diameters. In other optical
systems, the required diameters must
be determined. The most general
statement that can be made is that we
need to keep the lens diameters large
enough so that no desired light is lost
by falling outside a lens as it trav-
erses the system. The study of the
light lost in a system is that of staps,
pupils, and windows.

Stops come in two kinds:
aperture stops and field stops. Aper-
ture stops limit the amount of light
that can pass through the lens
system, while field stops limit the
angular field of view that the system
can transmit. Pupils are the image of
aperture stops; an entrance pupil is
the image of the aperture stop as it
would be seen in object space (that
is, the space on the object side of the
first lens), while the exit pupil is the
image of the aperture stop as seen
from image space (that is, the Space
on the image side of the last lens of
the system.) Likewise, entrance and
exit windows are the images of the
field stop in object and image space
respectively.

Stops may be the lenses
themselves, or intervening apertures
placed intentionally or unintention-
ally between the lenses. A familiar
example of an intentional aperture
stop is the iris diaphragm in a camera
used to change the amount of light
allowed to expose the film. Cameras
aiso contain field stops: the rectangu-
lar frame that the film rests on limits
the field of view to just that which
will fit on the film. Notice that this
field stop keeps the sprocket hole
part of 35 mm film from being
exposed by the lens system.

in a simple combination of
lenses, it may be obvious which
diameter limits the amount of light
and which limits the field of view. In
more complicated lens systems it is
necessary to trace rays to determine
which dimensions are the critical ele-
ments. A simple procedure to
determine the aperture stop is to
trace rays that pass through the axis
at the object plane, or axial rays, at
ever increasing slope, until you find a
ray that intersects the edge of a lens
or aperture. That ray is the marginai

QYD Newvvport



ray of the system, and the object it
hits is the aperture stop. Once the
location and diameter of the aperture
stop is determined, the exit and
entrance pupils can be determined by
tracing two more rays through the
system, to find the images of the
aperture stop from the two sides of
the system.

Similarly, the field stop may be
found once the aperture stop is
located by tracing rays that cross the
axis at the position of the aperture
stop. Increase the slope of this ray
until it intersects the edge of a lens or
aperture. The object it hits is the field
stop. The exit and entrance windows
are found by tracing two more rays to
find the images of the field stop in
object and image space. For examples
of this procedure, see Hecht and
Zajac, or 0'Shea.

Aberration

Aberration is the name given
to various departures from the ideal
performance of a lens. As we've seen
above, a lens with spherical surfaces
exhibits near-ideal behavior if we
confine the rays through the lens to
be very near the optical axis so that
they make very shallow angles with
respect to that axis. If we use such a
lens with larger ray angles, we will
find that the lens no longer behaves
in an ideal fashion. For example,
marginal rays that pass through the
region near the edge of the lens will
not cross the axis at the same
distance from the lens as the central
or paraxial rays cross.

We would like to have a theory
that describes this nonideal behavior,
s0 that we can understand it and
tearn how to minimize the “damage”
done to the performance of our
optical system. The simplest analyti-
cal theory that allows us to evaluate
these departures from ideal imaging
is Third-order theory, developed by
Ludwig von Seidel in the nineteenth
century. Seidel made the approxima-
tion sing = g — /3! for the angies
used in tracing rays through a lens,
Using this approximation he found
that the rays do not exactly map one
plane onto another to produce a
faithful image of an object. He also
found that he could separate the
resulting departures from the ideal
into five different aberrations. These
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are now called the Seidel aberrations
in his honor.

Third-order calculations do not
tell the whole story. More complete
approximations to sine have been
used to calculate fifth-order and even
seventh-order lens theories. The
complexity increases astronomically
with the order of the approximation.
Unfortunately, the insight gained by
these theories decreases at the same
astronomical rate,

Modern optical design has
abandoned high order approxima-
tions in favor of ray tracing, calculat-
ing sing exactly with high-speed
electronic computers. This can be
done for a single lens, but more often
the calculation is made for an entire
optical system. Ray tracing proce-
dures have resulted in very powerful
lens design programs for mainframe
and personal computers.

Although lens design programs
can rapidly evaluate and refine lens
systems, they cannot (as of this
writing) independently determine a
suitable starting design. A good
design begins with insight and the
intelligent use of trial and error. To
minimize the number of trials, a lens-
design professional will want to start
with a reasonable first guess derived
from a good understanding of the
Seidel aberrations. At a more elemen-
tary level, it is helpful to understand
the implications of the simplest
aberrations so that you can optimize
your system performance using stock
spherical lenses. In many cases, a
reasonable first guess is good enough
to meet the system requirements.

Seidel Aberrations are usually
discussed in this order: spherical
aberration, coma, astigmatism, field
curvature, and distortion. They must
be corrected in the same order. That
is, you cannot have pure coma until
the spherical aberration is elimi-
nated, and pure astigmatism requires
that spherical aberration and coma
both be eliminated, etc.

This order also tells how the
magnitude of the particular aberra-
tion varies with the distance of the
object point from the optical axis:
spherical aberration is independent
of this distance, while the amount of
coma varies linearly with the distance
off axis; astigmatism and field
curvature vary quadratically with this
distance and distortion varies
cubically. The magnitudes of all
aberrations increase as the distance

between the optical axis and the ray
entering the lens increases. This is as
expected, since rays confined to the
optical axis are ideally described by
Gaussian first-order formulas. In the
paragraphs below we present only
brief physical descriptions of these
aberrations and some of the tech-
niques used to minjimize their effects
when designing an optical system.

Spherical Aberration s illus-
trated below (fig. 18). For a lens with
spherical surfaces, the outer regions
of the lens are too strong compared
to the central region, Marginal rays
are turned more than the paraxial
rays and come to a focus closer to
the lens.
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Figure 18

The difference in distance
between the paraxial focus and the
marginal focus is a measure of the
spherical aberration of the lens, or
more properly, the longitudinal
spherical aberration, L.SA, to distin-
guish it from a ciosely related
measure, the fransverse spherical
aberration, TSA. As shown in the
figure, the TSA is the distance off axis
that the marginal rays pierce the
paraxial focal plane.

The envelope of rays passing
through one side of the lens defines
the caustic curve, and its intersection
with the marginal rays defines the
circle of least confusion, or the
smallest spot to which a light source
at infinity will be focused by such a
spherical lens. We should point out
that the effect is shown greatly
exaggerated in figure 18.1f the
difference between the paraxial focus
and the marginal focus were as large
as shown, third order theory would
not be adequate to accurately
describe the situation.

Minimizing spherical aberration
can be accomplished in several ways.
A simple method is to use only the
central portion of the lens. If the lens
shown above were stopped down
(larger £/} so that the marginai rays
were the second from the axis rather
than the third as shown, both LSA
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and TSA would be greatly reduced,
and the circle of least confusion
would be much smaller. Of course,
you would likely do this by purchas-
ing a smaller diameter lens in the first
place. Either a smaller lens or an
aperture stop reduce the aberration
by the same amount.

The amount of spherical
aberration exhibited by a lens also
depends on how the lens is employed
in the system. Figure 19 illustrates
how the same planoconvex lens can
exhibit different amounts of spherical
aberration simply by reversing it
when it is used to bring a collimated
beam of light to a focus.

Figure 19

Clearly, orienting the curved
side of the lens toward the collimated
beam reduces the spherical aberra-
tion. The same would be true if the
lens were used to create a collimated
beam from a point source.

There is a simple way to
remember which way to orient a lens
to minimize spherical aberration:
Recall that spherical aberration
results because the outer portions of
the spherical lens are “too strong”
compared to the central region, We
should then orient the lens to give
the least possible bending of the outer
rays. If we recall that the minimum
deviation of the ray passing through a
Prism occurs when the ray is devi-
ated eguaily at both surfaces, then we
can strive for this same condition in
the outer region of the lens. In the
case of the two orientations of the
plano-convex lens shown in figure 19,
orienting the flat side toward the
paralle] rays from infinity requires all
the deviation to occur at the second
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surface, while reversing the orienta-
tion splits the deviation between the
two surfaces, a better situation.

The amount of spherical
aberration produced by a lens also
depends on the ratio of the image
distance to the object distance, 5,/8,,
often termed the conjugate ratio,
since 5, and s, are called the conjugate
points. In the figure above, the
conjugate ratio is zero (or infinity if
object and image points are inter-
changed.) The lens with parameters
that minimizes the spherical aberra-
tion for a particular conjugate ratio is
said to be a best form lens. For glass
with a refractive index of 1.5 at
infinite conjugate ratio the best form
lens is nearly planoconvex. We say
nearly because the radius of curva-
ture of the second side of the lens is
six times that of the first and hence
appears nearly flat. Note that multiple
toois would be required to manufac-
ture this lens, and even so, it would
not completely eliminate spherical
aberration. Plano-convex glass lenses
are considerably less expensive to
fabricate and they are so close to
best form for infinite conjugate ratio
that they will usually meet your
system requirements for all but the
most critical applications.

What do you do if you need a
lens for a finite conjugate ratio?
Application of our minimum deviation
mnemonic tells us immediately that
the best form lens for a conjugate
ratio near unity (equal image and
object distances) will be a symmetric
lens, biconvex or biconcave. For
other conjugate ratios, the best form
will be somewhere between symmet-
ric biconvex and nearly plano-convex,
with the most curved side toward the
longer of the image and object
distances. It is impractical for a lens
supplier to stock all possible forms
between these two extremes. You
could consider ordering a custom
lens designed for your particular
conjugate ratio, or you could con-
sider using two stock plano-convex
lenses back to back, (fig. 20).

L, L,-

F F

Figure 20.

Each lens operates at infinite
conjugate ratio, while the pair
operates at a finite conjugate ratio. Of
course, you have introduced two
extra surfaces, which will exhibit
reflection untess they have antireflec-
tion coatings. However, recall that the
art of optical design is to meet the
system requirements at a minimum
cost.

Coma is lens aberration that
appears when light is brought to a
focus at points off the optical axis.
The name coma is Latin for comet,
and that is the shape of the aberrated
image of an off-axis point (fig. 21).
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Figure 21,

Rays that pass very near the
center of the lens 0 come to a
paraxial focus. In the figure the object
point $ has a paraxial focus at P
However, rays that pass through the
outer regions of the lens come to a
different focus, both in position and
in shape: The rays that come from S
and pass through the lens at points-
1-2-34 at some radius from 0 are
imaged as a circle 1-2-3< which wil}
be tangent to two lines in the focal
plane through the point P. Rays that
pass through the lens at a smaller
radius /-2-3¢’ will be imaged in a
smaller circle. Note that it is the tail
of the comet that is the paraxial focal
point, not the head.
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Unlike spherical aberration,
which always brings marginal rays to a
closer focus than paraxial rays, coma
may be positive or negative, depend-
ing on the shape of the lens. For
negative coma, the tail points away
from the optical axis and for positive
coma, the tail points toward the axis.
This means that for a particular lens
shape, the coma can be made exactly
zero.

The optimum lens shape to
minimize or eliminate coma depends
on the conjugate ratio of the imaging.
Fortunately, the shape of the lens that
produces zero coma is very nearly the
same shape that produces the
minimum spherical aberration,
Techniques used to reduce coma are
similar to those used in reducing
spherical aberration. For example, a
plano-convex lens with the curved
side facing the collimated light nearly
eliminates coma at infinite conjugate
ratio. For conjugate ratios near unity,
a biconvex lens is near optimal. And,
at intermediate ratios, the most
economical approach to reducing
coma is to use two stock plano-convex
lenses back to back as previously
shown. It is also possible when lenses
are used in combination to introduce a
stop at a proper location to introduce
positive or negative coma into the
system to cancel out the net coma
from the rest of the system. Hecht and
Zajac give further details on this
technique.

Astigmatism is the next aberra-
tion to be considered after spherical
aberration and coma are corrected.
Figure 22 illustrates this aberration.

We distinguish two planes in this
system: the meridicnal plane, contain-
ing the optical axis and the object
point, also cailed the tangential plane,
and the sagittal plane, perpendicutar
to the tangential and containing the
object point. Rays in the meridional
plane come to a focus closer to the

MERIDIONAL

SAGITTAL OPTICAL

PLANE SYSTEM
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lens than rays in the sagittal plane.
Thus, the circular cross section of a
conical bundle of rays from an object
point will become elliptical after
passing through the lens, coming to a
line focus first perpendicular to the
meridional plane, then farther from
the lens to a second line focus lying in
the meridicnal plane. The nearer focus
is called the primary or tangential
focus and the farther focus is called
the secondary or sagittal focus.
Between these two foci the bundle of
rays will have a minimum overall
diameter, called the circle of least
confusion.

The Seidel aberration astigma-
tism should not be confused with
visual astigmatism. Visual astigmatism
occurs when the eye's lens does not
have spherical surfaces. The curva-
ture of the lens surface in one meridi-
onal plane is not the same as the
curvature in another. Images of
orthogonal sets of lines (for example,
window screen) will not come to focus
at the same distance. Seidel astigma-
tism, on the other hand, occurs with
perfectly spherical lens surfaces, and
produces a different kind of image
defect, as illustrated in the image of
the wagon wheel (fig. 23).

TANGENT SAGITTAL
FOCAL FOCAL
PLANE PLANE
Figure 23.
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CONFUSION
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! :
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IMAGE IMAGE

Figure 22.

Points will be blurred out only
in a circular direction in the tangen-
tial focal plane; thus, circles will
appear sharply focused in radius
while the spokes will be blurred out.
In the sagittal focal plane the blurring
is only In the radial direction, so that
the spokes will appear sharply
focused while the rim blurs out.

Astigmatism can be reduced by
judicious use of stops with simple
lenses. Overall correction techniques
are beyond the scope of this discus-
sion, and fully corrected designs
require the fabrication of custom
multi-element lenses. If a high degree
of astigmatism correction is required
the best solution is to adapt commer-
cially available lens systems (termed
anastigmats, copy lenses, process
lenses) to your application.

Field Curvature remains after
spherical aberration, coma, and
astigmatism are corrected. A lens
corrected for all aberration except
field curvature would image off-axis
points in the object as off-axis points
in the image. However, if the object
points lie in a plane, the image points
will not lie in a plane, but rather on a
paraboloidal surface, termed the
Petzval surface, after the nineteenth
century mathematician, Josef Petzval.
This surface curves toward the lens
for positive lenses and away from the
lens for negative lenses, which
suggests that a combination of-
positive and negative lenses might
cancel the effect. The Petzval condi-
tion does just this. If both lenses are
made out of the same glass, then the
magnitude of the focal lengths must
be equal, so that the lenses must be
spaced some finite distance d if the
combination is to have a finite focal
length. The overall focal length is
then

This simple correction method
is readily applicable with only
common lenses but is limited in
flexibility. Again, total correction
requires specialized multi-element
lenses. Fortunately, lenses corrected
for astigmatism are usually corrected
for field curvature.
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Distortion is the last of the
Seidel aberrations and manifests itself
as a displacement of the points in the
image as a whole rather than a
blurring of the individual points.
Positive or pincushion and negative or
barrel distortion are illustrated below.

r{Y-T1T—1"7 r ————— a
|
| 1
i .' |
! i !
Li_g_ 11 Do 3
NO POSITIVE NEGATIVE
DISTORTION
Figure 24.

Distortion may also be thought
of as a change in the transverse
magnification with the distance of the
image point off axis. With positive
distortion that magnification in-
creases, while with negative distor-
tion it decreases. Adding a stop to a
lens system will often introduce
distortion of one sign or the other. If
the stop is added some distance in
front of the lens, barrel distortion will
result. If it is added some distance
behind the lens, pincushion distor-
tion will result. No added distortion
results if the stop is placed in the
plane of the lens or at the optical
center of a system of lenses. The
judicious introduction of a stop can
be used to create distortion of the
opposite sign to that of the lens and
thus produce a system with no net
distortion.

Chromatic
aberration

Chromatic aberration, unlike
the five Seidel aberrations which
occur with monochromatic light,
occurs when a lens or optical system
must use many wavelengths or a
continuum of wavelengths. Because
the refractive index of optical
materials varies with wavelength, the
focal properties of a simple lens will
vary as well. Figure 25 jllustrates this.
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Figure 25.

Glasses exhibit normal disper-
sion in the visible spectrum, so the
refractive index is higher for blue
light than red. The ability of the lens
to bend rays is thus stronger in the
blue, and the focal length of a convex
glass lens is shorter for blue light
than for red, as shown In the figure.
The distance between the red and
blue foci on the optical axis is the
axial chromatic aberration, or ACA.
There is also a lateral chromatic
aberration, or LCA, which is the lateral
separation between the position of
the blue and red foci of an off-axis

point (fig. 26).

BLUE

Figure 26.

A little thought will show that
the positions of the red and blue foci
with respect to the plane of the lens
are reversed for a negative lens. This
suggests that a combination of
positive and negative lenses could be
found to eliminate chromatic aberra-
tion. The simplest combination is
called an achromatic doublet, To
produce a doublet with finite focal
length we must do one of two things:
(1) put two lenses in contact, but
make them of glasses with different
dispersion; or (2) use two lenses
made of the same glass but with a
particular distance between the
lenses.

The achromatic doublet
illustrated below consists of two
lenses of different optical glasses
placed in close contact. The two
lenses are shown as having a common
radius of curvature (fig. 27), so that
they fit intimately over their entire
surface. An index-matched cement is
used to eliminate the individual
reflections from the two interior
surfaces, and this form is called a
Fraunhofer cemented achromat.

Figure 27,

By a proper choice of glasses,
this doublet can be made to have the
same focal lengths at two wave-
lengths, red and blue in the above
figure. If the lens can be considered a
thin lens, then the red and blue rays
will cross the axis at the same point,
and the lens will have zero ACA for
those wavelengths. The red and blue
rays will also exit parallel to each
other so it will also be free from lateral
chromatic aberration (LCA). However,
if the lens must be treated as a thick
lens, the ACA may not be zero because
the positions of the principal planes
may not be the same for the two wave-
lengths, even though the focal lengths
are. The LCA will remain corrected.

Typically, rays at intermediate
wavelengths (yellow) will not cross
the optical axis at the same point as
the red and blue rays, so that the lens
will not be completely free from
chromatic aberration. How much the
yellow focal length differs from the
red/blue focal length depends on the
exact form of the dispersion curves
for the two glasses. In demanding
applications this small residual
aberration must also be reduced. In
visual optical instruments, the
residuat LCA produces magenta and
green halos around white objects,
termed the secondary spectrum. To
reduce the secondary spectrum, more
than two lenses are utilized, and the
net focal length can be made the same
at three or four wavelengths, Such
lenses are custom designed and
considerably more expensive, How-
ever, for a large percentage of applica-
tions, achromatic doublets listed in
this catalog will be satisfactory.

In designing achromatic optical
systems the dispersive property of
glass is usually characterized by its
dispersive index, also known as its V-
number or Abbe number, defined by:

Ve (0 vy ow = 1)
(n gLyg =1 R.'ED)
Industry standards specify exact
wavelengths for red, yellow, and blue.

The subscripts C, d, and F are used for
these particular wavelengths, follow-
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Ing Fraunhofer's historical designa-
tions for lines in the solar spectrum:

C (red) 656.3nm
d (yellow) 583.3 nm
F (blue) 486.1 nm

The less dispersive the glass, the
larger the V-number. Values of V and
n, vary from about 85 and 1.49 for
fluoride crown glasses to 20 and 1.95
for dense flint glasses. Glasses
typically used in simple achromats
are borosilicate crown glass, e.g. BK-7
with V = 64 and n, = 1.52; and flint
glass e.g. 5F-2 with V = 36 and
n = 162, ,
The condition that a doublet be
an achromat is then stated simply by:

FioVi+ Fpy ¥,=0

where the subscript d denotes the
focal lengths of the two lenses at the
yellow wavelength. The derivation of
this relation is given in Chapter 6 of
Hecht and Zajac. This condition
specifies the ratio of the two lengths.
The desired net focal length of the
doublet places a second condition on
the two focal lengths:

1 1 1

—_— T —— —
F Fy, F,

In the cemented achromatic
doublet, there are three radii of
curvature to be specified. The above
conditions on focal lengths determine
two of the radii. The remaining radius
can be adjusted to provide the best
form factor in order to correct for one
other aberration. The achromatic
doublets listed in this catalog have
been carefully optimized by exact nu-
merical ray tracing to eliminate
spherical aberration at specific
conjugate ratios,

It is not required that an
achromatic doublet be in the ce-
mented Fraunhofer form. Figure 28
illystrates other doublets of two
different glasses.

The extra degree of freedom
gained by having two different radii of
curvature where the lenses are in
contact can be used to make addij-
tional corrections for the Seidel
aberrations. The disadvantages are
that these two surfaces must be
individually coated to reduce reflec-
tions, and the two lenses must be
individually mounted, rather than
mounted as a single unit,

We may also correct chromatic
aberration using two lenses made of
the same glass if we are willing to
space the lenses some distance apart.
As shown in Hecht and Zajac, for
example, two lenses spaced a
distance d given by

. (Fld+F2d)
d———-2———-

will have the same focal lengths for
red and blue wavelengths, provided
the refractive index for yellow light is
the arithmetic average of the indices
for red and blue, a reasonable
approximation for most glasses.
Again, thcugh the focal lengths are
the same for red and blue, the
location of the principal planes may
not be, so such a lens is well cor-
rected for LCA, but not ACA. The
Huygens ocular or eyepiece is a good
example of such a spaced achromatic
doublet.

A final comment on achroma-
tizing a system of lenses: Minimizing
LCA requires that red and biue rays
exit the system parallel to each other,
and minimizing ACA requires that
they cross the optical axis at the
same point. This means that that the
red and blue rays must actually be as
collinear as possible when exiting the
lens system. When lenses are spaced
some distance in a muiti-element
optical system, they should generatly
be individually achromatized, to keep
the red and blue rays from separating
significantly, (fig. 29).

FRAUNHOFER EDGE CENTER
CEMENTED CONTACT CONTACT
GAUSSIAN EDGE CENTER e
CONTACT CONTACT = 2z (b}
Figure 28. Figure 29,

QD Newport

I the red and blue rays have
separated significantly within the
system, it may prove very difficult to
make them collinear again with the
final lenses of the system.

Diffraction

Diffraction phenomena are a
consequence of the wave nature of
light. The scalar theory of diffraction
can be used to relate the phase and
amplitude distributions of the optical
fields in planes transverse to the
direction of propagation of a beam of
light as it propagates from its source,
Figure 30 illustrates the arrangement
usually considered: The source
electric field E_ (¥ z)is known in both
amplitude and phase over the y-z
plane at x = 0. The actual source of
light is somewhere to the left of x = 0
and is illuminating an aperture In a
mask located at x = 0, so that the
source in the y -2 plane is zero except
in the aperture.

Figure 30

We can then express the
electric field £(Y, Z) at a distance
x = X away from the source plane as
an appropriate integral containing the
source field, £, The resulting famous
Huygens-Fresnel Integral has
received much attention, both in
optics and in the theory of antennas;
it can be solved to varying degrees of
approximation, depending on the
particular variation of £, and the
dimensions of the problem. Chapter
10 of Hecht and Zajac gives a good
introduction to applications of this
integral in optles.

In many optical systems the
Huygens-Fresnel integral can be
simplified to:

\2Zz Yy

E(Y,Z)zﬂ;Es(y,z) e™ e~ dy dz

Note that this equation is in the
form of a Fourier transform pair. The
electric field distribution in the (Y. Z)
observing plane is just the Fourier
transform of the source electric field
in the (¥, z) plane. The fact that E and
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£, form a Fourier transform pair is
certainly worth remembering, since
we can use our knowledge of Fourier
transforms from other branches of
engineering and science to visualize
how light diffracts in an optical
system. However, the source and
observing plane electric fields are
Fourier transform pairs only if:

(1) The source aperture and its
resulting field at the observing
plane are very much smaller
than the distance between
source and observing planes.

{2) The observation plane is in the
far-field. The Fraunhofer condi.
tion defines the far field as the
observing distance, X, such
that the maximum dimension
of the source distribution is
much smaller than VXA,

— Since many optical systems
possess axial symmetry, it is often
convenient to use the distribution of the
light with the radius from the axis ror R
rather than the Cartesian variables y,
zand ¥, Z. in that case the two
dimensional Fourier transform
becomes a one dimensional Hankel
transform relationship:

ER) = [TE, (1) Jo[z;’i’ )rdr

where J, is the zero-order Bessel
function. Hankel transforms may be
less familiar, but their properties are
quite analogous to Fourier trans-
forms,

Both eguations given above
express the Fraunhofer approxima-
tion to the Fresne! integral, or
Fraunhofer diffraction. Note that the
relationship is between the source
and observed electric fields, ex-
pressed as complex quantities, with
both magnitude and phase. Ideally,
this requires that the light waves be
completely monochromatic and
sinusocidal. Diffraction of polychro-
matic light is more complicated since
the integral relationships must be
used to relate each spectral compo-
nent, wavelength by wavelength for
all wavelengths in the source.

The magnetic fields can be
found from the electric fields or vice
versa using Maxwell’s equations.
However, in optical systems, we
usually observe the intensity, /,
rather than the electric or magnetic
fields. The intensity is related to these
fields by:
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- EE*_EH
2n 2
_E*H _nHH*
T2 T2

_ 377 ohms

" n(index )

*denotes complex conjugate

with / measured in watts per square
meter, £ in volts per meter and H in
amperes per meter. The factor of 1/2 in
the above equation is the result of
using peak values of £ and H: it should
be omitted if rms values are used.
Knowing only the intensity
pattern in one plane does not enable
you to find the intensity in the other
plane unless you know the phase
distribution as well. Diffraction patterns
calculated by Fourier and Hankel
transforms are extremely sensitive to
phase in either plane. The integrals are
simplified when the source plane is
uniformly illuminated with monochro-
matic light of constant phase. This is
known as plane-wave illumination, and
is closely approximated by laser light.
A rectangular aperture under
uniform plane-wave illumination is the
simplest source distribution to
illustrate the Fourier transform
relationship. A slit illuminated by a
laser beam is a common example. The
resulting far-field distribution is:

sin[ﬂ] sin[m] B

This distribution is the square of
the F.T. of the rectangular impulse
function, familiar in many fields of
science and technology. The function
is shown in perspective (fig. 31) for a
rectangular aperture with b = /2.
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It is characterized by a large
central lobe which goes to zero ina
rectangie bounded by ¥ = £A.X/b and
Z = £3X/a. The full width at half maxi-
mum of this lobe is 0,886 AX/b in the
Y dimension by 0.886 AX/a in the Z
dimension. The smaller width occurs
in the direction of the larger dimen-
sion of the aperture, illustrating the
familiar inverse relation between
widths of Fourier transform pairs.

The central lobe is surrounded
by minor lobes that go to zero in
rectangles. These are more easily
seen if the intensity is plotted on a
base 10 logarithmic scale (fig. 32). -

The peak values of the minor
lobes falls off least rapidly along the
axes. They fall off most rapidly along
the diagonals perpendicular to the
diagonals of the source rectangle. The
rectangles defining the zeros of the
minor lobes have dimensions of ZLY/
b by 3X/a along the Z axis, AX/b by
ZAX/a along the Y axis, and AX/b by
AX/a off the axes.
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Figure 32.

Small variations in the phase
distribution over the aperture can
produce vastly different far-field
patterns than those shown above.

For example, a phase step of n in the
center of the y-axis will produce a null
on the optical axis, with a major lobe
on either side of the Y-axis. Phase
steps of rt in both y and z will produce
four large lobes, etc. A linear phase
variation across the rectangular
source aperture will move the pattern
off the optical axis. More complicated
phase variations produce correspond-
ingly complicated far-field patterns.
Thus you do not see the patterns
shown unless the illumination is
uniform and in phase.

A Circular Aperture with
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uniform plane-wave illumination is
perhaps the most commonly encoun-
tered source distribution in optical
systems. If the light is monochromatic
then the intensity distribution of the
diffraction pattern at infinity will be:

2
ndR
2) i —
'[ AX ]

kS

AX

where d is the diameter of the
aperture and R = VY? + 72, the radius
from the X axis. This function is
shown in figure 33. Again, the log of

the intensity has been plotted to
make the minor lobes more visibie,
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Figure 33

A large circular major lobe is
surrounded by annular minor lobes
that decrease rapidly in intensity
away from the optical axis. The
central lobe is known as Airy’'s disk
when projected on a screen, in honor
of astronomer Sir George Airy, who
first derived the equation for this
diffraction pattern. The diameter of
the first zero surrounding the central
lobe is R = 3.83(2/m)(1 X /d), 3.83 being
the first zero of the 4, Bessel function.
The diameters of the remaining zeros
in the pattern can be found by
substituting the other zeros of J .
Unlike the rectangular diffraction
pattern, the zeros are not uniformly
spaced. The diameter of the centra}
peak at its half maximum is 1.03QX/d).
The amplitudes of the rings fall off
more rapidly than the side lobes from
a square aperture along the Y and Z
axes, but less rapidly than along the
diagonals. Again, the far field distribu-
tion will be changed dramatically by
departures from phase uniformity
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across the source aperture.

Fourier optics is the field that
studies the science and application of
the relationships described ahove.
Practical applications would be
severely limited if the transform
relations were restricted to situations
in which the source and observing
planes had to be far distant from one
another. However, recall that a simple
ideal lens images a point at infinity at
its focus, This property holds for
diffraction as well. If the source distri-
bution occurs in a collimated beam of
light, the two-dimensional Fourier
transform of that distribution will
occur at the focus of the lens (fig. 34).

F.T.({Es)

Figure 34.

Of course, the lens must be
“ideal” or free from all aberrations. A
plane wave must be brought to a
single focal point. We've already men-
tioned that phase variations of the
order of nt (1/2) over the source
aperture can totally change the
pattern of the F.T. Such a restriction
applies to the lens as well. The path
lengths through the various regions of
the lens must not depart from their
ideal values by more than a very small
fraction of the wavelength. The frac-
tion that is allowable depends on how
critical the application is, but varies
typically from 1/10 to }/100. Lenses this
perfect are termed diffraction limited,
and will convert an ideal plane wave
into an ideal spherical wave. If your
application involves such considera-
tions, it is important to know just how
departures from the ideal in the lens
will affect your result. The cost of a
diffraction-limited lens increases very
rapidly with the phase or wavelength
tolerances you place on it.

The Fourier transform relation-
ship also results in some other
interesting and readily understood
consequences. Suppose the source
distribution contains a particular
frequency component, for example,
the light intensity varies sinusoidally
in a grating pattern with a spacing d:
(fig. 35).

Figure 35.

We may characterize the grating
as a single frequency component f=
1/d (cycles/meter). The FT. relation-
ship tells us that the intensity in the
far field pattern (or at the focal
distance of a lens) will be concen-
trated at a distance Y from the optical
axis proportional to f.. Actually, a
concentration of energy will also
occur at -f, and at zero, since the
simple real grating transmission
function will contain both positive
and negative frequency components
and an average value as well. And if
the grating is other than sinusoidal,
harmonics will appear as well at 2,
+3

Many of the other features of
the Fourier transform relationship
can be used to see what will happen
in this simple picture if we change the
source distribution:

If we translate the grating in y or
z, the intensity distribution in the Y.Z
plane will be unaffected since we have
introduced no new frequency compo-
nents.

Rotating the grating around the
optical axis will rotate the far-field
pattern by the same angle. The two-
dimensional transform is not rotation-
ally invariant.

If we decrease the period of the
grating, the size of the far-field
pattern will increase, The product of
scale size in the source and scale size
in the far-field is constant.

If a feature in the source distri-
bution is largely periodic, then it wiil
be represented in the far field by a
localized concentration of intensity at
that frequency. If we amplitude,
phase, or frequency modulate the
grating at some lower frequency, addi-
tional frequency components would
appear in the observing plane, Finally,
if a feature is localized in the source
(say a single line) then the intensity in
the far field will be spread out.

N-17



Another interesting feature of
the lens arrangement used to take an
FT is that it makes no difference in
which direction light propagates
through the system. That is, if the
distribution at the focal point of the
lens is the source of light, then the
distribution just on the far side of the
lens will be the ET. of that distribu-
tion. Taking the transform of a trans-
form gives us back the original
function. You can see this easily if you
think of placing a mirror at the focal
point of the lens. The source distribu-
tion will exactly be reflected on itself
from the E.T. on the mirror.

A very important consequence
of this idea is illustrated below. If,
instead of a mirror, we use a second
lens to restore the original source
distribution, we can place masks in
the FT. plane to block certain compo-
nents of the F.T. (fig. 36).

F.T.(Es)

Figure 36.

We usually refer to these
components as spatial frequencies to
distinguish them from time signals
that may occur elsewhere in an
optical system, and we refer to the
process of blocking certain spatial
frequencies as spatial filtering. [n its
simplest form, spatial filtering can
restore the quality of a collimated
laser beam by blocking all spatial
frequencies due to dust particles in a
system. In more involved applica-
tions, the technique provides a
powerful method of optical signal
processing. For an introduction to
this topic and some very striking
photographic examples, see Chapter
14 of Hecht & Zajac,

Another obvious consequence
of the Fourier transform is that the
intensity distribution of light changes
as it propagates through an optical
system. This effect, if unwanted, may
be detrimental in a particular system
and quite baffling to the optics user.
Recall that the F.T. only tells the
relationship between source and
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observation planes, but the amplitude
and phase must change continuously
between these two points.

For example, if you were to pass
a collimated laser beam through a 35
mm black and white transparency,
you would see an exact shadow of the
transparency on a screen very near
the film. As you moved the screen
farther away, you would notice a
fuzziness develop on the edges of the
image, then at still farther distances, a
periodic “ringing” would appear,
which grows in extent until the
original shadow image is all but
unrecognizable. Finally, at very iarge
distances this distribution would
evolve into the Fourier transform of
the original pattern on the black and
white transparency.

To obtain all the patterns at
intermediate distance, we would have
to solve the Fresnel integral without
the mathematical approximations
that gave us the simple Fourier
transform. This is generally not easy
to do except in trivial cases (slit,

- circular aperture, etc.).

Gaussian Beam
Optics

The Gaussian intensity distri-
bution is the one important exception
to the comments in the previous
paragraph. This radially symmetric
distribution whose electric field
variation is given by

2
Es=E,exp| -—
Wo

has the interesting mathemati-
cal property that its Fourier trans-
form is also a Gaussian distribution.
We have implied by the expression
given above that the phase is uniform
in r. And, if we were to solve the
Fresnel integral itself rather than the
Fraunhofer approximation, we would
find that a Gaussian source distribution
remains Gaussian at every point along
its path of propagation through the
optical system. Of course, its size will
change as it is focused by lenses or
mirrors, but the intensity remains
Gaussian, This makes it particularly
easy to visualize the distribution of
the fields at any point in the optical
system. We note that the intensity is
also Gaussian:

2r?
Ig=nmEESF = nEE?* exp(———z]

Wy

This relationship is much more
than a mathematical curiosity, since it
is now very easy to find a light source
with a Gaussian distribution of
intensity: a laser. Most lasers auto-
matically oscillate with a Gaussian
distribution of electric field. This is
also due to the fact that the Gaussian
is the only function whose F.T, is
itself; As light bounces back and forth
between the mirrors in a laser cavity,
it must adopt some distribution that
will remain unchanged no matter how
many bounces it makes. The Gaussian
is the only distribution that satisfies
this requirement. It is possible for the
basic Gaussian to also take on some
particular polynomial multipliers and
still rematin its own transform. These
field distributions are known as
higher order transverse modes and
are usually avoided by design in
practical lasers.

The Gaussian has no obvious
boundaries to give it a characteristic
dimension like the diameter of the
circular aperture, for example, The
definition of the size of a Gaussian is
somewhat arbitrary. One could define
the radius of a Gaussian as the
distance from the axis at which the
intensity had decreased to some
fraction of the value on axis. Figure 37
shows the Gaussian intensity distri-
bution

(r)=1, exp(-ﬂg-J

Wy

which might be observed at the
output of a typical He-Ne laser,
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Figure 37.

The parameter w,;, usually
called the Gaussian beam radius, is
the radius at which the intensity has
decreased to 1/e? or 0.135 of its value
on the axis. Another point to note is
the radius of half maximum or 50%
intensity, which is 0.59 w,. At 2w, or
twice the Gaussian radius, the
intensity is 0.0003 of its value on axis,
usually completely negligible, We
might also note that the region near
the axis over which the Gaussian is
reasonably constant is rather small. If
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we could tolerate only a 10% decrease
in intensity, we could use the Gauss-
ian only out to a radius of 0.23 w,,

The power contained within a
radius r, P(r}, is easily obtained by
integrating the intensity distribution
fromftor:

P(r)=?(»)[l—exp[—3'—§]]

Wo

When normalized to the total
power in the beam, P(=) in watts, the
curve is the same curve as the
intensity, but with the ordinate
inverted so it may be included in the
same graph. Nearly 100% of the power
is contained in a radius r =2w,. One-
half the power is contained within
0.59 w,, and only 10% of the power is
contained within 0.23 w,, the radius at
which the intensity has only de-
creased by 10%. The total power, P(=)
(watts), is the quantity typically
advertised by manufacturers. It is
related to the on axis intensity, {(0)
(watts/m?), by:

A} S5 10
10)-rlo) 2+ |

2
nw,

A little thought will indicate that
the on axis intensity can be very high
due to the small area of the beam.

Care should be taken in cutting
off the Gaussian distribution with a
very small aperture to make the beam
more uniform over its extent. The
source distribution would no longer
be Gaussian, and the far-field intensity
distribution would develop zeros and
other non-Gaussian features. However,
If the aperture is at least 3 or 4w, in
diameter, then these effects wiil be
negligible,

Propagation of Gaussian beams
through an optical system can be
treated almost as simply as geometric
optics. Because of the unique self-
Fourier Transform characteristic of
the Gaussian, we do not need an
integral to describe the evolution of
the intensity profile with distance; the
transverse distribution of intensity
remains Gaussian at every point in the
system; only the radius of the Gauss-
ian and the radius of curvature of the
wavefront change. Imagine that we
somehow create a coherent light
beam with a Gaussian distribution and

QD Newport

a plane wavefront at a position x=0.
The beam size and wavefront curva-
ture will then vary with x as shown in
figure 38.

Rix)

Figure 38.

The beam size will increase,
slowly at first, then faster, eventually
increasing proportionally to x. The
wavefront radius of curvature, which
was infinite at x=(), will become finite
and initially decrease with x. At some
point it will reach a minimum value,
then increase with larger x, eventually
becoming proportional to x. The
equations describing the Gaussian
beam radius w{x) and wavefront
radius of curvature R(x) are;

where w is the beam radius at
x=0 and A is the wavelength. The
entire beam behavior is specified by
these two parameters, and because
they occur in the same combination
in both equations, they are often
merged into a single parameter, x,,
the Rayleigh range:

In fact, it is at x = x, that R has
its minimum value.

Note that these equations are
also valid for negative values of x. We
only imagined that the source of the
beam was at x=0; we could have
created the same beam by creating a
larger Gaussian beam with a negative
wavefront curvature at some x<0.
This we can easily do with a lens, as
illustrated in fig. 39:

P Wix)
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Figure 39.

The input to the lens is a
Gaussian with diameter D and a
wavefront radius of curvature which,
when modified by the lens, will be
R(x} given by the equation above
with the lens located at -x from the
beam waist at x=0. That input
Gaussian will also have a beam waist
position and size (or Rayleigh range)
associated with it. Thus we can
generallize the law of propagation of a
Gaussian through even a complicated
optical system:

In the free space between
lenses, mirrors, etc., a Gaussian beam
is specified in diameter and
wavefront curvature by the equations
given above; the position of the beam
waist and the waist diameter (or
Rayleigh range) completely deter-
mine the beam.

When a beam passes through a
lens, mirror, or dielectric interface the
diameter is unchanged, but the
wavefront curvature is changed,
resulting in new values of waist
position and waist diameter (or
Rayleigh range) on the output side of
the interface.

These laws, with input values of
w and R will allow you to trace a
Gaussian beam through any optical
system. Of course, some restrictions
apply: optical surfaces need to be
spherical, and with not too short a
focal length, so that beams do not
change diameter too fast. These are
exactly the analog to the paraxial
restrictions we applied to simplify
geometrical optical propagation.

As stated above, the laws are
not exactly suited for efficient
calculation. Wouldn't it be nice if we
could put them in a form as conven-
ient as the ABCD matricies we
introduced for geometric ray tracing?
It turns out we can, and we even end
up with the same values 0of A, B, C,
and D for the elements of the optical
system, or the system itself! There is
a difference: w(x)} and R(x) do not
transform in matrix fashion as r and u
did for ray tracing; rather they
transform via a complex bilinear
transformation:

_ [a,,A+B]
out [qu+D]

where the quantity ¢ is a
complex composite of w and R:
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We can see from the expression
for q that at a beam waist (R=w and
w = w ) that g is pure imaginary and
equals jx.. Thus if we know where
one beam waist is and its size, we can
calculate q there and then use the
bilinear ABCD relation to find q
anywhere else in the system. If you
wanted to know the size and
wavefront curvature of the bearm
everywhere in the system, you would
have to use the ABCD values for each
element of the system and trace q
through thern via successive bilinear
transformations. On the other hand, if
you only wanted the overall transfor-
mation of g, you could multiply the
elemental ABCD values in matrix
form, just as we did for geometric
optics, to find the overall ABCD
values for the system, then apply the
bilinear transform. For maore informa-
tion on Gaussian heams, see Chapter
17 of Siegman’s book Lasers.

There are some simple relations
for Gaussian beams that can be
stated easily, and are tmportant
enough to single out.

An interesting relationship
follows from the two formulas for w
and R. At large distances from a beam
waist, the beam appears to diverge as
a spherical wave from a point source
located at the center of the waist.
Note that “large” distances mean
where x>>x, and are typically very
manageable considering the smai}
area of most laser beams. The diverg-
ing beam has a full angular width @
(again, defined to the 1/e? points):

4

f=—"

2w,

We have invoked the approxi-
mation tan @ = 4 since the angles are
small. Since the origin can be approxi-
mated by a point source, @ is given
by geometrical optics as the diameter
illuminated on the lens, D, divided by
the focal length of the lens.

D
== #)!
8= =(/%)

where f/# is the photographic f-
number of the lens.

Equating these two expressions
allows us to find the beam waist
diameter in terms of the input beam
parameters
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The focal spot diameter of a
Gaussian beam is about equal to the
wavelength times the f-number of the
focusing system. (There will be some
restrictions on this that will be
discussed later.)

We can also find the depth of
focus for this same beam from the
formulas above. If we define the
depth of focus (somewhat arbitrarily)
as the distance between the values of
X where the beam is V2 times larger
than it is at the beam waist, then
using the equation for w(x) we can
determine that

BAYFY
por=(3 | D)

The depth of focus is about two
and a half times the wavelength times
the square of the f-number of the
focusing system.

Using these relations, we can
make simple calculations for optical
systems employing Gaussian beams.
For example, suppose that we use a
10 mm focal length lens to focus the
collimated output of a helium-neon
laser (632.8 nm) that has a 1 mm
diameter beam. The diameter of the
focal spot will be

(i}x (632.8nm)
T
10 mm
X b
[ 1mm J

or about 8 microns. The depth of
focus for this beam is then

[%]x (632.8nm )

[ 10 mm ]2
x s
Imm
or about 160 microns.

If we were to change the focal
length of the lens in this example
from 10 mm to 100 mm, the focal spot
size would increase 10 times to 80
microns or 8% of the original bearn
diameter. The depth of focus would
increase 100 times to 16 mm,

However, suppose we increase
the focal length of the lens to 2,000
mm, for example. The “focal spot
size” given by our simple equation
would be 200 times larger, or 1.6 mm,
60% larger than the original beam!
Obviously, something is wrong. The
trouble lies not with the equations
giving w(x) and R(x), but rather with

our assumption that the beam waist
occurs at the focal distance from the
lens. For weakly focusing systems, the
beam waist does not occur at the focal
length. In fact, the position of the
beam waist changes contrary to what
we would expect from geometric
optics: For a weakly focusing system,
the waist moves toward the lens as
the focal length of the iens is in-
creased, as we could demonstrate by
using the ABCD transformation.
However, we can easily believe the
limiting case of this behavior by
noting that a lens of infinite focal
length such as a flat piece of glass,
placed at the beam waist of a colli-
mated beam will produce a new beam
waist not at infinity but at the
position of the glass itself. Fortu-
nately, the simple approximations for
spot size and depth of focus can still
be used in most optical systems to
select pinhole diameters, couple light
Into fibers, or compute laser intensi-
ties. Only when f-numbers are large
should the full Gaussian equations be
needed.

Waveplates

We have stated that the
interaction of light with the atoms or
molecules of a material is wavelength
dependent. A consequence of this
dependence is the resonant interac-
tions discussed in regard to the
material dispersion on page N-2.
Another consequence of such
resonant interaction is
birefringence, the change in refrac.
tive index with the polarization of
light. The orderly arrangement of
atoms In some crystals results in
different resonant frequencies for
different orientations of the electric
vector relative to the crystalline axes,
This, in turn, results in different
refractive indices for different
polarizations. Unlike dispersion,
birefringence is easy to avoid: use
amorphous materials such as glass,
or crystals that have simple symme-
tries, such as NaCl or GaAs. On the
other hand we can “use” birefrin-
gence to modify the polarization state
of light, a useful thing to do in many
situations. The optical components
that do this trick are calied birefrin-
gent waveplates or retardation
plates (or just waveplates or reta-
rders for short).
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By taking just the right slice of a
crystal with respect to the crystalline
axes, we can arrange it so that the
minimum index of refraction is
exhibited for one polarization of the
electric vector of a plane-polarized
wave, as shown in fig. 40.
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Figure 40.

We say that wave is polarized
along the fast axis, since its phase
velocity will be a maximum. A plane-
polarized wave with its plane rotated
90° will propogate with the maximum
index of refraction and minimum
phase velocity, as shown in fig. 41.

Figure 4.

We say it is polarized along the
slow axis. The difference in the
number of wavelengths shown in figs.
40 and 41 (2-2/3, and 4 respectively)
would imply a ratio of the two indices
of refraction n,,/n,, = 2/3, a much
larger difference than in typical
natural crystals; we have exaggerated
the ratio for clarity.

The propagation phase con-
stant k can be written as 2nin/c
radians per meter, so that a wave will
experience a phase shift of @=2nfnL/c
radians in travelling a distance L
through the crystal. Thus, the phase
shift for the wave in fig. 40. will be
B,,,=2nin, Lfc, and for the wave in
fig.- 41., @, =2=n__ fL/c (8n radians

slow slow

as shown.) The difference between
these two phase shifts is termed the
retardation, I'=2rf{(n__ -n, JL/c. The
value of ' in this formula is in
radians, but is more common to
express in “wavelengths” or “waves”,
with a “full wave” meaning I'=2x%, a
“half wave” meaning I'=r, a “quarter
wave” meaning I'=x/2, and so forth.
Thus, we would term the crystal
shown in the figs. a “4/3 wave plate™,
that is, it retards the phase of the
slow wave by 4/3 of a wave (cycle)
relative to the fast wave.

Since waves repeat themselves
every 2n radians, we could just as
well subtract out an integral number
of 2ns or waves and call the crystal
shown a 2r/3 radian or 1/3 wave
plate. We would never know the
difference, provided we only used it
at exactly the optical frequency
shown in the figs. However, if we
change the frequency we will quickly
note that the retardation will change
at a rate faster than it would for a
plate that had really only 1/3 wave
retardation. We can note this differ-
ence by calling it a “multiple erder
1/3 wave plate.”

Half-wave Plates

By far the most commenly used
waveplates are the half-wave plate
(I'=r) and the quarter-wave plate
(T'=n/2}. The half-wave plate can be
used to rotate the plane of plane
polarized light as shown in fig. 42.
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Figure 42.

Suppose a plane-polarized wave
Is normally incident on a waveplate,
and the plane of polarization is at an
angle 8 with respect to the fast axis.
To see what happens, resolve the
incident field into components
polarized along the {ast and slow
axes, as shown. After passing through
the plate, pick a point in the wave
where the fast component passes

through a maximum. Since the slow
component is retarded by one half
wave, it will also be a maximum, but
180° out of phase, or pointing along
the negative slow axis. If we follow
the wave further, we see that the slow
component remains exactly 180° out
of phase with the original slow
component, relative to the fast
component. This describes a plane-
polarized wave, but making an angie
6 on the opposite side of the fast axis.
Our original plane wave has been
rotated through an angle 28. You can
satisfy yourself that you wili find the
same result if the incident wave
makes an angle & with respect to the
slow axis.

A haif-wave plate is very handy
in rotating the plane of polarization
from a polarized laser tc any other
desired plane (especially if the laser
is too large to rotate!). Most large ion
lasers are vertically polarized, for
example, so to obtain horizontal
polarization, simply place a half-wave
plate in the beam with its fast (or
slow) axis 45° to the vertical. If it
happens that your hali-wave plate
does not have marked axes (or if the
markings are obscured by the
mount), put a polarizer in the beam
first and orient it for extinction
(horizontally polarized), then
interpose the half-wave plate normal
to the beam and rotate it around the
beam axis so that the bearn remains
extinct, you have found one of the
axes. Then rotate the half-wave plate
exactly 45° around the beam axis (in
either direction) from this position,
and you will have rotated the polari-
zation of the beam by 90°. You may
check this by rotating the polarizer
90° to see that extinction occurs
again. lf you need some other angle,
instead of 90° polarization rotation,
simply rotate the wave-plate by half
the angle you desire. A convenient
wave-plate mount calibrated in angle
is the RSA-1T{page H-30).

Incidently, if the polarizer
doesn't give you as good an extinc-
tion as you had before you inserted
the wave plate, it likely means your
wave-plate isn’t exactly a half-wave
plate at your operating wavelength.
You can correct for small errors in
retardation by rotating the wave-plate
a small amount around its fast or
slow axes. Rotation around the fast
axis decreases the retardation while
rotatation around the slow axis
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increases the retardation. Try it both
ways and use your polarizer to check
for improvement in extinction ratio.

Quarter-Wave Plates

Quarter-wave plates are used to
turn plane-polarized light into
circularly-polarized light and vice
versa. To do this, we must orient the
waveplate so that equal amounts of
fast and slow waves are excited. We
may do this by orienting an incident
plane-polarized wave at 45° to the fast
(or slow) axis, as shown in figure 43.
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Figure 43.

On the other side of the plate,
we again examine the wave at a point
where the fast-polarized component
is maximum, At this point, the slow-
polarized component wiil be passing
through zero, since it has been _
retarded by a quarter wave or 90° in
phase. If we move an eighth wave-
length farther, we will note that the
two are the same magnitude, but the
fast component is decreasing and the
slow component is increasing.
Moving another eighth wave, we find
the slow component is maximum and
the fast component is zero. If we trace
the tip of the total electric vector, we
find it traces out a helix, with a
period of just one wavelength. This
describes circularly polarized light.
Right-hand light is shown in the
figure; the helix wraps in the opposite
sense for left-hand polarized light.
You may produce left-hand polarized
light by rotating either the waveplate
or the plane of polarization of the
incident light 90° in the figure.

Setting up a wave-plate to
produce circularly polarized lght
proceeds exactly as we described for
rotating 90° with a half-wave plate:
first, cross a polarizer in the beam to
find the plane of polarization. Next,
insert the quarter-wave plate be-
tween the source and the polarizer
and rotate the wave plate around the
beam axis to find the orientation that
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retains the extinction. Then rotate
the wave-plate 45° from this position.
You should now have half the
incident light passing through the
polarizer (the other half being
absorbed or deflected, depending on
which kind of polarizer you are
using). You can check the quality of
the circularly polarized light by
rotating the polarizer - the intensity of
light passing through the polarizer
shouid remain unchanged. If it varies
somewhat, it means the light is
actually elliptically polarized, and
your wave plate isn't exactly a
qQuarter-wave plate at your operating
wavelenth. You may correct this as
with the half-wave plate by tilting the
wave-plate about its fast or slow axes
slightly, while rotating the polarizer
to check for constancy.

You may wonder what effect
retardations other than a half wave or
a quarter wave have on linearly
polarized light. Figure 44 shows the
effect of retardation on plane polar-
ized light with the plane of polariza-
tion making an arbitrary angle with
respect to the fast axis.
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Figure 44.

The result is elliptically polar-
ized light, with the amount of ellip-
ticity and the tilt of the axis of the
ellipse a function of the ratardation
and the tilt of the incident plane
wave. The exception is a half wave
retardation, in which case the ellipse
degenerates into a plane wave making
an angle of 20 with the fast axis. Note
that the quarter wave plate does not
produce circularly polarized light
here, because equal amounts of fast
and slow wave components were not
used: the incident tilt angle must be
exactly 45° with respect to the fast
(or slow) axis to make these compo-
nents equal.

Waveplate Applications

We have already mentioned the
two most common applications of
wave plates: rotating the plane of
polarization with a half-wave plate
and creating circular polarization
with a quarter-wave piate. Obviously,
you can also also use a quarter wave
Plate to create plane polarization
from circular polarization - just
reverse the direction of light propaga-
tion in fig. 43!

Optical Isolation - We can use a
quarter-wave plate as an optical
isolator, that is, a device that elimi-
nates undesired reflections. This
application is discussed in detail in
the introduction to optical isolators
on page [.2,

Polarization Cleanup - Often an
optical system will require several
reflections from metal or dielectric
mirrors. There is no change in the
polarizations state of the reflection if
the beam is incident nofmally on the
mirrors, or if the plane of polarization
lies in or normal to the plane of
incidence. However, if the polariza-
tion direction makes some angle with
the plane of incidence, then the
reflection often makes a small phase
shift between the parallel and
perpendicular components. This is
particularly true for metal mirrors,
which always have some loss. The
resulting reflected wave is no longer
piane polarized, but will be slightly
elliptically polarized, as you can
easily determine by its degraded
extinction when you insert a polarizer
and rotate it. This small ellipticity can
often be removed by inserting a full
wave plate (which ordinarily does
nothing) and tilting it slightly about
either fast or slow axes to change the
retardation slightly to just cancel the
ellipticity.

Waveplate Material and
Practice

Materials - Many natural
occuring crystals exhibit birefrin-
gence, and could, in principle, be
used for waveplates. Calcite and
crystalline quartz are typical materi-
als. They are durable and of high
optical quality. However, the refrac-
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tive index difference, n_-n,_  is so
large that a true half-wave plate
would be impractically thin to polish.

It is also possible to induce
small amounts of birefringence into a
normally isotropic material through
stress. For example, most plastics
exhibit birefringence from stress
applied in the manufacture. Plastic
waveplate material is available in half-
or quarter-wave retardation values in
very large sheets. It is inexpensive,
but not of the highest optical quality
or durability.

Multiple-order wave plates -
One alternative to polishing or
cleaving very thin plates is to use a
practical thickness of a durable
material such as crystalline quartz
and obtain a high-order wave plate,
say a 15.5 wave-plate fora 1 mm
thickness. Such a plate will behave
exactly the same as a half-wave plate
at the design wavelength. However, as
the optical wavelength is changed,
the retardation will change much
more rapidly than it would for a true
half-wave plate. The formula for this
change is easily derived from the
definition of I

I‘=(2m+l)ﬂ[-§—f}

-~(2m +1)n[i—"]

9

where {, and A are the design
frequency and wavelength, and m is
the order of the waveplate. Thus, the
rate of change of retardation with
frequency 8I/8f will be 2m+1 times as
large for an m'* order plate as a true
half-wave plate, {m=0, or “zero order”
plate). This would be 31 times larger
for our 1 mm “15.5-wave” plate! You
should calculate the frequency or
wavelength range your system
requires, and see if the error in
retardation will be tolerable over that
range with a multiple order
waveplate.
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By like reasoning, the sensitivity
of the retardation to rotation about
the fast and siow axes is found to be
about (2m-+1) times larger for a
multiple order plate than a true zero-
order half-wave plate. This means
much smaller rotations are required to
correct for retardation errors. But it
also means that light rays not parallel
to the optical axis will see a (2m+1)
larger change in retardation, Multiple
order waveplates are not recom-
mended in strongly converging or
diverging beam portions of your
optical system. Similarly, the sensitiv-
ity of retardation to changes in length
caused by changes in temperature are
multiplied by (2m+1), so that tighter
temperature control will be required.
A typical temperature sensitivity is
0.0015 wave per degree C for a visible
1 mm thick half-wave plate.

Multiple order waveplates can
be used to advantage if you require a
waveplate that can be used at two
discrete wavelengths, for example the
488 and 514 nm wavelengths of an
argon-ion laser or the 532 and 1064 nm
wavelengths from a Nd:YAG laser. By
choosing the thickness to give a
(2m+1} plate at one wavelength and a
(2m,+1} plate at the other, both
wavelengths will see a “half-wave”
plate (But not the wavelengths in
between!) The integers have to be

chosen by a computer program, since
the dispersion in index has to be
accounted for also, but it is usually
possible to find a plate of reasonable
thickness provided the two wave-
lengths are not too close together.

Zero-Order waveplates -
Fortunately, a technique is available
for realizing true half-wave plate
perfiormance, while retaining the high
optical quality and rugged construc-
tion of crystalline guartz waveplates.
By combining two waveplates whose
retardations differ by exactly half a
wave, a true half-wave plate results.
The fast axis of one plate is aligned
with the slow axis of the other, so
that the net retardation is the
difference of the two retardations.
The change in retardation with
frequency (or wavelength) is mini-
mized. Temperature sensitivity is also
reduced; a typical value is 0.0001-
wave per degree C. The change in
retardation with rotation is highly
dependent on manufacturing condi-
tions and may be equal to greater
than that of a multiple order
waveplate.

These waveplates are recom-
mended for use in systems using
tuneable radiation sources, such as a
dye laser or white light sources.
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Reference Guide

Light

Light is a transverse electro-
magnetic wave. The electric and
magnetic fields are perpendicular to
each other and to the propagation
vector k, as shown below,

Power density is given by
Poynting’s vector, P, the vector
product of £ and H. You can easily
remember the directions if you “curl”
£'into H with the fingers of the right
hand: your thumb points in the
direction of propagation,

Intensity Nomogram

The nomogram below relates E,
H, and ] in vacuum. You may also use
it for other area units, for example,
[V/mm], [A/mm} and [W/mm?]. If you
change the electrical units, remember
to change the units of by the
product of the units of E and & for
example [V/m], [mA/m], [mW/m?] or
[kV/m], [kA/m], [MW/m?].
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[Vim] [Wim?]
1000 —
= 1000 —-
= —
—F— s00
500 — —
—t— 200 —gq .1
ThEe— 100 —J__
200—“—5 50 —::_0.5
— 20 —
190 = 10 —
= 102
= s
50 ] — —
—1— 2 — 0.1
T 1 —]
20 —=—_ 05 —— 0.05
N-24

H
[A/m]

Light intensity

Light intensity, / is measured in
Watts/m?, E'in Volts/m, and H in
Amperes/m. The equations relating /
to £ and H are quite analogous to
OHMS LAW. For peak values:

E E

E=nH, H==, n=L
n n 1 H
EH E? l=1'|H2

==, [=—

2’ 20’ 2

E=q2nl, I-I=\/?2-I
n

N, =377 ohms (Q)

=D
n
The quantity 1, is the wave
impedance of vacuum, and 7 is the

wave impedance of a medium with
refractive index n.

Wave quantity
relationships
2r 2mn
k==
F R
=21mv=rl_m
c c
vl o C
A, ni
ke _ o
m 2n
=S he
nv n
- 2m_2nc
k ne

k: wave vector [radians/m)]

v: frequency [Hertz]

«: angular frequency [radians/sec]
i: wavelength [m]

A,: wavelength in vacuum [m]

n: refractive index

Energy conversions

Wavenumber (v)[cm "]

Wavelength conversions

I nm = 10 Angstroms(A) =10° m
= 10" ¢cm = 10-* micron

Plane polarized light

For plane polarized light the £
and H Helds remain in perpendicular
planes parallel to the propagation
vector k as shown below.

Both £ and H oscillate in time
and space as:

sin (wt-kx)

The nomogram relates wave-
number, photon energy and wave-
length.
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Snell’s law

Snell’s law tells how a light ray
changes direction at a single surface
between two media with different
refractive indices. The angle of
incidence, 0, is measured from the
normal to the surface. A ray passing
from low to high index is bent toward
the normal; passing from high to low
index it is bent away from the normal.

\ SNELL'S LAW
nqy SIN 61 = np SIN 69

ng>n1 \

n4 no

Displacement

A flat piece of glass can be used
to displace a light ray laterally without
changing its direction. The displace-
ment varies with the angle of inci-
dence; it is zero at normal incidence
and equals the thickness of the flat at
grazing incidence. The shape of the
curve depends on the refractive index
of the glass, as shown in the next
column.

ny
5} “ "2
\ /n1
‘ {
\

—] O

)N//\/
COS 64

o —

2
nz 2
/(ﬁ) — SINZ gy

d = h SIN 8y

pury
P

DISPLACEMENT/THICKNESS(drhy
o
n

TILT ANGLE (DEGREES)

Deviation

Both displacement and devia-
tion occur if the media on the two
sides of the tilted fiat are different -
for example, a tilted window in a fish
tank. The displacement is the same,

but the angular deviation & is given by

the formuia. Note that & is independ-
ent of the index of the flat; it is the
same as if a single boundary existed
between media 1 and 3.

:1 sin G1\
n3 !
tan 64, if ng = Ny

5= gy ~— sin~T (
= (n3—nq)

Example: The refractive index
of air at STP is about 1.0003. The de-
viation of a light ray passing through

a glass Brewster’s angle window on a
HeNe laser is then:

8=(n,n)tand
At Brewster's angle, tan 6 = n,
& = (0.0003) x 1.5 = 0.45 mrad

At 10,000 ft. altitude, air
pressure is 2/3 that at sea level; the
deviation is (.30 mrad. This change
may misalign the laser if its two
windows are symmetrical rather than
parallel.

Angular deviation of a prism

Angular deviation of a prism
depends on the prism angle a, the
refractive index, and the angle of
incidence 8, Minimum deviation
occurs when the ray within the prism
is normal to the bisector of the prism
angle. For small prism angles (optical
wedges), the deviation is constant over
a fairly wide range of angles around
normal incidence. For such wedges the
deviation is:

S3=(n-Da
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Fresnel Equations:

Reference Guide

Field reflection

The field reflection and trans-
mission coefficients are given by:

r=E/E, t=E/E

Non-normal incidence:

r, = (n,cost-ncosb )/(n,cosd + ncos)
r, = (ncos8n.cos6))/(n,cosd,+ n,cose,)
t, = 2n,cos8/(n, cosB + n,cos6,)

t, = 2n,cos6/(n, cosb,+ n,cosb)

Conservation of energy:
R+T=1

This relation holds for p and s
components individually and for tota]
power.

Power reflection

The power reflection and
transmission coelfficients are denoted
by capital letters:

R=r* T = t’(n, cos8)/n, cosh)

The refractive indices account
{or the different light velocities in the
two media; the cosine ratio corrects
for the different cross sectional areas
of the beams on the two sides of the
boundary.

The intensities [watts/area]
must also be corrected by this
geometric obliquity factor:

[=Tx] (cosBi/cosel)

i
t

- incident medium
- transmitted medium

use Snell’s law to find 8,

Normal incidence:

r=(n:n)/(n, +n,)

t

=2n/(n +n)

Brewster’s Angle

8, = arctan (n /n)

Only s-polarized light reflected.

Total Internal Reflection
(TIR)

8,5 > arcsin (n/n)

n,<n, is required for TIR

Polarization

Polarization. To simplify
reflection and transmission calcula-
tions, the incident electric field is
broken into two plane polarized
components. The plane of incidence
is denoted by the “wheel” in the
pictures below. The normal to the
surface and all propagation vectors
(ki,k,,kl) lie in this plane.

£ parallel to the plane; p-polarized.

NCRMAL TO SURFACE

PLANE OF
INCIDENCE

SURFACE

E normal to the plane; s-polarized.

PLANE OF

INCIDENGCE

Power reflection
coefficients

Power reflection coefficients
R_and Rp are plotted linearly and log-
arithmically for light traveling from
air (n, = 1} into BK-7 glass (n =
1.51673). Brewster’s angle = 56.60°.
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FRESNEL REFLECTION FOR BK-7
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The corresponding reflection
coefficients are shown below for light
traveling from BK-7 glass into air
Brewster's angle = 33.40°. Critical
angle (TIR angle) = 41.25°.
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Thin lens
4
If a lens can be characterized by | |

Y
a single plane then the lens is “thin.” !
Various relations hold among the ]

quantities shown in the figure. I\
Gaussian: ,1__ + .,1_ = 1
s, s, F AXq / Yo
Newtonian: x x, = -F,
1x2 2 x1 F
"

F X2
Magnification: S5
Transverse: M= Yz _. 52
YI s1 s . 8
Sign conventions for Lens types for minimum
M, <0 - Image inverted images and lenses aberration
Longitudinal:  p = LS -M/ Quantity + - I's,fs, ¢ Best lens
Axl
. 5, real virtual <0.2 plano-convex/concave
M, <0 - No front to back inversion s, real virtual >5 planc-convex/concave
F convex lens concave lens »0.2 or <5 bi-convex/concave
Thick lens e BFL4 Tc BFLp —e
A thick lens cannot be charac-
terized by a single focal length Py P2
measured from a single plane. A single |
focal length F may be retained if it is
measured from two planes, H,, H,, at - 1 [H2|]V> —
distances PI, P2 from the vertices of Vil Hy
the lens, VI, V2. The two back focal /
lengths, BFL and BFLZ2, are measured
from the vertices. The thin lens /
equations may be used, provided all X1 F F X2
quantities are measured form the
principal planes. | S1 82
Lens nomogram
THIS NOMOGRAM SOLVES THE GAUSSIAN LENS THE DOTTED LINE SHOWS THE EXAMPLE
EQUATION. ENTER ANY TWO OF $4, Sa - 89 = 12,F = 4,52 = 6 OR THE EXAMPLE
18 OR F, AND DRAW A STRAIGHT LINE TO 1-10 S1=4F= 1-33.282 = 2. YOU MAY
FIND THE THIRD. TWO DIFFERENT T MULTIPLY BY POWERS OF 10 6
16 SCALES ARE GIVEN, ONE ON e AND USE ANY UNITS.

THE CLOCKWISE SIDES OF I-

THE AXES AND ONE ON I8 18
THE COUNTER- T
5 12 CLOCKWISE 1 F
SIDES. In

=10 _
Sq

® THIS NOMOGRAM MAY ALSO BE USED
4 TO FIND THE IMPEDANCE OF PARALLEL
RESISTORS, PARALLEL INDUCTORS OR SERIES
CAPACITORS, OR THEIR DUALS.

THIS NOMOGRAM IS SIMPLY THREE
UNIFORM SCALES INTERSECTING AT 80°,
YOU MAY MAKE YOUR OWN IN ANY SIZE.
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Wavelengths of
The Lensmaker’s Equation Constants and Prefixes common lasers
T,
P4 |-C-1 Pz Vacuum light vel. c=2.998x10* m/s Source {nm)
] Planck’s const. h=6.625x10* J-s KeF 248
b Boltzmann's const. k=1.308x10 J;°K Nd:YAG(4 266
[} Stefan-Boltzmann  $=5.67x10® W/m2°K* : “
Vighil Ha| [vo Ielectronvolt  eV=1.602x10%9 J XeCl 308
P N — i HeCd 325, 441.6
B2 exa (E) 10 N, 337
R peta (P) 101s XeF 350
tera (T) 1012 Nd:YAG(3) 354.7
el giga (G) 10° Ar 488, 5145, 3511, 363.8
1 1 1 (n-1T. mega (M) 106 Cu 310,578
AR ettt Kilo (k) 10° Nd:YAG(Z) 532
b e millt (m) 10° HeNe 632.8, 1152, 543, 554,604
micro (i) 144 Kr 647
p o F{n -1)T, nano (1) 10¢ Ruby 694
' nR, pico (p) 1012 Nd:Glass 1660
femto () 1015 Nd:YAG 1064, 1319
P - F{n ‘R 1T, . ltalics indicate secondary lines
n 1

roperti f opti ri
Convex surfaces facing left have P op es of optical materials

positive radii. In the above R,>0, R ,<0.
Principal plane offsets, P, are positive

Pyrex Zerodur BK-7 SF2 Fused Silica

to right. As illustrated, P,>0, P,<0. The A(nm) Index n (&)
thin lens focal length is given when 1060 1.507 1.628 1.449
T, =0, 643.8 1.473 1.515 1.643 1.457
546.1 1.477 =154 1.517 1.652 1.460
486 1.481 1.522 1.661 1.463
346.6 1.477
. 248.2 1.508
Numerical Aperture Abbe number V, 642 338 67.8
- Oyax Birefringence(nm/cm) 10 5 6 6 5
NA =n,sin [TJ Expansivity (107/°C) 32,5 -0.2 71 84 55
Conductivity
. (mW/cm°C) 11.3 16.3 11.3 7.3 13.8
Q19 ”;et;“‘t' a;‘f'ea‘;‘st:’}frcﬁng ‘:}ﬁe Heat capacity (J/gm°C)  0.75 0.85 085 050 0.75
187t rays that can p oug Max. Temp. (°C) 500 600 280 200 950
system, Density (gm/cm?) 223 252 - 251 3.86 2.20
Hardness 460 550 510 350 500
Young’s Modulus
(kN/mm?) 65.5 90.2 815 55 70.3
190 DYNASIL
g 1100 / ﬁ"_‘\
£ g/ ¢ { “ =
£ _ / \
S / ! |PYREX V \
= 60 . ~BK7
=z I SF2 . \
o) DYNASIL | / .
% / far00 | \
] 20 . | : |
= I 4 7
For small ¢: @ | / ]
3 Il i
Fool = 20 f Tt >
f/#= D 2NA ® / ! -ZERODUR U \
\ [ | 1A
Both f-number and NA refer to 015 0.2 03 04 07 1.0 20 30 40 50
the systern and not the exit lens. WAVELENGTH IN MICRONS
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Gaussian intensity
distribution

The Gaussian intensity distri-
bution:

I(r) = 1(0) exp(-2r¥/w.?)

is shown at right. The right hand
ordinate gives the fraction of the tota!
power encircled at radius r:

P(r) = P(=){1-exp(:2r*/w,))]

The total beam power, P(=)
fwatts], and the on-axis intensity 1(0)
[watts/area] are related by:

P(=) = (mw,?) 1)
100) = @2/nw,?) P(==)

1.0 — 0
- | i
I
z i E |
175} ! i T 3
& F i g
ru-" t : b a
- R I, NI b s s e e e ] c
g 0.5 "'} : 0.5 L_,_:
e el Tt PP e L TP, 063 &
< ' g
m : ] Z
= -2—-—: ————————— ———mmem e ————— -(.865 «
e , : 10.01 :
P L " 1 L i 1 1_0
% ] 1 A 2
0.23 059 071 1.52

Diffraction

The second figure compares the
far-field intensity distributions of a
uniformly illuminated siit, a circular
hole, and Gaussian distributions with
e’ diameters of D and 0.66D. (99% of a
0.66D Gaussian will pass through an
aperture of diameter D.) The point of
observation is Y off axis at a distance
X>>Y from the source,

LOG INTENSITY

Focusing a collimated
Gaussian beam

In the third figure the e? radius,
w(x), and the wavefront curvature,
R(x), change with x through a beam
waist at x = (. The governing equa-
tions are:

wZ(x) = wozll + (M/nwoz)zl
R(x) = x[1 + (w,2/Ax)?)

2w, is the waist diameter at the
e? intensity points. The wavefronts
are plane at the waist [R(0) = ].

At the waist, the distance from
the lens will be approximately the
focal length: s,=F.

D = collimated beam diameter
or diameter illuminated on lens.

F
f- ber =f/#=—
number =f/ D

QO Newport

\ WX}

I+ %2

Depth of focus (DOF) .

DOF = (8A/m)(f/#)?

Only if DOF <F, then:
New waist diameter

2w, =(ﬂ)([/#)
n
Beam spread
8=(i/#)

Optimal pinhole diameter
for spatial filtering

Doer =2A(E/#)

This aperture passes 99.3% of
total beam energy and blocks spatial
wavelengths smaller than the diame-
ter of the initial beam, No diffraction
effects will be caused by this aper-
ture.
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Cleaning of any precision optic
risks degrading the surface. The need
for cleaning should be minimized by
returning optics to their case or
covering the optic and mount with a
protective bag when not in use. If
cleaning is required, we recommend
one of the following procedﬂres:

Cleaning Materials

Polyethylene lab gloves. Please
wear them. Solvents are harsh to the
skin.

Dust free tissue. Lens tissue or
equivalent.

Dust free blower. Filtered dry
nitrogen blown through an antistatic
nozzle (Simco Inc., Hatfield, PA) is
best. Bulb type blowers and brushes
must be very clean to prevent
redistribution of dirt.

Mild, neutral soap, 1% in
water. Avoid perfumed, alkali or
colored products. Several drops of
green soap {available in any phar-
macy) per 100 cc of distilled water is
acceptable,

Spectroscopic grade isopropyl
alcohol and acetone.

Cotton swabs. Avoid plastic
stems which can dissolve in alcohol
or acetone.

Cleaning Procedures

Dust on optics can be very
tightly bound by static electricity.
Blowing removes some dirt; the
remainder can be collected by the
surface tension of a wet alcohal swab,
Acetone promotes rapid drying of the
optic to eliminate streaks.

1) Blow off dust.

2) If any dust remains, twist
tissue around a swab, soak in alcohol
and wipe the optic in one direction
with a gentle figure-eight motion.
Repeat.

3) Repeat Step (2) with acetone
soaked swabs,

Fingerprints, oil or water spots
should be cleaned immediately. Skin
acids attack coatings and glass.
Cleaning with solvents alone tends to
redistribute grime. These contami-
nants must be lifted from an optical
surface with soap or other wetting
agent. The part is then rinsed in water
and the water removed with alcohol.
Acetone speeds drying and eliminates
streaks.

I) Blow off dust.

2) Using a soap saturated lens
tissue around a swab, wipe the optic
gently in the same figure 8 motion.
Repeat.

3) Repeat (2) with distilled
water only.

4} Repeat (2) with alcohol.

5} Repeat (2) with acetone.

Delicate optics such as UV
aluminum mirrors are most safely
cleaned by immersion. Do not
immerse cemented optics, Washing
solutions should be used only once to
prevent recontamination.

1} Blow off dust.

2) Prepare petri dishes filled
with soap solution, distilled water,
alcohol, and acetone. Line the bottom
of each with tissue to prevent
blemishing an optic.

3) Immerse the optic in soap
solution. Agitate gently.

4) Immerse in distilled water.
Agitate.

5} Immerse in alcohol. Agitate.

6) Immerse in acetone. Agitate.

7) Blow dry.

Military specifications are
used by Newport to communicate the
durability of optical coatings in an
industry consistent manner. The
primary MILSPECS used are:

MIL-C-675 specifies that the
coating will not show degradation to
the naked eye after 20 strokes with a
rubber pumice eraser, Coatings
meeting MIL-C-675 can be cleaned
repeatedly and survive moderate to
severe handling,

MIL-M-13850 sets durability
standards for metallic coatings.
Coatings will not peel away from the
substrate when pulled with cello-
phane tape. Further, no damage
visible to the naked eye will appear
after 50 strokes with a dry cheese-
cloth pad. Gentle, nonabrasive
cleaning is advised,

MIL-C-14806 specifies durabil-
ity of surfaces under environmental
stress. Coatings are tested at high
humidity, or in brine solutions to
determine resistance to chemical
attack. These coatings can survive in
humid or vapor filled areas.
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