
APh161: Physical Biology of the Cell
Homework 6

Due Date: Thursday, February 23, 2006

“Problems worthy of attack prove their worth by hitting back.” -Piet Hein

1. Poster Session Feel for the Numbers.

Give a one paragraph description of the problem you are tackling in your
poster. Then, in a page or less, give a series of estimates that will convey a
”feeling for the numbers” about your problem to your readers. We are taking
this very seriously and so should you. The point is to show that you have
made some forward progress on your poster topic. Also, tell us what the toy
model is that you are going to use to describe your problem.

2. A Toy Model of FRAP.

One of the intriguing tools for examining the dynamics of cells is a tech-
nique known as Fluorescence Recovery After Photobleaching (FRAP). The
idea of these experiments was discussed in class and amounts to carving out
a hole of photobleached material in a cell and then watching the fluorescence
grow back in as a result of diffusion. In this problem, you will work out a
one-dimensional toy model of photobleaching.

Imagine a one-dimensional ”cell” of length 2L (running from−L to L) and
with initial concentration c0 of the fluorescent molecule of interest which is
uniformly distributed throughout the cell (note that for this one-dimensional
problem the concentration has units of number of molecules per unit length).
How many molecules of the fluorescent molecule are there- write an equation
that gives this number? Now imagine that we photobleach a hole which runs
from −a to a. Before doing any calculations, what will be the final concen-
tration (c∞) profile once equilibrium is reached again? You may assume that
once a molecule is photobleached, it is effectively dead and can be forgotten.

Your goal is to solve for the time evolution of c(x, t) after the photo-
bleaching event. To compute the recovery curves, we first solve the diffusion
equation,

∂c

∂t
= D

∂2c

∂x2
(1)
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for the concentration of fluorescent molecules c(x, t), with the initial concen-
tration after photobleaching given by

c(x, 0) =


c0 for − L < x < −a
0 for − a < x < a
c0 for a < x < L

. (2)

You will impose the boundary condition ∂c/∂x = 0 for x = ±L which says
that the flux of fluorescent molecules across the boundaries of the 2L-box is
zero. This mimics the real-life situation with fluorescent proteins confined
to the volume of the cell, to the cell membrane, or some other sub-cellular
structure.

To solve the diffusion equation with the prescribed initial and boundary
conditions, begin by expanding the concentration profile, c(x, t), in terms of
cosine functions,

c(x, t) = A0(t) +
∞∑

n=1

An(t) cos
(

x

L
nπ
)

. (3)

This expansion guarantees that the boundary conditions are met, namely
each of the functions An(t) cos(xnπ/L) has vanishing first derivatives at x =
±L. Furthermore, since the initial concentration profile is an even function,
ie., it takes the same values for positive and negative x, it is readily expanded
in cosine functions. The solution of the diffusion equation now boils down to
finding the functions An(t) such that both eqn.(1) and the initial condition,
eqn.(2) are satisfied.

To find these functions, substitute the series expansion of c(x, t) into the
diffusion equation. Show that this yields,

dA0

dt
+

∞∑
n=1

dAn(t)

dt
cos

(
x

L
nπ
)

= D
∞∑

n=1

(
−An(t)

n2π2

L2

)
cos

(
x

L
nπ
)

(4)

which due to the orthogonality property of the cosine functions for different
n turns into a set of independent differential equations

dA0

dt
= 0

dAn

dt
= −Dn2π2

L2
An(t) (n ≥ 1) . (5)
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Make sure that you show this. The idea is for you to do the entire derivation
for this problem step by step and to give a discussion of the logic of each and
every step. Show that the solution to each one of these (infinite in number)
equations is an exponential function

An(t) = An(0)e−
Dn2π2

L2 t (6)

which when substituted into eqn.(3) gives

c(x, t) = A0(0) +
∞∑

n=1

An(0)e−
Dn2π2

L2 t cos
(

x

L
nπ
)

. (7)

The final piece of the puzzle is the determination of the constants An(0). To
do this, you need to appeal to your initial conditions.

To compute the initial amplitudes of the cosine functions we once again
resort to the orthogonality property of these functions∫ L

−L
cos

(
x

L
nπ
)

cos
(

x

L
mπ

)
= Lδn,m , (8)

where δn,m is the Kronecker delta and equals 1 when n = m and 0 otherwise.
Show that these orthogonality relations imply the equations

A0(0) =
1

2L

∫ L

−L
c(x, 0)dx

An(0) =
1

L

∫ L

−L
c(x, 0) cos

(
x

L
nπ
)

(n ≥ 1) , (9)

for the initial amplitudes. Make sure that you prove this previous step.
Substitute the initial concentration profile, c(x, 0), into these equations, and
perform the integrals to show that

A0(0) = c0
L− a

L

An(0) = −2c0
sin(nπa/L)

nπ
(n ≥ 1) . (10)

Put these results back into the derived formula for c(x, t), eqn.(7) and show
that the concentration profile as a function of time is given by

c(x, t) = c0

[
1− a

L
−

∞∑
n=1

2 sin(nπa/L)

nπ
e−

Dn2π2

L2 t cos
(

x

L
nπ
)]

. (11)
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Make a plot of the concentration profile at various times using a sensi-
ble choice of diffusion constant. Show that your result goes to the uniform
concentration you deduced before you began the real calculation. Given the
concentration profile as a function of time we are now in the position to
compute a FRAP recovery curve within our simple one-dimensional model.
We ask, how many fluorescent molecules are there in the bleached region as
a function of time? In our simple model the bleached region is a box that
spans from −a to a on the x-axis. We already know that at t = 0, the num-
ber of fluorescent molecules in the bleached region is Nf = 0 while at times
much longer than the diffusion time this number will tend to c∞(2a). For
intermediate times we need to compute

Nf (t) =
∫ a

−a
c(x, t)dx . (12)

Substitute your result for the concentration profile given in eqn.(11) into the
integral leads to an expression for the recovery curve. Find an expression for
the number of molecules in the photobleached region as a function of time
and make a plot of it.

3. Polymerization Reexamined.
In class I described the use of a master equation to deduce the dynamical

equation for the mean length of a growing polymer.
(a) Derive the dynamical equation

d〈L〉
dt

= konc− koff (13)

by starting with a master equation for dPn(t)/dt and then obtaining d〈L〉/dt
by using < L >=

∑∞
n=1 naPn(t). Pn(t) is the probability of polymers of length

n at time t. Show that the time evolution of the probability distribution is
governed by four distinct classes of process and is captured mathematically
as

dPn

dt
= konPn−1P1 + koffPn+1 − konPnP1 − koffPn. (14)

One question of immediate interest that emerges from a model of this
kind is what is the average length of a polymer as a function of time whose
growth is described by eqn. 14? If a is the length of a monomer we can write
the total average length of the filament as

〈L〉 =
∞∑

n=1

n a Pn. (15)
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By taking the time derivative of this expression, show that we can then write
an equation for the time evolution of the average length as

d〈L〉
dt

=
∞∑

n=1

n a
dPn

dt
(16)

Substitute our expressions for the time derivatives themselves from the orig-
inal rate equation (eqn. 14) and show that this yields

d〈L〉
dt

=
∞∑

n=1

n a (konPn−1P1 + koffPn+1 − konPnP1 − koffPn) . (17)

Rearrange the right hand side resulting in

d〈L〉
dt

=
∞∑

n=1

a n konP1 (Pn−1 − Pn) +
∞∑

n=1

a n koff (Pn+1 − Pn) .

The next step in our argument is to factor out P1 and to simplify the func-
tional form of the expressions using the identity

∞∑
n=1

nPn−1 = 2P1 + 3P2 + ... =
∞∑

n=1

(n + 1)Pn. (18)

Using this identity several times in their original expression show that

akonP1

∞∑
n=1

n(Pn−1−Pn) = akonP1

∞∑
n=1

nPn+akonP1

∞∑
n=1

Pn︸ ︷︷ ︸
=1

= akonP1+akonP1

∞∑
n=1

nPn.

(19)
Show that the net result of these manipulations is that we recover precisely
the same expression determined earlier for the mean length, namely,

d〈L〉
dt

= (konP1 − koff ) a. (20)

(b) Toy model of the catastrophe rate. In class I described a simple model
of the catastrophe rate which equated d〈L〉/dt = a/τ , where a is the size per
monomer and 1/τ is the rate of hydrolysis. Make a picture and explain the
model and then derive a formula for the catastrophe rate as a function of
the initial concentration and make a corresponding plot. Try to see how well
your result matches with the result from the data shown in the paper by
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Holy et al..

4. Myosin and Muscles: Some Estimates.

In class, I described (very briefly) the organization of muscles. In this prob-
lem, we will examine all of this in more detail.

a) In your own words, write a “multiscale” description of muscles. That is,
describe the various levels in the structural hierarchy of muscles starting with
the entire muscle itself (at the largest scales) and ending with the individ-
ual myosin molecules (at the smallest scales). Make sure you discuss each
structural feature in some detail, making sure to describe the relevant length
scales.

b) Make an estimate of the cross-sectional area of a muscle and work your
way through to the maximum force available during contraction of the mus-
cle by figuring out the force available per molecule (again, think about a
cross section). You will probably have to refer to some of the single molecule
work on myosin to really carry out a correct estimate (see Howard, pg. 267,
for example). In particular, once you have your estimate of the number of
myosins per cross section and the force available per myosin, you will be able
to make a preliminary estimate (although not all myosins are attached at all
times and you may want to consider that also).
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