
APh105c
Homework 4

Due Date: Friday, April 28, 2006

“Their drills are bloodless battles and their battles are bloody drills.” -
Josephus

Reading: Read chaps. 22 and 23 of Dill and Bromberg.

1. Crowding and Binding

In this problem you will work out the way in which crowding agents can
enhance the likelihood that a ligand will bind to its receptor. For concrete-
ness, consider a box with N lattice sites (this is our toy model of the solution).
In this box there is a receptor, L ligands which target that molecule and C
crowding molecules which do nothing more than occupy space and jiggle
around (but, they have a big effect on the equilibrium of the receptor with
its ligands and that is the moral of the problem).

(a) For the case in which there are no crowding agents, work out the
probability that the receptor will be occupied by a ligand (in class we called
this pbound) as a function of the number of ligands. Write your result in terms
of the difference in the energy of the ligands when they are in solution and
when they are bound to the receptor. To determine the number of lattice
sites use N = Ωcell/Ωprotein to get an estimate by taking Ωcell as the volume
of a typical cell like E. coli and Ωprotein as the characteristic volume of a
typical protein. Explain why this is a reasonable way for us to set up our
lattice model. For a characteristic energy difference like 10kBT , make a plot
of the binding probability as a function of the number of ligands. Make sure
you state any approximations that you make and justify them. I would like
to see you derive an expression that is valid for the dilute limit (L << N)
using

N !

(N − L)!
≈ NL (1)

and for the more general case as well - then plot both cases and compare
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them to show how the approximate result breaks down once L is comparable
to N . Also, rewrite your expression for pbound in terms of the concentration
of molecules - to do this you will have to take ratios like N/L and divide top
and bottom by Ωcell so that you have concentration units.

(b) Now consider the case in which there are C crowding molecules present
in the solution. These molecules can’t bind to the receptor, but what they
can do is take up space (and hence change the entropy of the L ligands).
Compute pbound again, but now in the presence of the crowding agents. Note
that you need to be careful that the total number of ligands and crowding
molecules doesn’t exceed the number of sites N on our lattice which is the
model of solution. Make sure that you plot your results for L running from 0
all the way to N −C. Make sure that your plot shows a number of different
choices for C. What I want you to observe is that as C increases, pbound

begins to deviate from the ideal solution limit. Please see the papers about
macromolecular crowding that are associated with this homework.

2. Isothermal Atmosphere.

In class I worked out how the chemical potential changes for the case in
which there is a spatially varying field of force. Repeat that derivation for
the special case of molecules in a gravitational potential and work out an
expression for the density as a function of height. Then, in the spirit of the
”feeling for numbers” work out the density in Pasadena and on top of Mt.
Everest. Compare those densities.

2. Equilibrium Constants.

Equilibrium constants are one of the key interpretive tools in molecular bi-
ology and biochemistry. In this problem, we revisit some of the conceptual
foundations of equilibrium constants.

a) In class I swiftly derived the law of mass action on the basis of minimiza-
tion of the Gibbs free energy. Repeat that derivation here making sure to
attend to all details and explaining all of your steps and logic.

b) We begin by examining a kinetic interpretation of equilibrium constants
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and the associated question of whether or not the barrier which separates
the two states of interest should play any role in the equilibrium constant
(we already know the answer is no, but we will demonstrate it). Consider
the simple reaction A + B ⇀↽ C. In this case, we know that the equilibrium
constant is given by

K =
[C]

[A][B]
. (2)

However, we can also express this equilibrium constant in terms of the rate
constants for the reaction. In particular, note that the reaction has a kinetic
equation

d[C]

dt
= kon[A][B]− koff [C]. (3)

At equilibrium, the left hand side of this reaction is zero and hence we have

K =
kon

koff

=
[C]

[A][B]
. (4)

Sketch an energy landscape with two wells and a barrier between them. Call
the free energy when A and B are separate E1 and that when they are
associated E2. To make a transition from 1 to 2 requires going over a barrier
of height Eb. Put all of this in your sketch. Transition state theory tells us
that the rate of a reaction is of the form

rate = ν0exp(−E/kT ), (5)

where E is the height of the barrier and ν0 is an “attempt frequency”. Com-
pute the ratio kon/koff and show that the barrier height drops out of the
problem (as it should).

c) For weak acids, we introduced the notion of a dissociation constant defined
as

K =
[H+][A−]

[HA]
, (6)

with an associated definition of the pK via pK=-log K. Hang meat on the
statement made in class that the pK is the value of the pH for which the dis-
sociation reaction has gone half way to completion. In particular, derive the
Henderson-Hasselbalch equation and use this equation to prove the relation
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between pK and pH.

d) The ideas described above are useful in thinking about the charge state of
biopolymers such as DNA and proteins as a function of pH. If x refers to the
fraction of the molecules that are ionized, show using our relation between
pH and pK that

x =
10pH−pK

1 + 10pH−pK
(7)

and use this to characterize the charge on nucleotides (with a pK of roughly
1.) and aspartic acid (pK = 3.9) and glutamic acid (pK=4.2). In particular,
plot the fraction dissociated as a function of pH and comment on the charge
state at pH 7.
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