
APh161: Physical Biology of the Cell
Homework 4

Due Date: Thursday, February 2, 2006

“My regard for the inventor of the harp is not made less by knowing that
the instrument was very crudely constructed and still more crudely played.
Rather, I admire (the inventor) more than I do the hundreds of craftsmen
who in ensuing centuries have brought this art to the highest perfection.”
Galileo Galilei

Reading: Chap. 21 of ”Physical Biology of the Cell” chap. 8 of ECB.

1. Crowding and Binding

In this problem you will work out the way in which crowding agents can
enhance the likelihood that a ligand will bind to its receptor. For concrete-
ness, consider a box with N lattice sites (this is our toy model of the solution).
In this box there is a receptor, L ligands which target that molecule and C
crowding molecules which do nothing more than occupy space and jiggle
around (but, they have a big effect on the equilibrium of the receptor with
its ligands and that is the moral of the problem).

(a) For the case in which there are no crowding agents, work out the
probability that the receptor will be occupied by a ligand (in class we called
this pbound) as a function of the number of ligands. Write your result in terms
of the difference in the energy of the ligands when they are in solution and
when they are bound to the receptor. To determine the number of lattice
sites use N = Ωcell/Ωprotein to get an estimate by taking Ωcell as the volume
of a typical cell like E. coli and Ωprotein as the characteristic volume of a
typical protein. Explain why this is a reasonable way for us to set up our
lattice model. For a characteristic energy difference like 10kBT , make a plot
of the binding probability as a function of the number of ligands. Make sure
you state any approximations that you make and justify them. I would like
to see you derive an expression that is valid for the dilute limit (L << N)
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using
N !

(N − L)!
≈ NL (1)

and for the more general case as well - then plot both cases and compare
them to show how the approximate result breaks down once L is comparable
to N . Also, rewrite your expression for pbound in terms of the concentration
of molecules - to do this you will have to take ratios like N/L and divide top
and bottom by Ωcell so that you have concentration units.

(b) Now consider the case in which there are C crowding molecules present
in the solution. These molecules can’t bind to the receptor, but what they
can do is take up space (and hence change the entropy of the L ligands).
Compute pbound again, but now in the presence of the crowding agents. Note
that you need to be careful that the total number of ligands and crowding
molecules doesn’t exceed the number of sites N on our lattice which is the
model of solution. Make sure that you plot your results for L running from 0
all the way to N −C. Make sure that your plot shows a number of different
choices for C. What I want you to observe is that as C increases, pbound

begins to deviate from the ideal solution limit. Please see the papers about
macromolecular crowding that are associated with this homework.

2. The Genetic Switch Revisited.

In class we worked out the dynamics of a genetic switch using a model
of repressor binding in which the Hill coefficient n = 2. In this problem, you
will work out this model in more depth for several different choices of the
Hill coefficient.

(a) Consider the case done in class for n = 2. Begin by deriving the
probability of repressor binding assuming that the repressor is a dimer and
show that pbound is of the Hill form. Then derive the differential equations
for the protein concentrations like I did in class and write everything in
dimensionless form in terms of the two dimensionless protein concentrations,
x and y. Next, show that in steady state (as we did in class) that

x =
α(1 + x2)2

(1 + x2)2 + α2
. (2)
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Now plot the two sides of the equation and examine their intersection for
three choices of α = 1, 2, 3. Explain the significance of your graphical result
with respect to the number of solutions. Basically, you are telling the same
story I told in class, but rather than solving the problem analytically you are
solving it graphically. In addition, make vector field plots that show the fixed
points for these same different values of α and use these plots as a second
way of explaining the dynamics.

(b) Repeat the derivation given in class but now for the case where the
Hill coefficient is n = 1 and show that there is only one solution (i.e. there is
no switching behavior). Make sure to discuss, comment and observe. I want
to hear you reason about this problem, not just show the one particular re-
sult that is asked of you.

(c) Now consider the case n = 4. Work out the equation that is equivalent
to that you derived in part (a). Find the solutions for x for representative
choices of α and comment on the switching behavior in this case. Make sure
you also comment on the significance of the choice of n = 4 itself.

Extra Credit: a) For the case n = 2 solve the problem numerically for several
different initial concentrations of protein x(0) = x0 and y(0) = y0. This
is something Matlab can do wonderfully and will permit you to plot the
concentrations of x and y as a function of time. (b) Examine the literature
and find some particular values for the parameters k, Kd and µ that show up
in our model. Comment on what this implies about the parameter α used in
our models.
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