Homework 2 comments

http://web.uct.ac.za/depts/mmi/jmoodie/flu2life.gif

http://micro.magnet.fsu.edu/cells/viruses/influenzavirus

Homework 2 comments

How Cells Decide Where to Go, What to Eat and What to Become: The Physics of Signaling and Regulation

David Rogers

Neutrophils: life as a hun

- Neutrophils cruise around looking for unwelcome invaders which they hunt a kill.
- When starved, amoeba can undertake program to form a collective in which s of the cells are sacrificed.
- The bottom line: signaling, detection a decision making are central to cellular

Ear the greater good. Disturbalium

How Cells Decide What to Become

Becoming a Sea Urchin

- After fertilization, sea urchin embryo undergoes a series of synchronized decisions and differentiation.
- Exquisite control in both space and time.
- The list of examples is virtually endless.

Forming the Gut

The Development of the Operon Concept: What Cells Eat and When They Die

Gene Expression and the Central Dogma

- Managing the Great Polymer Langu
 The central dogma tells us about the connection between what Crick dubbed "the two great polymer languages".
- Gene expression refers to the chain of processes that relate the informational content of DNA to the protein consequences of that DNA.

But, Genes Are Precisely Controlled: Transcriptional Regulation

- Regulation takes place very far upstreal In particular, the "decision" is made whether or not to produce mRNA.
- Question: What are the molecules that mediate this control?

Repressors: The Cartoon

- Repressor molecules inhibit action of RNA polymerase.
- Repressors can be under the control of other molecules (i.e. inducers) that dictate when repressor is bound and not.

Figure 8-7 Essential Cell Biology, 2/e. (© 2004 Garland Science)

Activators: The Cartoon

- Activator molecules enhance the action of RNA polymerase.
- Activators can be under the control of other molecules (i.e. inducers) that dictate when activator is bound and not.
- Activators "RECRUIT" the polymerase.

Adhesive interaction between RNAP and activator

But quantitative data demands more than cartoons!

Quantitative Measurement of Gene Expression: When?

(Elowitz and Leibler)

- Measurement of when genes are expressed.
- An example: the repressilator, a transcriptional regulatory network which leads to a time varying concentration of various gene products.
- The idea: stick an engineered set of genes into the cell and then turn them on.

Quantitative Measurement of Gene Expression: Where?

 Developmental biology is one of the most compelling arenas for thinking about spacetime gene expression.

Fruit fly embryo

Sea urchin embryo

Battle crv auantitative measurements demand auantitative models

The Lac Operon: The Hydrogen Atom of **Gene Regulation**

Figure 8-9 Essential Cell Biology, 2/e. (© 2004 Garland Science)

"Tout ce qui est vrai pour le Colibacille est vrai pour l'élép

The Single Molecule Census

The Notion of Fold-Change

- The idea: by how many fold is the expression increased or decreased relative to some reference value.
- To measure fold-change one can measure the expression level (for example using fluorescent reporter molecules) for the case of interest and for the reference state.

Statistical Mechanics of Promoter Occupancy

- The goal: compute the probability of promoter occupancy as a ratio of promoter occupied states to all of the states available to all of the polymerase molecules.
- Number of ways of arranging the polymerase molecules is a classic problem in statistics.

Non-specific DNA is RNAP's reservoir

RNAP

$$Z_{unbound} = \frac{N_{NS}!}{P!(N_{NS}-P)!} e^{-\beta P \epsilon_{pd}^{NS}}$$

Reckoning Promoter Occupancy

 We construct the ratio of weights for bound and unbound states.

 Z_{bound} p_{bound} Z_{bound} -

$$Z_{unbound} = \frac{N_{NS}!}{P!(N_{NS}-P)!}e^{-\beta P}$$

The Outcome:

Statistical Mechanics of Polymerase Binding: Basal Transcription

- of helper molecules for ``normal'' promoters.
- *F_{reg}* accounts for the presence of regulatory proteins and features such as looping.

the regulation factor

Statistical Mechanics of a Single Repressor Binding Site

- Model predicts concentration dependence of repression for a single repressor binding site.
- Extent of repression depends upon the strength of the binding site.

Exploring Regulatory Diversity

Key point: We can work out the regulation factor for ma other scenarios including other looping scenarios.

How Should We Think About Regulation Quantitatively?

"Thermodynamic Models" – Equilibrium Notions

Rate Equation Perspectiv

 $\frac{d[mRNA_{Rep}]}{dt} = V_{mRNA-Rep} - (k_{d,mRNA-Rep} + \mu) \cdot [mRNA_{Rep}]$ $\frac{d[\operatorname{Re} p]}{dt} = V_{\operatorname{Re} p} - \left(k_{e,\operatorname{Re} p} + \mu\right) \cdot [\operatorname{Re} p]$ $\frac{d[mRNA_{ZYA}]}{dt} = V_{mRNA-ZYA} - (k_{d,mRNA-ZYA} + \mu) \cdot [mRNA_{ZYA}]$ $\frac{d[\beta gai]}{\omega_{t}} = V_{\beta gai} - (k_{a} + \mu) \cdot [\beta gai]$ $\frac{d[\text{Perm}]}{dt} = V_{\text{Perm}} - (k_{i} + \mu) \text{ [Perm]}$ $\frac{d[Lac_{int}]}{dt} = V_{t,Lac} - V_{tat,Lac} - V_{tac-Allo} - \mu \cdot \left[Lac_{ot}\right]$ $\frac{d[Allo]}{dt} \approx V_{Lac-Allo} - V_{cat,Allo} - \mu \cdot [Allo]$ $\frac{d[cAMP]}{dt} = V_{cAMP} - (k_{ex} + \mu) \cdot [cAMP]$ $\frac{d[Glu_{out}]}{dt} = (V_{out,Glu} - V_{t,Glu}) \cdot \mathbf{X}$ $\frac{d[Lac_{eat}]}{dt} = -V_{1,Lac} \cdot X$ $\frac{dX}{dt} = \mu X$ $\frac{d[Glu6P]}{dt} = V_{t,G|u} + 2 \cdot \left(V_{cal,Lac} + V_{cal,Aller}\right) - \frac{\mu}{\hat{Y}_{v,f,max}} - \mu \cdot [Glu6P]$ Wong, Gladney, and Keasling

The Lambda Switch: The Other Hydrogen Atom of Gene Regulation

Bacteriophage and Their Genomes

http://www.biochem.wisc.edu/inman/empics/0020b.j

The Life Cycle of Bacteriophage Lambda

