
APh105c
Homework 5

Due Date: Friday, May 5, 2006

“As sight is good in the body, so is rationality in the mind.” -Aristotle

Reading: Read chaps. 14, 15, 16, 29 and 30 of Dill and Bromberg.

1. Excluded Volume Interactions

(a) In class I worked out a general statement of the free energy between
two objects which was based upon the osmotic pressure and the excluded
volume. Repeat that derivation and show that the general expression for the
free energy as a function of the distance between the two large particles is

F (D) = −ΠoVexcl(D), (1)

where Πo = NkBT/V is the osmotic pressure. Then, make an estimate of
what this osmotic pressure is by using the density of proteins inside of a cell
like E. coli. To figure that out, use the fact that such a cell has a volume of
about 1 µm3 and roughly 2× 106 proteins in its cytoplasm. Using this value
for Πo and the excluded volume between two spheres of radius 1µm, work
out the force as a function of distance and make a plot using pN as your unit
of force and nm as your unit of distance. Assume that the small particles
have a radius of 3 nm.

(b) Treat the case of two cylinders and work out the free energy of inter-
action when they are parallel and when they are end to end. Then, compute
the excluded volume force between them.

2. Continuous Distributions, Missing Information and Functional
Minimization.

All of our discussion of entropy maximization thus far in the course has
centered on probability distributions that are discrete. That is, we asked for
the probability distribution on a finite set of possible outcomes. But what
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happens in the case where the outcomes are continuously distributed? Find-
ing out the answer to that question is the goal of this problem. Your task is
to learn how to write the Shannon entropy and associated constraints for the
case in which we have a probability distribution that is continuous. Then,
you are going to find the best (in the Shannon sense) continuous distribution
that has first moment µ1 = 〈x〉 and second moment µ2 = 〈x2〉. That is, all
the information you are given is that the average value of x over the entire
distribution is µ1 and that the expectation

∫∞
−∞ p(x)x2dx = µ2 = 〈x2〉. The

wonderful outcome of this analysis is that the best guess you can make is a
Gaussian distribution.

The tool needed to perform such minimization and maximization is the
functional calculus. Finding the extrema of functionals is more subtle than
minimizing a function as in ordinary calculus. A functional is a mapping
between functions and numbers. A clean (and conventional) notation to
distinguish functions f(x) from functionals F [g(x)] is the use of the brackets
[]. The basic idea of a functional is that we are given a function g(x) and the
functional spits out a number F [g(x)]. For example,

F [g(x)] =
1

2π

∫ 2π

0
g(x)dx, (2)

is a functional since for each function g(x) that you can dream up (and for
which the integral exists) we obtain a number F [g(x)]. One of the key ques-
tions posed in the calculus of variations is: find that g(x) that minimizes
F [g(x)]. We will come to this later. For our problem involving entropy
maximization, the idea is to construct a functional S[p(x)] of the unknown
probability function p(x).

(a) Show (and explain) that the entropy functional that requires mini-
mization is

S[p(x)] = −
∫ ∞

−∞
p(x)lnp(x)dx− γ0(

∫ ∞

−∞
p(x)dx− 1)

−γ1(
∫ ∞

−∞
p(x)xdx− 〈x〉)− γ2(

∫ ∞

−∞
p(x)x2dx− 〈x2〉). (3)

In particular, explain why there are three Lagrange multipliers, why we have
to write this problem in terms of integrals, etc.
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(b) Next, we take the functional derivative of this expression and set it
equal to zero. This amounts to finding that function p(x) that maximizes
the entropy subject to our various constraints. To do this, we need to define
what we mean by the functional derivative which we will define as

δS[p(x)]

δp(x)
= lim

ε→0

S[p(x) + εη(x)]− S[p(x)]

ε
. (4)

The first quantity on the left with the δ is the notation for the functional
derivative. The stuff on the right side is how you actually implement it.
Note that we have introduced a function η(x) which is an excursion of the
function p(x). That is, we perturb p(x) by adding some other function η(x) to
it. However, that perturbation is “small” because it is controlled by the small
parameter ε which we send to zero in the end. Take the functional derivative
of your result from part (a) and show that the probability distribution is of
the form

p(x) = e−1−γ0−γ1x−γ2x2

. (5)

I will walk you through the hardest of the terms and you do the rest. Let’s
work out the functional derivative of the log term.

Show that if the only term we have in our functional is the log term then
the definition of the functional derivative leads us to

δS[p(x)]

δp(x)
= lim

ε→0

−1

ε
(
∫ ∞

−∞
(p(x)+εη(x))ln(p(x)+εη(x))dx+

∫ ∞

−∞
p(x)lnp(x)dx).

(6)

Now, by rewriting ln(p(x) + εη(x)) = lnp(x) + ln(1 + εη(x)
p(x)

), make a Taylor
expansion to linear order in ε and show that we are left with

δS[p(x)]

δp(x)
=

∫ ∞

−∞
(−1− lnp(x))η(x)dx = 0. (7)

Now, the way this goes is that we say that because η(x) itself is an arbitrary
excursion, this result must be true for any η(x) and hence the part of the
integrand in parentheses must be zero. Now that you have seen how to do
this using the log term, repeat this exercise for the full functional of part (a)
and prove that the probability distribution has the form shown in eqn. 5.

(c) Determine all of the Lagrange multipliers explicitly in terms of µ1

and µ2 by imposing the constraints. This means you are going to have to do
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various integrals. Obtain a clean and simple expression for the probability
distribution and make sure you explain the sense in which this is the classic
Gaussian distribution that you know and love.

3. Biofunctionalized Cantilevers

Read the article from Nature Biotechnology by Wu et al. (Wu G., Datar
R.H., Hansen K.M., Thundat T., Cote R.J. and Majumdar A., Bioassay of
prostrate-specific antigen (PSA) using microcantilevers, Nature Biotech., 19,
856 (2001)). You can obtain this article online from the Caltech library. The
goal of this problem is to compute the deflection from the perspective of
variational calculus and then to use the numbers associated with the actual
experiments discussed in that paper.

As has already been mentioned in class several times, one way to view ther-
modynamic questions is through the prism of the competition between ener-
getic and entropic contributions to the free energy. In this problem we will
examine the thermodynamics of biofunctionalized cantilevers in which as a
result of the attachment of specific biological molecules to the surface of the
cantilever, the cantilever undergoes spontaneous bending, an effect that can
be exploited to make sensors. Indeed, such devices have already been used
to detect prostrate specific antigen in screening for prostrate cancer. In this
problem, we will begin our preliminary preparations for investigating that
problem by considering the kinematics of beam bending.

(a) Consider a beam of thickness h bent into a circular arc like I did in
class. There is a line running the length of the beam which has the same
length in the deformed configuration as it did before being bent - this line
is called the neutral surface. Little elements of material below this line are
compressed, while those above are stretched. The net result is that this lit-
tle beam is strained. If the undeformed length of the beam is L, find the
length of the beam as a function of the distance z from the neutral surface.
This is straightforward geometry. Now, if we define the elongational strain
as ε(z) = (L(z)−L0)/L0, compute the elongational strain as a function of z.

(b) We will repeatedly wish to write down elastic contributions to free
energies as the course proceeds. As a first exercise in doing so, we find the
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total strain energy that is present in the beam by virtue of its bending.
Recall from class that I said that elasticity is a way of writing a continuum
description of the energetics of bond stretching and bending. For a uniformly
strained material of volume V , the strain energy is Estrain = 1

2
Eε2V , where

E is known as the Young’s modulus of the material. In our case, the beam is
not uniformly strained, but we can obtain the total strain energy by adding
up all of the different pieces of material, treating each as a little uniformly
strained region. So, write an expression for the energy of the beam as an
integral over the beam and then work out the integrals for the particular
case of a beam bent in the way envisioned in part (a). This is an incredi-
bly fundamental result and is useful for thinking about everything from the
Golden Gate bridge, to the atomic force microscope, to the packing of DNA
in viruses.

(c) In this part of the problem, your goal is to write down an energy
functional for the biofunctionalized cantilever that appropriately reflects the
competition between bulk energies (in this case the bending energy) which
oppose bending of the beam and surface terms which favor the spontaneous
bending of the beam. The mathematical goal of this problem is to find
the vertical displacement function u(x) which tells how much the beam is
deflected at a distance x along the beam. In particular, you will write an
energy functional Etot[u(x)] for the unknown displacement of the form

Etot[u(x)] = Eelastic[u(x)] + Esurface[u(x)]. (8)

Your result will involve the sum of two integrals, one of which captures the
bending energy and is basically of the form

Eelastic =
k

2

∫ L

0
(u′′(x))2dx. (9)

Use the result from earlier in the problem and make sure that the constant
k has the right units and includes both the Young modulus and a geometric
factor. The trick will be to write the curvature in terms of derivatives of
u(x). On that note, feel free to invoke the approximation that |u′(x)| << 1
in writing the final form for the curvature. For the surface energy terms, you
will need to write the surface energy in the form

Esurface = γtopAtop + γbottomAbottom, (10)
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where we have defined γtop as the surface energy of the top face and Atop as
the area of the top face. Note that the area of the surfaces will depend upon
the displacement profile of the beam. So, the bottom line is that you need
to write an energy functional which depends upon u(x) and its derivatives.

(d) To minimize this functional there is a clever trick. In particular, the
integrand is of the form au′′(x)2 + bu′′(x). As a result, you can complete the
square and end up with an integrand that is ≥ 0. Hence, the least value of
the functional occurs if you set this integrand to zero. This now gives you a
differential equation for u(x). Solve it and obtain the displacements.

(e) Using the numbers given in the paper of Wu et al. for the dimensions
of the cantilever as well as the numbers they report for the Young modulus,
compute the deflections you predict for the beam. In particular, use their fig.
5 in order to characterize the difference in the surface energy between the top
and bottom surfaces. Note that they report different values depending upon
the concentration of the PSA molecules. Use several different values. Then
compare the deflections you get to those they observe and report in fig. 4.

Note from Rob: This problem is open ended and kind of hard. a) If you
don’t succeed with the variational calculation, do the numbers in part (d)
anyway. b) If you can come up with a better way of making contact with
the data given in the Wu paper, by all means, let me hear it.
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