
APh105c
Homework 1

Due Date: Friday, April 7, 2006

“There is no calculation that is not worth doing.” - attributed to Duncan
Haldane

Reading: Read chaps. 1, 2 and 6 of Dill and Bromberg and the article by
Jaynes on the course website.

1. A Feeling for the Numbers: Avogadro’s Number and Beyond.

Though I am a big fan of nice, general formulae for illustrating how quanti-
ties scale in abstract terms, it is also necessary to have an intuition for the
numerical magnitudes that attend our physical reasoning as well. To that
end, in this problem, you will have a chance to estimate some of the key
scales that arise in reasoning about thermodynamic systems.

(a) As will become more evident in coming days, thermodynamic systems
are often characterized by their energy E, their volume V and the number
of particles they contain, N . In this problem, we get a sense for the types of
numbers that arise. First, let’s examine the meaning of Avogadro’s number
from a few different angles. i) How many molecules are there in a cm3 of
water? How many moles is this? ii) As a simple model of an E. coli cell,
consider a cylinder of length 1µm and of radius 0.5µm, then imagine that the
top and bottom of the cylinder are capped off with hemispheres, also of ra-
dius 0.5µm. If the cell were filled with just water, how many molecules (and
how many moles) of water molecules would fill this cell? iii) In fact, as you
well know, much of the interior of a typical cell is filled with stuff other than
water. Indeed, roughly 25 percent by weight of the cell is filled with proteins.
Assuming each protein molecule is a sphere of diameter 30Å and further, as-
suming that the density of the proteins and water are equal (not right, fix
this assumption if you want), estimate how many protein molecules are found
within such a cell. Report in both number of molecules and number of moles.
Also, just to amuse us, compute the mean spacing of these proteins. iv) In
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Professor Roukes’ group, very small cantilever beams are being constructed
to detect biological molecules. Consider a cantilever of length 5µm and of
width and height 1000Å. Estimate the number of atoms in such a device.
v) In a crystal growth process, consider the deposition of one monolayer of
atoms per second over an area of 1 µm2, how many molecules (how many
moles) are deposited per second? vi) pH is a measure of concentration of
H+ ions. For the E. coli cell that we considered above, make a plot of the
number of H+ ions in the cell as a function of the pH. Also, make a plot
of the mean spacing of such ions as a function of pH. vii) Finally, estimate
the number of molecules in a liter of air at sea level and on top of Mt. Everest.

(b) As the next step in trying to assess the scales of interest in contem-
plating thermodynamic systems, we examine the energetics of such systems.
i) The energy of an ideal gas is given by E = 3

2
NkBT , where N is the num-

ber of molecules. Consider a liter of air and assume that it is an ideal gas
(also, forget about the fact that there is both oxygen and nitrogen in air).
Compute the internal energy of this gas at room temperature and report
your results in eV, joules and kcal/mole. ii) Consider a liter of water that
is boiling. The heat of sublimation for water is 40.66 kJ/mol (check me on
this, but I think it is right). How much energy is spent in boiling this liter
of water and turning it completely into gas? iii) kBT sets the energy scale
for kinetic processes such as diffusion and chemical reactions. Compute kBT
in units of eV, Joules, kcal/mole and pN nm. vi) e−E/kBT determines the
rates of the kinetic processes described above. For room temperature, plot
the value of this quantity as a function of E for E ranging from 0 to 100 kBT
(note that my energy units here are kBT ) and comment on what this means
about the barrier heights for typical kinetic processes.

2. A Feeling for the Numbers Part 2: Engines and the Atmosphere.

In a fascinating book entitled An Introduction to Thermal-Fluid Engi-
neering: The Engine and the Atmosphere, Z. Warhaft makes a number
of compelling arguments concerning the linkage of thermodynamics and fluid
mechanics in understanding two important phenomena - the behavior of in-
ternal combusion engines and the atmosphere. Please refrain from looking
at Warhaft’s book until after you have done this problem. We are going to
use the engine and the atmosphere as a vehicle to continue the numerical
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estimates commenced in problem 1 above.

Let’s assume that gasoline is really octane, C8H18 and that combustion goes
according to the equation

C8H18 + 25O → 8CO2 + 9H2O + 48× 106J/kg fuel, (1)

which Warhaft prefers to write as

C8H18 +12.5(O2 +3.76N2) → 8CO2 +9H2O+47N2 +48×106J/kg fuel, (2)

where the strange factor of 3.76 is meant to reveal the relative proportion
of nitrogen and oxygen in the atmosphere. Note that the nitrogen in this
equation does not participate in the reaction.

a) We note that for every molecule of octane (our surrogate for gasoline)
that is burnt, it produces 8 molecules of CO2. You see where we are going
with this. Your job is to figure out how many kilograms (and how many
molecules) of CO2 are produced for every gallon (and every liter - need to
be familiar with both units) of gasoline burnt. Next, assume that there are
500 million cars in the world and make a reasonable estimate of the number
of gallons of fuel consumed per year by all of these cars and finally, use this
to compute how many kilograms of CO2 are emitted by cars each year.

b) In this part of the problem, your job is to compute the mass of the at-
mosphere in kilograms and then to work out the ratio of CO2 emitted each
year to total atmospheric mass. The simplest way to estimate the mass of
the atmosphere is

Matmg = pAsurface, (3)

where Matm is the mass of the atmosphere, g is the acceleration due to
gravity on the earth, p is the pressure of the atmosphere at sea level and
Asurface is the surface area of the earth. Explain why this is a reasonable
scheme for computing the mass of the atmosphere and then use this (or
some other) scheme to get the mass in kilograms. Next, how many parts
per million of CO2 are cars putting into the atmosphere? Take a look at
http://www.co2science.org/subject/other/co2con twohundred.htm as one ex-
ample of the type of data that is out there on this subject.
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3. The Dice Problem Revisited.

In class I described the use of inference to make a best guess for the proba-
bility distribution describing a dishonest die. In this problem I want you to
repeat my derivations and work the problem out all the way to the end for
three different cases: 〈i〉 = 2.5, 〈i〉 = 3.5 and 〈i〉 = 4.5. Make a plot (a bar
plot) of the probability distribution for all three of these cases. Make sure
you explain your use of Lagrange multipliers when you do the derivations,
describe the meaning of your results, etc. Further, obviously, you are going
to have to solve for the relevant Lagrange multiplier numerically - make sure
you explain in detail how you solved the problem numerically. In addition,
work out the entropy for the two distributions that we ”guessed” in class - a)
the one in which 4 and 5 had probability 1/2 and b) the linear distribution.
Note that for the linear distribution you will need to make sure you compute
a distribution that is properly normalized AND satisfies the constraint on
the average value.

4


