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Abstract

The origin of the concept of a molecular complex between oxygen and hemoglobin can be traced to Stokes, a
century and a half ago. Subsequently, physicochemical concepts of equilibria provided a path to quantitative
formulations of these ligand–receptor interactions. Then, it took a quarter of a century before a proper format was
prepared in terms of four stoichiometric equilibria and their associated binding constants. Since then, experimental
measurements of these stoichiometric binding constants have consistently disclosed that successive values ofK to1

K are accentuated above those expected if every subunit of hemoglobin maintained the same, intrinsic, unchanging4

affinity for oxygen. An alternative analysis of the observed cooperative interactions has been obtained by extracting
the roots of the polynomial of the stoichiometric binding equation and deriving an alternative binding equation
containing constants that for O –Hb are complex numbers. These constants have the dimensions and properties of2

equilibrium constants. They provide some novel phenomenological insights into ligand–receptor equilibria.
� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Hemoglobin has occupied a pre-eminent posi-
tion in fundamental research in physiology and
biophysics for a century and a half. It has also
provided, among a wide range of biological
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insights, a primary molecular system for the elu-
cidation of ligand–receptor interactions in general.

In the basic life sciences, it is a fully accepted
concept that a physiological or pharmacological
effector must be bound by a receptor to initiate a
biological response. However, this view was not
at all obvious or intuitive 150 years ago.

It is often difficult to pinpoint precisely the first
appearance of a new insight. In hindsight, it seems
apparent that it was observations by a physicist of
perturbations in hemoglobin spectra in the pres-
ence of oxygen that provided the first glimpse of
a molecular interaction between these two sub-
stances. Stokes, in the middle of the 19th century,
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was Lucasian Professor at Cambridge University,
one in the long line of towering theoretical physi-
cists from Isaac Newton to Stephen Hawking to
hold that appointment. In addition to being a great
theorist, he was also a talented experimentalist,
particularly in developing spectroscopic methods
for examining chemical substances and reactions
and for studying blood. It was Stokes who first
recognized, from changes in spectra when oxygen
(O ) was removed from and subsequently added2

to blood, that oxygen combined with
hemoglobin , i.e. that a complex was formedw1x.1

During the last decades of the 19th century, this
insight was generalized, particularly by Ehrlich
and Langley, to a wide range of interactions of
natural and synthetic substances that act upon
tissues and organs. It was Ehrlichw2x who coined
the famous aphorismCorpora non agunt nisi fixata
which translated becomes, ‘‘A substance cannot
be (biologically) active unless it is ‘fixed’(bound
to a receptor).’’

2. The equilibrium constant

The idea of an O –hemoglobin complex pro-2

posed by Stokes provided a concrete molecular
image, but was only qualitative in nature. Before
connections to thermodynamics could be estab-
lished, the conception of an equilibrium constant
had to emerge. The germ of this concept appeared
first in papers of Guldberg and Waage(in the
1860s) who formulated the Law of Mass Action
w3x. Subsequently, Gibbs and von Helmholtz intro-
duced the free energy function and van’t Hoff
built a bridge from theoretical thermodynamics to
equilibrium chemical phenomena. Among other
relationships, the equation

DG8syRTlnK (1)

whereK is the equilibrium constant andDG8 the
corresponding standard free energy was derived,
and it provided the foundation for connecting O –2

hemoglobin equilibria to thermodynamic quanti-
ties. Thus, it became apparent that the route to
quantitative assessments of hemoglobin–ligand
interactions lies through the respective equilibrium
constants.

Hemoglobin from blood had been crystallized in 1840.1

For hemoglobin, the earliest such studies came
from Hufner w4,5x. Assuming a molecular weight¨
of 16 000 for hemoglobin, corresponding to 1 mol
of its content of linked iron, he presented the
oxygenation equilibrium in terms of a 1:1 stoichi-
ometric complex. Viewed as a combination of
species(Hufner focused on the dissociation direc-¨
tion), one writes

HbqO |HbO (2)2 2

Adopting the format of his contemporary phys-
ical chemists(Nernst, Ostwald, Arrhenius), Hufner¨
formulated the appropriate ratio of equilibrium
concentrations, which for Eq.(2) is

HbOŽ .2
sK (3)

Hb OŽ .Ž .2
where the parentheses represent concentration. The
moles of bound O ,wHbO x, per mole of total2 2

protein, wHbxqwHbO x, may be represented byB,2

which is also the fractional saturation,Y, of the
hemoglobin in a one-to-one complex. With some
simple algebraic manipulations(seew6x), one can
show, using Eq.(3), that

K OŽ .2
Bs (4)

1qK OŽ .2
In graphical form, this equation corresponds to

a rectangular hyperbola(Fig. 1). Hufner found¨
that his experimental observations fitted a curve
of the shape shown in Fig. 1. Because at half-
saturationYsBs0.5, one finds from Eq.(4) that

1
Ks (5)

OŽ .at Ys0.52

That is how Hufner evaluatedK for his hemo-¨
globin–oxygen interaction.

This procedure, however, uses only a single
point, the concentration of free O atBs0.5.2

Obviously, it would be preferable to include all of
the experimental measurements. In modern times
with sophisticated algebraic fitting procedures and
vast computer resources, it would be a straightfor-
ward matter to find the best value ofK from Eq.
(4) using all the experimental data.

Even before modern computational procedures
were available, several graphical techniques were
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Fig. 1. Oxygen uptake curve for a hemoglobin that can bind
only one made of O at saturation, and is half-saturated at an2

oxygen pressure near 30 mmHg.

Fig. 2. Sigmoidal shape of oxygen uptake curve for hemoglo-
bin representative of those described by Bohr et al.w9,10x with
dog blood.

developed for the conversion of Eq.(4) to a linear
transform(seew6x). These have acquired different
proper names, but were all originally formulated
by Wolff in the 1920s(seew7,8x).

For a univalent stoichiometry between ligand
and receptor, as in Hufner’s treatment of O –Hb,2¨
these graphical procedures have little to offer in
the presence of modern algebraic computational
treatments.

By the beginning of the 20th century, it had
become apparent that Hufner’s formulation of the¨
Hb/O equilibrium in terms of a one-to-one com-2

plex could not be correct. More careful and exten-
sive measurements by Bohrw9,10x showed
unequivocally (Fig. 2), that the oxygen uptake
curve was sigmoidal in shape. An equilibrium
constant of the form shown in Eq.(3) cannot lead
to a sigmoidal oxygen uptake curve. Evidently,
Eq. (2) is not an appropriate representation of the
HbyO equilibrium.2

An alternative to Eq.(2) that can produce a
sigmoidal shape in the oxygen uptake curve for
hemoglobin isw11x

HbqnO sHb(O ) (6)2 2 n

This equation presumes that Hb has a capacity
to hold n moles of O and that these moles of O2 2

are bound simultaneously, not in a stepwise fash-
ion. Under these circumstances, fractional satura-
tion as a function of O pressure is given by the2

equation
nK OŽ .2

Ys (7)n1qK OŽ .2
From this, one can also obtain the relation

Y
log slogKqnlog O (8)Ž .21yY

which is known as the Hill equation. The corre-
sponding graph, the Hill plot, should be a straight
line with a slope ofn, the number of sites for O2
(or in the general case for the ligand) on the
receptor molecule of hemoglobin. Corresponding
graphs are often published for other ligand–recep-
tor combinations.

It is not widely recognized that the Hill equation
is essentially an empirical one, despite the con-
junction of Eq. (6) with Eq. (7). Even with
hemoglobin (a particularly favorable system for
its application), experimental measurements(in
the range that fit a linear Hill plot) yield a non-
integer value forn of 2.5; yet it is now known
that hemoglobin has four binding sites for O and2

not a fractional number.
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Table 1
Some characterizing binding constants for oxygen–hemoglo-a

bin complexes

Stoichiometric (K yK )i 1 ideal Virtual
Binding binding
Constants constants

Sheep K s0.11241 w1x K s0.30e0.24pi
a

hemoglobin K s0.19742 0.375 K s0.30ey0.24pi
b

w18x K s0.14753 0.1667 K s0.27e0.30pi
g

K s1.9964 0.0625 K s0.27ey0.30pi
d

Human K s0.01881 w1x K s0.21e0.26pi
a

hemoglobin K s0.05662 0.375 K s0.21ey0.26pi
b

w19x K s0.4073 0.1667 K s0.21e0.24pi
g

K s4.284 0.0625 K s0.21ey0.24pi
d

Human K s0.34971 w1x K s0.49e0.20pi
a

hemoglobin K s0.14092 0.375 K s0.49ey0.20pi
b

cross-linked K s0.26863 0.1667 K s0.39e0.31pi
g

w20x K s2.8024 0.0625 K s0.39ey0.31pi
d

In mm .a y1

Furthermore, to utilize Eq.(8) to correlate
binding results, one must be able to reach satura-
tion of the receptor. This goal is generally not
feasible experimentally.

For a multiple-site receptor(i.e. n)1), Eq. (6)
is a highly oversimplified representation. First of
all, the binding of ligand in most cases occurs in
successive steps, each of which would have an
equilibrium constant. Secondly, it is necessary to
appreciate that for a multi-site receptor(n)1) one
must distinguish between two different types of
equilibrium constant(12, 6), which we shall des-
ignate ‘stoichiometric’ and ‘site’, respectively.2

For hemoglobins constituted of four subunits,
oxygen binding can be presented in terms of four
stoichiometric binding constants. On the other
hand, a full description in terms of individual sites
requires 32 site-binding constants, although this
number can be reduced substantially if one
assumes specific molecular models.

In the present exposition, we shall focus on the
phenomenological stoichiometric binding
formulation.

3. Stoichiometric equilibrium constants for oxy-
gen–hemoglobin equilibria

From a stoichiometric perspective, the stepwise
binding of O to a tetrameric Hb is represented by2

the equilibria

µ ∂Hb OŽ .2
µ ∂HbqO sHb O K s (9)2 2 1 Hb OŽ .Ž .2

µ ∂ µ ∂Hb O qO sHb O 22 2 2

µ ∂Hb OŽ .22
K s (10)2

µ ∂Hb O OŽ .Ž .2 2

µ ∂ µ ∂Hb O qO sHb O2 32 2 2

µ ∂Hb OŽ .32
K s (11)3

µ ∂Hb O OŽ .Ž .22 2

µ ∂ µ ∂Hb O qO sHb O3 42 2 2

µ ∂Hb OŽ .42
K s (12)4

µ ∂Hb O OŽ .Ž .32 2

In the literature, these are also widely called ‘macroscopic’2

and ‘microscopic’ equilibrium constants, respectively. Such
designations seem inappropriate because numerical values for
both are expressed in a macroscopic unit molarity.

where K ...K are the successive stoichiometric1 4

equilibrium constants. The fractional saturation of
tetrameric hemoglobin,Y, and the moles of bound
O per mole protein,B, are then expressed by the2

equation

Bs4Ys
2 3 4K O q2K K O q3K K K O q4K K K K OŽ . Ž . Ž . Ž .1 2 1 2 2 1 2 3 2 1 2 3 4 2

(13)

2 3 41qK O qK K O qK K K O qK K K K OŽ . Ž . Ž . Ž .1 2 1 2 2 1 2 3 2 1 2 3 4 2

For hemoglobin, this formulation was published3

by Adair w13x, shortly after his osmotic pressure
experiments established that hemoglobin is a
tetramer.

Some classical and some more recent experi-
mental values forK , K , K and K are listed in1 2 3 4

Table 1. The stoichiometric equilibrium constants
are always real positive numbers.

Also listed in Table 1 are the relative values
that the successive stoichiometric constants would
have if all four subunits maintained exactly the
same affinity for O as the fractional saturationY2

progressed from 0 to 1. These ratios are designated
(K yK ) . It is obvious in Table 1 that for O –i 1 ideal 2

Hb the successive stoichiometric affinities are

Several others, before and after Adair, derived completely3

general equations for the binding ofn moles of a ligand by a
multivalent receptorw6,12,14–17x.
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Fig. 3. Affinity profile for uptake of O by hemoglobin. On the scale displayed, the ideal line is so close to the abscissa axis that2

the two cannot be seen separately.

accentuated with increasing uptake of O by hemo-2

globin. In anthropomorphic terminology such
behavior is ascribed to ‘cooperative interactions’.

The trends in accentuations above the ideal can
be presented in a more quantitative fashion in a
graphical affinity profilew6x. For ideal receptors,

i(K ) s(nq1) KyKi (14)i ideal

whereK is the intrinsic affinity constant of a non-
interacting site. This normalized equation tells us
that for an ideal receptor–ligand complex, a graph
of i(K ) vs. i will present a straight line, ai ideal

convenient reference form. An example of the
actual behavior of O –Hb is illustrated in Fig. 3.2

For this human hemoglobinw19x, the accentuations
in affinity at each successive step are so strong
that the comparison line for ideal behavior is

essentially invisible because it lies so close to the
abscissa axis.

When the successive stoichiometric constants
K are accentuated in magnitude above the ideali

value, then the roots of the partition function(the
denominator) in the equation forB, Eq. (13) for
O –Hb, are complex numbersw6x. These roots2

also appear in an alternative algebraic expression
for B. For O –Hb, that equation is2

K O K OŽ . Ž .a 2 b 2
Bs q

1qK O 1qK OŽ . Ž .a 2 b 2

K O K OŽ . Ž .g 2 d 2
q q (15)

1qK O 1qK OŽ . Ž .g 2 d 2

The coefficientsK ...K have the dimensions ofa v

equilibrium constants and are algebraically linked
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to the stoichiometric constantsK ...K . However,1 i

they do not correspond to any particular step in
the successive equilibria of Eqs.(9)–(12), or to
the binding by any specific subunit of hemoglobin.
Since each term in Eq.(15) has the form of that
for binding of a ligand by a single isolated unit,
the K s may be designated as ‘virtual’ equilibriumv

constants. In Eq.(15) these virtual constants faith-
fully reproduce the experimentally observed
dependence ofB on (O ) as does the classical Eq.2

(13) with its stoichiometric binding constants.
When the binding affinity is accentuated in

successive stoichiometric steps, then the values of
K ...K are imaginary numbers. Specifically fora v

oxygen–hemoglobin equilibria, the virtual binding
constants are of the form

iu yiu1 1K sA e ; K sA ea 1 b 1

iu yiu2 2K sA e ; K sA e (16)g 2 d 2

two pairs of conjugate numbers. Numerical values
of these constants for specific preparations of
hemoglobin are presented in Table 1. With these
values inserted into Eq.(15), one obtains a much
simpler algebraic expression than that provided by
Eq. (13) to present oxygen saturation of hemoglo-
bin quantitatively and analytically.

The renown mathematician Jacques Hadamard
is creditedw21x with the observation

‘‘The shortest path between two truths in the real domain
passes through the complex domain.’’

To what extent do the virtual binding constants
lead in this direction?

SinceK has the dimensions and characteristicsv

of a binding constant, it seems appropriate to insert
it into Eq. (1) to obtain a corresponding free
energy change. Starting with the Cartesian form of
a complex number we write

2 2 i arctanbya( )yK saqibs a qb e (17)v

and thereby obtain the exponential form. Then we
recognize that(bya) is the tangent not only of the
angle arctan(bya), but also of the angles, arctan
w(bya)q2px, arctanw(bya)q2pØ2x, ... arctanw(by
a)q2pØnx, wherens0, q1, q2.... . Consequent-
ly, we can change Eq.(17) into

2 2 i warctanbya q2pnx( )yK saqibs a qb e (18)v

Proceeding to insert this result into Eq.(1), we
find

DG8syRTln(aqib)
2 2 w xsy1y2 RT.ln(a qb )yiRT arctan(bya)q2pn

ns0,"1,"2 (19)

Thus, in the Argand plane,DG8 is a many-
valued function corresponding to many equivalent
states in the complex domain.

Turning to a different area, we can return from
the complex domain ofK ...K to the real domaina v

of K ...K by finding equations for the latter in1 2

terms of the formerw6x. For tetrameric hemoglobin
these are,

K sK qK qK qK1 a b g d

K K sK K qK K qK K qK K1 2 a b a g a d b g

qK K qK Kb d g d

K K K sK K K qK K K1 2 3 a b g a b d

qK K K qK K Ka g d b g d

(20)

K K K K sK K K K1 2 3 4 a b g d

Now, if we insert the individual forms of Eq.
(16) for each of its virtual constants, we obtain a
format that permits us to explore the variation of
each stoichiometric binding constant, as we vary
u andu , respectively, in the exponential complex1 2

numbers.
For eachu, we can explore the range 0FuFpy

2, which correlates with the relative contribution
of the imaginary to the real component in the
complex number. The effects of such trends on the
values ofK ...K can then be revealed. Thereafter,1 4

one can also delineate the corresponding algebraic
equation for the fractional saturation of hemoglo-
bin as a function of O concentration.2

Having entered the field of complex variables,
one gains access to new functions for analyses of
ligand–receptor binding data.
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The binding constantK (Eq. (15)) being aa

complex number can be represented as a vector,
of length A, in the complex(Argand) plane. In
orthogonal notation,Asaqib, and a qb sA ,2 2 2

which we can designate as the Pythagorean area,
A . But in the complex(Argand) plane one canPy

also define a functiona q(ib) sA . In contrast2 2
Ar

to A , A may take on positive, zero or negativePy Ar

values, yet dimensionally it is an area. Bernoulli
converted the elementary problem of obtaining the
area(of a quadrant) of a circle into a formulation
using complex variablesw21x, and thereby proved
that i se . What insights are hidden inA ?i ypy2

Ar

The vectors forK and K wEq. (16)x can bea g

added to give the sum vectorK sA iu . Frome8 8 S

its coordinates in the complex plane, one can
calculate the corresponding Argand areaA . How8

is A related toA andA , areas of the constituent8 a b

vectorsA and A ? The Argand areas provide aa b

return bridge from the complex domain into the
real domain, so novel real relations between sum
and constituent vectors should become available.

The closed loop formed by the vectorsK , Ka g

andK suggests the examination of other integrals,8

particularly Cauchy’s contour integrals in the com-
plex domain. Many powerful physical relationships
have derived therefromw21x.

The binding constantsK , K are calculateda b

from the experimental data,B as a function of
ligand concentration(Eq.(15)). Since that analytic
expression contains terms that are complex, one
may find that the chord length distanceC, and the
arc length distance,S, of segments of the curve do
not become equal asDx™0 w21x. In particular,
the , i.e. the arc length is shorter thanlim(SyC)-1

Dx™0

that of the straight-line chord. It is tantalizing to
see if this astonishing behavior is present in bind-
ing curves that lie above that of an ideal one.

These and similar inquiries may open portals to
new phenomenological insights into ligand–recep-
tor interactions such as those in hemoglobin–
oxygen equilibria.
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