
APh161: Physical Biology of the Cell
Homework 6

Due Date: Tuesday, March 1, 2005

“To do successful research, you don’t need to know everything. You just
need to know of one thing that isn’t known.” - Arthur Schawlow, quoted in
”Lasers, Spectroscopy and New Ideas” edited by Yen and Levenson

Reading: Chaps. 10 and 12 of Howard.

1. Diffusion to Capture: The Hard Way

In class I gave an intuitive derivation of the problem of diffusion to capture
without ever solving the diffusion equation. In this problem, I want you to
work out the features of diffusion to capture with a perfect absorber using
the full machinery of the diffusion equation.

(a) Recall that we wish to solve for the steady-state condition in which we
prescribe a far-field concentration c0 and assume that the absorber (a sphere
of radius a) is a perfect absorber (c(a) = 0). Write the diffusion equation in
spherical coordinates at steady-state (i.e. ∂c/∂t = 0).

(b) Show that the resulting concentration profile is of the form

c(r) = A +
B

r
, (1)

and use the conditions c(a) = 0 and c(∞) = c0 to determine the constants
A and B.

(c) Compute the flux at the surface of the sphere and then use this to eval-
uate dn/dt and confirm the expression for the diffusive speed limit that I
discussed in class.

(d) Recall Prof. Bob Austin’s (Princeton Physics) quip that ”physics isn’t
worth a damn unless you put in some numbers”. Let’s put in some numbers
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and actually evaluate the diffusive speed limit for several cases of interest.
In particular, let’s work out the rate for actin monomers to be incorporated
onto a growing actin filament and for oxygen arriving at hemoglobin. That
is, make an estimate of the size and diffusion constant for G-actin and O2

and compare the rates that you find with the kon for the actin polymeriza-
tion reaction and for the uptake of oxygen by hemoglobin. Of course, you
will have to make some assumptions about c0 - try the critical concentration
for actin and for oxygen, maybe you can find some reasonable numbers on
the web. The discussion on pgs. 308 and 309 of Howard give an interesting
discussion of the diffusion-limited speed limit. Note that we are making a
simplifying assumption by treating the growing filament and the hemoglobin
as stationary.

2. Microtubule Dynamics.

There have been a number of models that have been set forth to examine
the intriguing character of cytoskeletal dynamics. In this problem, I will
walk you through one phenomenological model for steady-state microtubule
dynamics that was introduced by Dogterom and Leibler in Phys. Rev. Lett.
70, 1347 (1993) - the paper is on the course website. Note that there is a
more interesting class of models that include GTP hydrolysis explicitly (see
Phys. Rev. E54, 5538 (1996).) As an example of the type of data we are
trying to come to terms with, see fig. 1 and fig. 6 of Fygenson et al., Phys.
Rev. E50, 1579 (1994). Fig. 1 shows a record of the length of a single
microtubule as a function of time and reveals the series of ”catastrophes”
and ”rescues” as the polymer changes its length.

(a) Deduce eqns. 1 and 2 of the Dogterom paper - in particular, note that
they are thinking of a probability distribution p+(n, t) and p−(n, t) which
gives the probability of finding a microtubule of length n that is growing (+)
or shrinking (−). Write a master equation like we did in class for p+(n, t)
and p−(n, t) by noting that there are 4 things that can happen to change
the probability at each instant. Consider the + case - (i) the n− 1 polymer
can grow and become an n polymer - characterized by a rate v+, (ii) the n
polymer can grow and become and n + 1 polymer - also characterized by a
rate v+, (iii) the n+ polymer can switch from growing to shrinking with a
rate f+− and (iv) the n− polymer can switch from shrinking to growing with
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a rate f−+. What I am arguing is that if you account for all four of these
possibilities you will have the correct master equation. Use a Taylor expan-
sion on stuff like p+(n− 1, t)− p+(n, t) to obtain the equations as written in
the Dogterom paper.

(b) Solve these equations in the steady state (i.e. ∂p±(n, t)/∂t = 0) and show
that the relevant parameter is

σ =
v+f−+ − v−f+−

v+v−
. (2)

Explain what all of this means. When I say ”solve”, what I mean is find all
of the p±(n). What you have done is to find the distribution of lengths.

(c) Use fig. 1 from the Fygenson paper above to estimate the relevant pa-
rameters v+, v−, f+−, f−+, and then find the average length of the polymers
which are predicted by this simple model. To find the average length you will
need to sum over all lengths with their appropriate probability. The Fygen-
son data in their fig. 1 captures some key ideas - the slopes of the growth and
decay regions tell you about the on and off rates, and the durations of the
growth and decay periods tell you something about the parameters f+− and
f−+. Note that by fitting the dynamical data, you are deducing/predicting
something about the distribution of lengths.

3. ATP: A Feel for the Numbers.

a) (From Lehninger Principles of Biochemistry). A 68kg (150lb) adult
requires a caloric intake of 2000kcal (8360 kJ) of food per day. The food is
metabolized and the free energy is used to synthesize ATP, which then pro-
vides energy for the body’s daily chemical and mechanical work. Assuming
that the efficiency of conversion of food energy into ATP is 50%, calculate
the weight of ATP used by a human in 24 hours. How many ATP molecules
is this? Take this a bit further by making a crude estimate of the number of
mitochondria in a human being and by assuming some reasonable number
of ATP synthase molecules per mitochondrion. Use this to see whether the
number of ATP synthesized each day is consistent with the rate at which the
ATP synthase molecules can be producing it. (RP to class: this last bit is
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very crude and I am not entirely confident that it will all work out.)

b) The Stokes drag formula (see Howard’s book if you don’t know about this)
says that the drag force on a sphere under low Reynolds number conditions is
given by Fdrag = −6πηav, where π is the ratio of the circumference of a circle
to its diameter, η is the fluid’s viscosity, a is the radius of the sphere and v is
the particle’s velocity. Consider a spherical bacterium! Taking our cue from
E. coli which swims (by turning its flagellae) at a speed of about 20 µm/sec,
figure out how many ATPs it must consume per second in order to travel
at this speed, assuming that all of the energy usage goes into overcoming
fluid drag. You will have to find a spherical representation of E. coli. Note
that this problem is not quite right because the flagellar motor is powered
by a proton gradient rather than ATP, but the main point is the same - you
are trying to reconcile the energy budget of various cellular actions with the
known liberation energy from ATP hydrolysis.

4. Equilibrium Constants.

Equilibrium constants are one of the key interpretive tools in molecular bi-
ology and biochemistry. In this problem, we revisit some of the conceptual
foundations of equilibrium constants.

a) In class I swiftly derived the law of mass action on the basis of minimiza-
tion of the Gibbs free energy. Repeat that derivation here making sure to
attend to all details and explaining all of your steps and logic.

b) We begin by examining a kinetic interpretation of equilibrium constants
and the associated question of whether or not the barrier which separates
the two states of interest should play any role in the equilibrium constant
(we already know the answer is no, but we will demonstrate it). Consider
the simple reaction A + B ⇀↽ C. In this case, we know that the equilibrium
constant is given by

K =
[C]

[A][B]
. (3)

However, we can also express this equilibrium constant in terms of the rate
constants for the reaction. In particular, note that the reaction has a kinetic
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equation
d[C]

dt
= kon[A][B]− koff [C]. (4)

At equilibrium, the left hand side of this reaction is zero and hence we have

K =
kon

koff

=
[C]

[A][B]
. (5)

Sketch an energy landscape with two wells and a barrier between them. Call
the free energy when A and B are separate E1 and that when they are
associated E2. To make a transition from 1 to 2 requires going over a barrier
of height Eb. Put all of this in your sketch. Transition state theory tells us
that the rate of a reaction is of the form

rate = ν0exp(−E/kT ), (6)

where E is the height of the barrier and ν0 is an “attempt frequency”. Com-
pute the ratio kon/koff and show that the barrier height drops out of the
problem (as it should).
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