
APh105c
Homework 3

Due Date: Friday, April 21, 2006

“To arrive at the truth it is necessary, at least once in life, to rid oneself
of all the opinions one has received, and to construct anew, and from the
fundamentals, all the systems of one’s knowledge.” - Descartes, 1637

Reading: Read chaps. 8, 13 and 28 of Dill and Bromberg.

A. Taking Stock 1

This problem must be submitted by email to me, Frosso and Dave - no hand-
written copies will be permitted. What I want you to do here is to rank the
three most important things you have learned so far and to explain why they
are on your list. Your explanations must be well thought out and cogently
argued.

1. The Hemoglobin Story

We have adopted hemoglobin as our molecule of interest to discuss the statis-
tical mechanics of binding reactions. In this problem, you will work out the
characteristics of hemoglobin binding from a number of different perspectives.

(a’) A feeling for the numbers: in class I made a rough estimate of the
number of red blood cells and the number of Hemoglobin molecules in each
red blood cell. In this part of the problem, I want you to take it a little
further. Figure out roughly how many O2 molecules you bring in with each
breath and how many Hemoglobin molecules it would take to use each and
every one of those oxygens. How does this compare with the total number
of Hemoglobins in your body?

(a) In class, I derived the fractional occupancy of hemoglobin in a model
in which the equilibrium constant for each stage in the reaction is different.
Work out the special case of what I did in class in which the equilibrium
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constant is the same whether there is already oxygen bound or not. Show
that the resulting expression is of the form

θ([O2]) = 4
[O2]/K

1 + [O2]/K
. (1)

(b) Repeat the derivation given in class in terms of equilibrium constants
and then make a plot of the result for parts (a) and (b) using the parameters:

K1 = 0.0188mmHg−1 (2)

K2 = 0.0566mmHg−1 (3)

K3 = 0.407mmHg−1 (4)

K4 = 4.28mmHg−1 (5)

for the full problem. Beware: these constants are equilibrium constants and I
used dissociation constants in my derivation. As a result, you need to invert
these numbers to use them in the formula we derived. See what choice of K
in part (a) gives a ”best fit” to the data from part (b) (I am not expecting
a very good fit!).

(c) Now formulate the problem as a statistical mechanics problem using
the grand canonical distribution the way we did in class. Like with the treat-
ment in class assume that there are three body interactions characterized
by an energy K and four-body interactions characterized by an energy L.
Write the total grand partition function and derive the occupancy by taking
a derivative of the log of the partition function following the prescription
given in class. Then, find a relation between the parameters used here and
those used in part (b) - that is, in this part of the problem you have the
parameters ε, J, K and L and in part (b) you have K1 − K4. The idea is
to use the Kis to determine the parameters used in the statistical mechanics
model.

(d) One of the favorite tools for dealing with cooperative interactions is
the use of the so-called Hill function. In this problem, you will derive the Hill
equation and then see to what extent it is possible to use it for thinking about
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hemoglobin. For a reaction nA + R ⇀↽ nAR, we need n copies of the ligand
A in order to form the complex nAR. In this case, imitate the treatment
of binding given in class to find an expression for the fraction of receptors
that are in the complexed state by using the definition of the dissociation
constant

Kd =
[A]n[R]

[nAR]
. (6)

In particular, show that

θ([A]) =
[A]n/Kd

1 + [A]n/Kd

. (7)

The number n is called the Hill coefficient. Make a plot of the binding proba-
bility for the cases n = 1, 2 and 4 using a sensible value of K from the earlier
problems. Here too, using the data provided on the HW website, see if you
can find a best fit to the Hb data using a Hill function.

Note: the data that is the basis of working out the binding is included
as an excel spreadsheet for the homework. For those wanting extra credit,
work out a best fit for your results from part (c) by fitting to the data.

2. Elasticity, Hydrodynamics and Indicial Notation.

Indicial notation is not central to thermodynamics, though it makes the
business of thinking about elasticity and hydrodynamics much easier. Nev-
ertheless, this problem aims to give you practice in thinking about indicial
notation and gives you a chance to think further about the ideas concerning
elasticity and hydrodynamics that we covered in class.

A key notational convenience that will be afforded us is the use of the sum-
mation convention. The basic injunction is: sum over all repeated indices. So
as to gain familiarity with this convention, work out the following examples.

(a) aibi (also write this in vectorial notation).

(b) Write out the three components of the vector vi = εijkajbk (note that
the Levi-Cevita symbol is 1 for even permutations of ε123, -1 for odd permu-
tations and zero for all other cases. Note that this is another way of writing
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the cross product between two vectors.

(c) ∂vi

∂xi
(write this in direct notation also).

(d) Given a matrix M, what is Mii? What is another way of writing this?
Consider the matrices A and B. Write the ijth element of the matrix AB in
terms of the matrix elements of A and B individually. Use indicial notation.

(e) In the Navier-Stokes equations one encounters terms like v · ∇v.
Rewrite this in indicial notation, using the summation convention.

(f) In linear elasticity, the stress tensor is of the form σij = Cijklεkl. Write
out the components of σ11 and σ12 of the stress tensor by exploiting the sum-
mation convention.

(g) The equilibrium equations for elasticity are written as

∂σij

∂xj

+ bi = 0. (8)

This is three equations corresponding to i = 1, 2, 3. Write all three equations
by using the summation convention.

(h) For the particular case of an isotropic, linear elastic solid, the elastic
modulus tensor is of the form

Cijkl = λδijδkl + µ(δilδjk + δikδjl). (9)

In this case, find an expression for the stress σij = Cijklεkl and the stored
energy of the solid, W ({εij}) = 1

2
Cijklεijεkl. Write your expression for the

stress in both indicial and vector notation. Also, use this form for the elastic
modulus tensor to obtain the equilibrium equations (the so-called Navier
equations) by plugging your result for σij into

∂σij

∂xj

= 0. (10)

Note that we are looking at the particular case in which the body force has
been set to zero.
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(i) The Navier-Stokes equations are of the form

ρ(
∂vi

∂t
+ vk

∂vi

∂xk

) = µ
∂2vi

∂xk∂xk

− ∂p

∂xi

. (11)

Write all three equations by exploiting what you know about the summation
convention. Also, write these equations in direct (vectorial) form.

3. Energy to Create Point Defects and Precipitates.

In this problem, we are going to examine the energetics of crystalline solids
that contain one of two types of internal structures. One class of internal
structures is the presence of point defects such as vacancies (i.e. missing
atoms in the crystal lattice) and interstitials (i.e. extra atoms in tetrahedral
or octahedral vacant regions within the crystal. The second class of internal
structure is known as a precipitate and refers to the idea that within the
host material (Al, for example) there are second phase particles known as
precipitates. For example, one might have Al2Cu precipitates within an Al
matrix. The goal of this problem is to see the way some of the ideas we
have been discussing in class (such as pV work) apply to real world problems
concerning microstructures in materials.

a) In this first part of the problem you will use statistical mechanics to
derive an expression for the concentration of point defects in a crystal. The
basic idea is to imagine a three-dimensional crystalline lattice with a total
of N sites. Next, consider the case in which Nvac of those sites are not
occupied by atoms - these are the so-called vacancies. The bottom line is
that such defects are a fact of life, even in that pretty gold wedding ring that
some of you might be wearing. What we want to do is construct the free
energy F (T, Nvac; N) = U(Nvac) − TS(Nvac; N). First, write an expression
for the energy U(Nvac) in terms of the energy εvac which is the energy cost
to put a single point defect in the material. Note that as we discussed in
class, this kind of model is predicated on the assumption that there are NO
interactions between point defects. Next, construct the entropy by counting
up the number of ways of arranging the Nvac vacancies on the N lattice sites.
Write an explicit expression for your free energy and simplify it by invoking
the Stirling approximation. Our goal is to compute the equilibrium number
of vacancies as a function of the temperature. To determine Nvac, minimize
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your free energy with respect to Nvac and show that in the low concentration
limit that the concentration of vacancies is given by

cvac =
Nvac

N
= e−εvac/kT . (12)

If a typical vacancy formation energy is 0.5eV, find the equilibrium concen-
tration of vacancies. Note: you will have a chance to estimate the vacancy
formation energy in the remainder of the problem.

b) When a point defect or a precipitate is present in a material, it results
in an overall volume change of the material. This volume change occurs at
fixed external pressure (i.e. the hunk of material is sitting there in the lab
at atmospheric pressure). As a result of this volume change, there is a con-
tribution to the total energy cost of creating the defect in the form of pV
work. Consider a single interstitial and assume that the volume change that
it imposes on the crystal is ∆V = 0.6Vatomic. That is, when we put an inter-
stitial in the lattice, it swells that whole crystal by a fraction of the volume
per lattice site. Use the lattice parameter for Al in the fcc crystal structure
and then compute the pV work associated with the presence of such a point
defect at atmospheric pressure. Report your result in joules, eV and in kBT
units. Is this a big or small effect on the scale of the cohesive energy/atom
for the crystal?

c) A second interesting feature caused by the presence of a spherical inclusion
(or inclusions of any shape for that matter) is that the solid is deformed and
there is strain energy stored in the stretched atomic bonds surrounding the
inclusion. In this part of the problem, we will use the theory of elasticity
to estimate the size of this relaxation. The Navier equations that serve as
the equilibrium equations (i.e. sum of all forces on a little material volume
element equals zero) for an isotropic linear elastic solid may be written in
direct notation as,

(λ + µ)∇(∇ · u) + µ∇2u + f = 0. (13)

Show that for a problem with spherical symmetry (like the point defects or
precipitates that we are thinking of here) that the Navier equations can be
written as

r2d2ur

dr2
+ 2r

dur

dr
− 2ur = 0. (14)
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Solve this differential equation for the displacements (strictly radial) of the
crystal surrounding our defect of interest. You will need to fix two unknown
constants. Use the fact that the displacements have to decay to zero at in-
finite distance from the inclusion to fix one of these constants. To fix the
other constant, assume that the displacement at the boundary of the in-
clusion (which we take to have radius a) is given by a parameter δ. Using
the radial displacement that you have computed, now compute the strain
tensor and use the strain to compute the strain energy. If we assume that
the spherically symmetric defect induces a displacement of 0.3Å around the
defect, what is the energy scale associated with the elastic relaxation?

In thinking about point defects such as interstitials and vacancies, one of
several contributions to the energy of such defects is given by the changes
in the bond energy of the various atoms in the vicinity of that point defect.
Consider a crystal that is characterized by an energy function of the form
Etot = 1

2

∑
ij V (Rij), where V (R) is a pair potential and R is the distance

between the two atoms of interest.

(d) The Morse potential is given by V (r) = V0(e
−2a(r−r0)− 2e−a(r−r0)), where

V0, a and r0 are parameters to be determined by fitting to experimen-
tal data. Using the experimental data for the cohesive energy of fcc Cu
(Ecoh = 336kJ/mole), the fcc Cu equilibrium lattice parameter (a0 = 3.61Å)

and the bulk modulus (B = Ω∂2Ecoh

∂Ω2 =134.3GPa(Ω ≡ volume)), determine

the parameters V0 (in eV), a (in Å−1) and r0 (in Å) under the assumption
that only near neighbor atoms interact.

Hint: Note that the cohesive energy is given by

Ecoh =
1

2

∑
ij

V (Rij), (15)

where Rij = |Ri −Rj|. Use translational invariance to realize that the sum
for every i is equivalent, so the expression above can be rewritten as

Ecoh =
N

2

∑
j

V (R0j), (16)

where R0j is the distance of the jth atom from the atom at the origin. Also,
remember that we are only considering near neighbor interactions, so this
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sum will run over the 12 neighbors of a given atom within the fcc crystal.

e) Consider a single vacancy in an fcc crystal and compute the change in the
total energy of the system when an atom is taken out of the crystal. More
precisely, use your Morse potential to estimate the vacancy formation energy
which is defined as

εf
vac = Etot(N − 1; vac)− (N − 1)Etot(N ; perfect)/N. (17)

Our notation here is defined as: Etot(N − 1; vac) is the energy of an N-atom
crystal in which one atom has been removed. You will obtain this energy
using the Morse potential, Etot(N ; perfect) is the energy of the perfect crys-
tal that contains N atoms and we divide this by N to find the energy per
atom. Make sure you understand the definition of the vacancy formation
energy before you actually make the calculation. Explain the definition and
then compute the vacancy formation energy. Report your vacancy formation
energy in eV and comment on the numerical value of this energy relative to
the cohesive energy of the crystal. I can tell you that the rough value of
the observed vacancy formation energy for Cu (and other metals) is some-
thing like 1eV. The pairwise interaction model is not an entirely satisfactory
description of the energetics of metals, and the situation is even more com-
plicated for semiconductors.

f) Recall that in the earlier part of this problem we began a calculation of
the elastic relaxation energy associated with point defects and precipitates.
Note that this is an additional contribution which is above and beyond the
bond breaking terms computed above. In particular, recall that you assumed
that these defects produce a spherically symmetric distortion field and you
computed the radial displacements associated with such defects. Now we
finish that calculation by actually finding out how much energy is associated
with these relaxations. The relaxation energy is evaluated using

Estrain =
∫
Ω

W (ε)dV, (18)

where Ω is the volume extending from the surface r = a0 to infinity, and
W (ε) is the strain energy density. To make contact with two familiar elastic
moduli, namely Young’s modulus E and Poisson’s ratio ν, we write the strain
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energy density as

W =
E

2(1 + ν)
[εijεij +

ν

1− 2ν
tr(ε)2]. (19)

Note that the Einstein summation convention is in effect here. Convince
yourself that the strains in spherical co-ordinates are simply equal to the
ones in a rotated cartesian frame, so that εrr = ε33 etc. Show using the
displacements you computed in the previous homework that the strains are
given by

εrr = −2b

r3
= −2δa2

0

r3
(20)

εθθ = εφφ =
b

r3
=

δa2
0

r3
. (21)

We have used a0 to represent the radius of the hole left by the vacancy and δ
as the displacement of the surface of the hole induced by relaxation. You will
want to know that in spherical coordinates for a displacement field which is
purely radial, the strains are given by εrr = ∂ur/∂r, εφφ = εθθ = ur/r. For
further details, see Landau and Lifshitz, Theory of Elasticity, pg. 3. Show,
in turn, that this implies

W =
E

2(1 + ν)

6δ2a4
0

r6
. (22)

Performing the integration suggested in eqn. 18 results in

Estrain =
4πEδ2a0

(1 + ν)
, (23)

which is an estimate for the point defect formation energy for this particular
choice of boundary conditions.

For the choice of parameters relevant to a typical metal like Cu, we may
estimate this energy as follows. Consider a relaxation due to the point de-
fect of δ = 0.1Å. Assume that the spherical hole has radius a0 = 4.0Å and
elastic moduli ν = 1/3 and E = 0.8eV/Å3 (i.e. roughly 125GPa). If we use
these numbers in eqn. 23, find the resulting energy and compare this number
to typical point defect formation energies. Comment on your sense of the
relative importance of the bond breaking and elastic relaxation terms to the
enthalpy of formation.
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