
APh105c
Homework 6

Due Date: Friday, May 12, 2006

“To do successful research, you don’t need to know everything. You just
need to know of one thing that isn’t known.” - Arthur Schawlow

Reading: Read the paper by Srolovitz on surface instabilities posted on the
course website.

1. A Feeling for the Numbers: Homogeneous Nucleation.

In class we discussed the free energy competition during the process of ho-
mogeneous nucleation. Give a brief recapitulation of those arguments and
in particular, a) deduce the critical radius in terms of the relevant materials
constants and b) deduce the free energy change when r = r∗. Recall that we
plotted ∆G(r), and I want you to find ∆G(r∗). Use your Morse potential
for Cu to estimate the surface energy for Cu(100) - this notation refers to
a particular surface found in cubic crystals that is perpendicular to the x-
axis. The point here is to get you thinking about the microscopic origins of
a quantity such as γ which appears in our expression for r∗. Note that what
we really want is the interfacial energy between matrix and precipitate (and
not the surface energy, which is what you are calculating). However, this es-
timate at least gives a sense of the microscopic origins of interfacial energies.
Typical structural energy differences between different phases are something
like 0.5eV/atom. That is, we are assuming that there is an 0.5eV/atom bulk
free energy benefit to forming the precipitate. Use your results for both sur-
face energy and the bulk free energy to estimate the critical radius size. Also,
make an estimate of how many Cu atoms would be in such a nucleus. In
addition, for fixed bulk energy difference (the 0.5eV/atom I gave you above),
make a plot of the critical radius size as a function of the interfacial energy
for values ranging from 0.1 to 2 J/m2. (NOTE: I have NOT done this prob-
lem so I am not certain what kind of numbers you will get. I HAVE used
the Morse potential you derived in the earlier homework to derive a surface
energy, but the nucleation part of the argument I haven’t done.)
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2. Contact Angle and Heterogeneous Nucleation.

In class and in an earlier problem, we examined nucleation as a competition
between surface and bulk energy terms. However, the subject is more subtle
than this in the sense that often nucleation takes place heterogeneously. This
means that nucleation takes place on some site that serves as a seed for the
nucleation process. You have probably heard about impurities as the origin
of nucleation in supercooled liquids. To that end, this problem addresses
heterogeneous nucleation. The basic idea is that a spherical cap (i.e. a part
of a sphere) develops on a surface and serves as the critical nucleus.

a) As a preliminary to our investigation of heterogeneous nucleation, we first
examine the equilibrium between a drop in contact both with a surface and
the surrounding medium. The reason this is pertinent to our discussion
of heterogeneous nucleation is that in that case we will consider a nucleus
that forms on some surface and we will see that this enhances the nucleation
rate. However, to understand this, we first need to understand the interfacial
energies. One of the ways of measuring interfacial energies is by examining
contact angles. Your job is to deduce the relation between contact angle and
the three interfacial energies γsl, γcl and γcs. Basically, this requires you to
fill in all of the details of what I did in class. To that end, write an expression
for the total interfacial energy of the system assuming that the solid drop
is a spherical cap. For an isotropic surface energy we could show that the
spherical shape has the lowest energy, but we solve the simpler problem of
optimizing the contact angle for fixed volume of solid. Begin by showing that
the area of the solid-liquid contact is given by Asl = 2πr2(1− cosθ) and that
the area of the solid-catalyst contact is given by Asc = πr2(1− cos2θ). Next,
show that the volume of the spherical cap is given by

Vcap =
2

3
πr3(1− 3

2
cosθ +

1

2
cos3θ). (1)

Now imagine that the total area of the catalyst is Atot. Write an expression
for the total interfacial energy, make sure that your result features all three
of the interfacial terms. Use the volume constraint (i.e. we are trying to
find the optimal θ for a given volume of the solid) to eliminate r from your
expression for the energy and then minimize the energy with respect to θ
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and show that the contact angle is given by

γcl = γcs + γslcosθ, (2)

a result usually known as Young’s equation. Note that there is a much sim-
pler way to arrive at this result which is by balancing forces, but the energy
argument is relevant to our study of heterogeneous nucleation.

b) We now consider the case in which the droplet being nucleated does so on
a surface. The idea is to figure out the total free energy in this case. Using
what you learned in part (a) of this problem, write down the relevant free
energy for this case (now including the bulk energy term) and work out the
critical radius at which nucleation takes place. Note that this result is the
same as what we found earlier in the homogeneous case, however, the volume
(or number of particles) associated with this nucleus is smaller than in the
homogeneous case. Plot the number of particles in the critical nucleus as a
function of the contact angle θ. Comment on the limits you are examining
and in particular, give a qualitative discussion of why the heterogeneous case
leads to easier nucleation than the homogenous case. Also, find an expres-
sion for the activation energy both for the heterogeneous and homogeneous
problems and comment on the relative rates of heterogeneous and homoge-
neous nucleation. What I am talking about here is examining ∆Gmax (i.e.
the height of the bump in the ∆G vs. r curve) for both the homogeneous
and heterogeneous nucleation problems.

3. Mechanics of Thin Films: Part 1.

Another setting within which we will be writing down elastic free energies and
using ideas like strain is in the evaluation of thin films and their instabilities.
I already mentioned in class that in many circumstances one material is de-
posited on a second material which is known as the substrate. Often, there
is a mismatch in equilibrium lattice parameter (i.e. the spacings between
atoms) between the substrate and the deposited material. Consider a sub-
strate with lattice parameter aSi, the lattice constant for Si. For simplicity,
assume that the crystal is a cubic crystal and we are adding more atoms onto
one of the (001) faces. Now, assume that the equilibrium lattice parameter of
the deposited atoms is given by aSixGe1−x = xaSi+(1−x)aGe, where x reveals
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the relative proportion of Si and Ge in the deposited atoms. Also, note that
the lattice parameters of Si and Ge are aSi ≈ 5.43Å and aGe ≈ 5.65Å. The
approximation we have used to find the equilibrium lattice parameter of the
SiGe is sometimes referred to as Vegard’s law. Compute the strain in the
SiGe layer assuming that it is deposited epitaxally on the Si substrate (i.e.
the SiGe is unhappy because it does not have its equilibrium spacing, but
rather that of the underlying Si substrate). Basically, use the strain that I
discussed in class. Then, repeat the entirety of the derivation of the strain
energy of the homogeneous state that I gave in class. In particular, show that
the choice of Cijkl for an isotropic material leads to the strain energy density
claimed in class and then plug in your results for the strains and simplify the
results so as to obtain the result I derived.

4. Poisson-Boltzmann revisited.

In class I considered the arrangement of charges in solution in the presence
of a charged plane. In this problem, you will probe that problem more deeply.

(a) Repeat the entirety of the derivation given in class resulting in the
end in expressions for φ(x), n+(x) and n−(x). Make plots of all of these
functions for reasonable choices of areal charge density on the plate (i.e. one
charge per molecule for tethered molecules or something like that) and for
the concentration of salt in solution. Make sure you carefully explain issues
such as the signs of quantities appearing in exponentials, the signs in front
of the exponentials. Also, when you plot the densities, make sure that you
use the linearized version of the theory (i.e. expand the exponentials of the
form e−eφ(x)/kT ). Note that because the potential itself is exponential, the
charge densities will also decay exponentially.

(b) Add up all the charges in solution by integrating n+(x) and n−(x)
and show that the charges in solution exactly compensate for those on the
plane. Make sure you discuss everything you do in obtaining the result and
that you interpret it.
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