
APh161: Physical Biology of the Cell
Homework 3

Due Date: Tuesday, January 30, 2007

“Facts do not cease to exist because they are ignored.” – Aldous Huxley

A. Reading and Writing:

Read Chap. 19 of PBOC and write a referee report using the usual rules
for writing such reports.

1. The Hemoglobin Story

We have adopted hemoglobin as one of our molecules of interest to discuss
the statistical mechanics of binding reactions. In this problem, you will work
out the characteristics of hemoglobin binding from a number of different per-
spectives. You may find it useful to refer to chap. 7 of PBOC to do this
problem (chap. 7 is posted along with this homework).

(a) A feeling for the numbers: in class we discussed the number of red
blood cells and the number of hemoglobin molecules in each red blood cell.
Note also that these results are implicit in the measurements of the CBC
blood test discussed in the first lecture and posted on the website. In this
part of the problem, I want you to take it a little further. First, make those
estimates concrete by estimating the number of red blood cells in an adult
human and the number of hemoglobins per red blood cell. Then, figure out
roughly how many O2 molecules you bring in with each breath and how many
hemoglobin molecules it would take to use each and every one of those oxy-
gens. How does this compare with the total number of hemoglobins in your
body?

(b) Revisit the problem of dimoglobin described in class. In particular,
compute p0(c), p1(c) and p2(c), the probability of finding 0, 1 and 2 O2

molecules bound to the dimoglobin molecule. Write expressions for these
three probabilities and then plot them as a function of the concentration (all
on the same graph). Make sure to explain physically and intuitively what is
going on in this system as revealed by these graphs. To make these plots,

1



you will need the parameters ε and J which characterize the binding energy
and the cooperativity. Assume that ε = −5kBT and make several choices of
the cooperativity parameter to see how it changes the binding curve.

(c) Work out the average number of oxygen molecules bound on hemoglobin
by using equilibrium constants K1, K2, K3 and K4. K1 is the equilibrium
constant for binding the first oxygen. K2 is the equilibrium constant for
binding the second one and so on. Make sure you write down the definitions
of each such binding constant in terms of [O2] (the oxygen concentration)
and [Hb] (the hemoglobin concentration) and introduce [nO2 − Hb] as the
concentration of hemoglobins with n bound O2. With these definitions in
hand, write a full expression for 〈Nbound〉 as a ratio, where 〈Nbound〉 is the
average number of bound O2 on a hemoglobin molecule. Make a plot of the
result using the parameters:

K1 = 16.6 mmHg (1)

K2 = 43.9 mmHg (2)

K3 = 4.3 mmHg (3)

K4 = 1.25 mmHg. (4)

Note: the source of this data is the paper by Imai (1990) and is posted on
the webpage.

(d) Derive the average number of oxygens bound on hemoglobin using
a scheme like that we used for dimoglobin in class. That is, rederive the
average number bound using a microscopic model and statistical mechanics.
The total energy can be written as

E = ε
4∑

α=1

σα + J
4∑

(α 6=γ)=1

σασγ + K
′∑

α,β,γ

σασβσγ + L
′∑

α,β,γ,δ

σασβσγσδ, (5)

where the parameter σi is the occupancy variable for the ith binding site on
hemoglobin and the sums are over distinct sites (i.e. there are no repetitions
like σ1σ1σ2. Find a relation between the parameters used here and those used
in part (b) - that is, in this part of the problem you have the parameters ε,
J, K and L and in part (b) you have K1 −K4. The idea is to use the Kis to
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determine the parameters used in the statistical mechanics model.

(e) One of the favorite tools for dealing with cooperative interactions is
the use of the so-called Hill function. In this problem, you will derive the Hill
equation and then see to what extent it is possible to use it for thinking about
hemoglobin. For a reaction nA + R ⇀↽ nAR, we need n copies of the ligand
A in order to form the complex nAR. In this case, imitate the treatment
of binding given in class to find an expression for the fraction of receptors
that are in the complexed state by using the definition of the dissociation
constant

Kd =
[A]n[R]

[nAR]
. (6)

In particular, show that

θ([A]) =
[A]n/Kd

1 + [A]n/Kd

. (7)

The number n is called the Hill coefficient. Make a plot of the binding proba-
bility for the cases n = 1, 2 and 4 using a sensible value of K from the earlier
problems. Here too, using the data provided on the HW website, see if you
can find a best fit to the Hb data using a Hill function. This data has been
extracted from Imai (1990).

(f) (Extra credit) Fit the data from Imai (1990) to: (i) a hemoglobin
model without any cooperativity, where each oxygen binds independently.
(ii) Your results from part (c). What we have in mind here is for you to
determine the constants K1, etc. by fitting to the binding curve.

2. Statistical Mechanics of Gene Regulation.

(a) In class, I derived an expression for the probability that RNA poly-
merase will be on the promoter of interest in the absence of any transcription
factors. Reproduce the entirety of that argument including the missing al-
gebraic steps that were glossed over in class and show that pbound may be
written as

pbound =
1

1 + NNS

P
eβ∆εpd

. (8)
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Make a log-log plot of the probability that polymerase is bound as a function
of the number of polymerase molecules using Nns = 5 × 106 and ∆εpd =
−5kBT . Also, make sure to discuss the implications of this result for a weak
promoter, in particular, comment on the basal transcription rate.

(b) Now generalize the problem you did above to the case in which there
is a second promoter competing with the promoter of interest. Assume that
the binding energy for that site is identical to that of the promoter of inter-
est and derive an expression for pbound for this promoter. Comment on the
relative importance of the nonspecific sites and the competing promoter in
inhibiting the binding to the promoter of interest.

(c) Müller-Hill, in Oehler et al. (1994), performed a series of impressive
measurements of repression in the lac operon for the case in which only a
single repressor binding site (the primary operator) was present. In this part
of the problem you will reproduce the derivation given in class for the problem
of repression, culminating in an expression for pbound. Once you have that
expression, use your algebraic expressions to fit the repression measured by
Müller-Hill - their results are in the paper posted with this homework. Note
that for the purposes of this analysis, we define repression as

repression(R) =
pbound(R = 0)

pbound(R 6= 0)
. (9)

To effect the fit, you will use the measured value of repression and the number
of repressors (remember that Oehler et al. report the number of repressor
monomers - divide by 4 to find the number of active repressors) - this leaves
as the only unknown the value ∆εrd since you already know the value of ∆εpd

from our earlier treatment of the problem in the absence of repression and
its role when calculating fold-activities. Once you have all of these numbers
in hand, make a plot of the ”fold-activity” as a function of the number
of repressors. In fact, ”fold-activity” is the inverse of what we mean by
repression and is defined as

fold-activity(R) =
pbound(R 6= 0)

pbound(R = 0)
. (10)

Make a log-log plot of the fold-activity in the case of pure repression. What
features of the curve change by varying parameters such as the binding en-
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ergy? Examine your expression in the limit when the promoter binding is
weak and show that in this case the fold change is given approximately by
Freg(R) itself. Work the numbers for the case of interest in this problem and
show that this is the appropriate limit.

d) Calculate pbound in the case of an activator ”recruiting” RNAP. As we
saw in class this process can be described using a binding energy of the ac-
tivator to DNA (∆εad) and an interaction energy between the activator and
RNAP (εap). Demonstrate that the regulation factor is greater than one and
show what happens in the limit that the interaction energy between activator
and the polymerase goes to zero. Make a log-log plot of the fold activity in
this pure activation case. What features of the curve change by varying the
parameters?

3. Bioinformatics and HIV.

Go through the bioinformatics tutorial and carry out the associated analysis
that is posted with this homework on the webpage.
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