
APh105c
Homework 7

Due Date: Friday, May 19, 2006

“The mind is not a vessel to be filled but a fire to be kindled.” - Plutarch

Reading: Read chaps. 18, 19, 32 and 33 of Dill and Bromberg.

A. Your Turn.

This problem must be submitted by email to RP, Dave and Frosso at the
same time that the homework is due. Make sure you answer every part and
give at least a brief explanation of your rationale.

(a) Explain the extent to which you have done the assigned reading. Do
you look at the book?

(b) Which homework problem have you enjoyed the most? Which have
you enjoyed the least? Make sure to explain.

(c) Is it useful to repeat derivations done in class during the homework?
My reason for assigning these problems is this: I draw a strong distinction
between knowing something and knowing about something. My sense is that
the only way to really internalize stuff is to do it for yourself. Do you agree
or disagree?

(d) Give a cogent statement of your opinion of the standing and role of
statistical mechanics and thermodynamics in science. That is, to what extent
is this stuff useful for your work? To what extent do you agree with C. P.
Snow in his The Two Cultures who claimed that being ignorant of the 2nd
law of thermodynamics is akin to being ignorant of Shakespeare’s Hamlet?

(e) Give at least two examples of points of view or opinions or calculations
or claims that have been made either in class or in homework with which you
disagree.
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(f) If you were gossiping with a friend, what would you tell them was the
biggest insight that came out of this course?

(g) Make a suggestion for a quote for the top of the homework.

A’. Beam Problem Revisited

I was disappointed to hear that many of you did not finish the beam
problem (either at all or correctly). I assigned this problem because it is
both interesting and important. I am happy to help anyone and everyone
with how to tackle this problem and am reassigning it as extra credit for
anyone that wants to have another crack at it. I think it is a total shame to
punt on this problem and not see it through to the end.

1. Hydrophobic Effect: A Feeling for the Numbers

We continue with the theme of some of the interesting forces that arise in
the crowded environs of the cellular interior. We have already examined de-
pletion forces. A second hugely important class of forces are those associated
with hydrophobicity. In class I gave a quick impression of the hydrophobic
effect as an idea that is invoked often with great explanatory power. In this
problem, you will estimate the magnitude of the interfacial energy that is
assigned to having certain chemical groups in contact with water. This will
give us an idea of how much free energy is gained when different molecules
come into contact and sequester these hydrophobic structural elements. The
essential argument is that the water molecules that surround the hydropho-
bic region of a molecule are deprived of some of their entropy because they
can adopt fewer hydrogen bonding configurations. In particular, the water
molecules are thought to form cages known as clathrate structures such as
are shown in the accompanying figure.

(a) Estimate the entropy lost for each water molecule by appealing to the
schematic of the tetrahedron shown in fig. 2. The basic idea is that if we
think of the O of the water molecule as being situated at the center of the
tetrahedron then the two H atoms can be associated with any two adjacent
vertices (or, there are a total of six configurations). However, when in the
presence of the hydrophobic molecule, one of the faces of the tetrahedron can
be thought of as facing that hydrophobic molecule and hence all configura-
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Figure 1: Schematic of the clathrate structure adopted by water molecules
surrounding a hydrophobic molecule.

tions (three of the edges) facing that molecule are unavailable for hydrogen
bonding. How many configurations are available now? Compute the entropy
change of a single water molecule as a result of this configurational inhibition.

(b) Next, we need to estimate how many water molecules neighbor a given
hydrophobic molecule. Consider the case of methane and ethane and esti-
mate the radius of sphere that represents the hydrophobic surface area they
present. Next, estimate how many water molecules neighbor these molecules
and hence the total free energy difference because of the lost entropy. Con-
vert your result into an interfacial energy and use units both of J/m2 and
cal/mol Å2. Compare the result to the rule of thumb I quoted in class which
is 25 cal/mol Å2.

(c) Since we have said that hydrocarbons are hydrophobic, go back and exam-
ine the 20 amino acids and decide which residues are hydrophobic. Further,
estimate the free energy cost for an alanine and a valine when they are put
in water in isolation. Report your energies in units of kT.
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Figure 2: Schematic of the arrangements available to a water molecule when
in a complete network of other water molecules.

2. FRAP.

(a) In class I worked out the problem of two-dimensional FRAP. In this
problem, you will carry out a similar derivation to that given in class, but
we will also explore what happens when the photobleached region is not cen-
tered. Imagine a one-dimensional “cell” of length 2L (running from −L to
L) and with initial concentration c0 of the fluorescent molecule of interest
which is uniformly distributed throughout the cell (note that for this one-
dimensional problem the concentration has units of number of molecules per
unit length). How many molecules of the fluorescent molecule are there -
write an equation that gives this number? Now imagine that we photobleach
a hole which runs from x1 to x2 somewhere in the interior of the cell. Before
doing any calculations, explain what the final concentration (c∞) will be after
full relaxation and the system has returned to equilibrium. You may assume
that once a molecule has been photobleached it is effectively dead and can
be forgotten. Your goal now is to compute the recovery curve. What this
means is that you need to work out how many fluorescent molecules are in the
photobleached region as a function of time. Make graphs for two cases, one
where the photobleached region is centered about the origin and one where
the photobleached region is on one side of the cell. To be more precise, con-
sider that the length of the photobleached region is a = x2 − x1. In the first
case, x1 = −a/2 and x2 = a/2 while in the second case consider x1 = L− a
and x2 = L. Make plots of both cases and comment on how shifting the
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position of the photobleached region alters the dynamics of recovery. Make
sure when you make your plots you use reasonable values for the diffusion
constant - justify your choice. One of the uses of the FRAP technique is to
determine the diffusion constant of various molecules within the cytoplasm
of cells. Discuss how that might work on the basis of the derivation you have
given here.

(b) Repeat the key points of the two-dimensional derivation given in class.
Then, construct a graph that shows the concentration as a function of dis-
tance from the origin by using the table of zeros of the first derivative of
J0(x) given in the file attached to the homework. Make sure you explain
exactly what you are doing and what your results mean. Also, I want you to
plot the result for different number of terms kept in the Bessel series. Try it
for N = 10, 20 and 30 and compare the results. Comment on the goodness
of the fit.

3. Solution to the Diffusion Equation for a Point Source.

(a) In class I sketched the solution of the diffusion equation by Fourier
transformation. In this problem, I want you to repeat that derivation showing
every detail to show that

c(x, t) =
c0√
4πDt

e−x2/4Dt. (1)

Use the Fourier transform convention

c̃(k, t) =
1√
2π

∫ ∞
−∞

eikxc(x, t)dx. (2)

Make sure you show all of your details. This includes demonstrating how you
Fourier transform the diffusion equation (and in particular, how you Fourier
transform derivatives). Once you have the Fourier transformed equation, you
will need an initial condition - take c(x, 0) = c0δ(x).

(b) Formally derive the relation 〈x2〉 = 2Dt by computing the average
explicitly using the solution from part (a). Then, make a plot of the relation
between distance diffused and the time it takes using a log-log plot. Make
plots for several choices of D - in one case use the typical diffusion coefficient
for an ion species like K+ or Na+, in the second case, use a typical diffusion
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coefficient for a protein - justify your choice of diffusion coefficient by using
the Stokes relation D = kBT/6πηa.

(c) Now imagine that you have spiked a one-dimensional ”cell” (which
is infinitely long!!) with a pipette that inserts GFP with a concentration
c0 between −a and a. Find the concentration everywhere at all times by
integrating over the solution worked out in part (a) of this problem. Make
sure you explain why this is the right thing to do using the linearity of the
diffusion equation. Plot the solution for various times and show how the
profile evolves over time. Also, explain why I claim the cell is infinitely long
given our mathematical approach to the problem.

(d) Now consider a situation where you have the region from 0 to ∞ at
concentration c0 and the region from −∞ to 0 at concentration 0. Use your
Green function to write the solution in this case and get a closed form so-
lution for the resulting spatiotemporal evolution of the concentration field.
Make a plot of several time points in the life history of the system.

(e) Now derive the Green function for the three-dimensional case. Here
you will take c(r, 0) = c0δ(r). Make sure you explain all of the details of your
calculation. Make sure you explain all of your Fourier transform conventions
and that you show your work.

4. Wulff Plot.

One of the most powerful ideas in thinking about the equilibrium shapes
of crystals is the so-called Wulff construction. In this problem, we will per-
form an elementary calculation which exhibits the key features of a Wulff
calculation. Consider a rectangular prism with edge lengths ax, ay and az

and corresponding surface energies γx, γy and γz. In addition, consider a
fixed volume of material V = axayaz. Write an expression for the total free
energy of this material (on the assumption that the total free energy is dic-
tated exclusively by the interfacial terms). Minimize this free energy with
respect to the edge lengths and find the equilibrium shape. (Note: you can
either eliminate az by using the volume constraint or use Lagrange multi-
pliers). State a simple relation between the areas of the faces of the crystal
and their distances from the center of the rectangular prism. Do the results
jibe with your intuition that the faces with the largest surface energy should
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get the smaller area? If you want to read more about this, I recommend
the excellent book by Jeff Tsao, Materials Fundamentals of Molecular
Beam Epitaxy.

5. The Physics of the Pipette Aspiration Experiment.

In class we discussed how the pressure difference across a thin membrane
balances with the surface energy density (tension) to produce a particular
radius of curvature - this was called the Laplace-Young Relation. Recall
the energy had two contributions, a term penalizing changes in tension over
the area of the membrane and a term penalizing the pressure applied to the
volume enclosed by the membrane:

E = σA− V ∆P (3)

Here σ is the tension, A the membrane area, and V the volume enclosed by
the membrane.

(a) Imitate the derivation given in class by assuming a spherical shape
and use energy minimization to derive the Laplace-Young Relation. This
relation accounts for two sources of energy - at least one other mechanical
source of energy is missing - what is it? Later in this problem we will show
why it can be ignored.

In our discussion of continuum mechanics a few classes ago, we tabulated the
possible modes of deformation (i.e. stresses) to which a body can be sub-
jected. Unlike the materials we discussed then, things like soap bubbles and
biological membranes have the interesting property that their in-plane shear
modulus is zero - what does that mean physically? In particular, let’s exam-
ine biological lipid membranes. In the early 1970’s E. Evans began the first
direct mechanical measurements of the bending and area-stretch modulus of
lipid membranes (he was examining red blood cells). A small glass pipe (a
micropipette) a few microns in diameter was used to apply suction to a large
spherical membrane. He realized the membrane’s shearless mechanical prop-
erties meant the tension over the entire surface of the membrane had to be
equal. By applying suction to the micropipette, the membrane measurably
deforms into an azimuthally symmetric combination of a sphere, a cylinder
and a hemisphere.
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(b) Using the nomenclature on the figures below derive an expression for
the tension as a function of the pressures and geometrical features of this
closed membrane. Keep in mind we only have direct control over the pres-
sure difference p3 − p1. (HINT: write two separate equations for the tension
in the spherical sections).

Figure 3: Diagram of the geometrical features which characterize a deformed
lipid membrane in a micropipette experiment. Assume this shape is az-
imuthally symmetric along the axis of the micropipette.

In order for the membrane to deform into this shape its area must change
with respect to a fixed volume. Let us define the areal strain as:

α =
A− Ao

Ao

(4)

which simply quantifies the change in area and normalizes this by the original
area Ao. It turns out lipid membranes are wonderfully linear elastic materials,
which means the stress (tension) and the strain (areal strain) are related by
a constant. This constant is the area-stretch modulus, KA

∼= 58kBT
nm2 :
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Figure 4: Diagram of pressures in a membrane-micropipette experiment.

σ = KAα (5)

(c) Using the fact that surface energy is tension times area:

Estretch =
∫

σ(A) dA (6)

derive the Hookean energy from tension in the membrane as a function of
the areal strain.

Something we have neglected up to this point is that the membrane has a
preferred flat orientation (this is not always true, but this is the simplest
case to examine), therefore some energy must be spent to bend it into this
azimuthally symmetric shape. In the simplest cases, the bending energy
is dependent on the mean curvature - a measure of the average degree of
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Figure 5: Picture from an actual micropipette experiment using fluorescent
lipids for visualization.

bending at each point on the surface. The mean curvature, κ, is the sum of
the minimum and maximum curvatures at each point on the surface:

κ =
1

2

(
1

Rmin

+
1

Rmax

)
(7)

We said that lipid membranes were a linear elastic material, hence we expect
the bending energy to be quadratically related to the mean curvature through
the bending modulus (κb):

Ebend =
κb

2

∫
(2κ)2 dA (8)

On simple surfaces, like spheres and cylinders (hint hint), the mean curvature
is constant.

(d) Use these facts to derive an expression for the bending energy stored
in the deformed shape of fig. 3 as a function of the geometrical parameters.
Apply conservation of volume to eliminate Lp and make an actual numer-
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ical estimate of the bending energy as compared to the tensile energy in
Fig. 5. Show that you do not actually need the scale bar to determine the
bending energy. A typical lipid membrane has a bending modulus of 20kBT
and a typical micropipette experiment produces areal strains on the order of
α = 0.01 - do we need to account for bending energy - why or why not? You
may appreciate the fact that in general Rv >> Rp.

Next let’s take a closer look at the failure mechanism of such membranes.
Recall we did a homework problem where we calculated nucleation of a defect
in a crystal by accounting for surface and bulk energies. Under tension,
lipid membranes fail because holes that form in the membrane will grow
unbounded once they reach a certain radius - consider this hole analgous
to the crystal defect, only now we are working in 2D. The two competing
energetic effects are the benefit of opening a hole in the presence of tension
and the penalty of exposing the hydrophobic core of the membrane to water.
The first terms scales like the area and the second like the perimeter of the
hole:

Ehole = −σ∆A + lγ (9)

where γ is the perimeter energy penalty (∼= 1kBT/nm) and l is the perimeter
length.

(e) Make a plot of this energy using an appropriate reaction coordinate
for tensions corresponding to areal strains of 0.01, 0.03 and 0.05. Describe
what happens to the hole nucleation barrier and what this would mean for
the integrity of a membrane. In reality this is a kinetic process - find the
height of the energy barrier and let’s presume that when the barrier is 1kBT
high the process spontaneously occurs. To what critical tension and areal
strain does this correspond? Using a nominal lipid membrane thickness of
4nm, find an everyday material that has roughly the same Young’s Modulus.
Using the membrane thickness and critical tension, what everyday material
fails in this range of stress and areal strain (that has two distinct answers)?
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