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23 January 2007

Goals:

• Motivate the role of dynamics and feedback in the the cell

• Provide mathematical tools for analyzing and predicting 
the dynamics of transcriptional regulation in the cell

• Work through case study for the lac operon (model system)

Reading

• Kondev, Phillips and Theriot, Physical Biology of the Cell, Chapter 19

• N. Yildirim, M. Santillan, D. Horiki and M. C. Mackey, “Dynamics and 
bistability in a reduced model of the lac operon”. Chaos, 14(2):279-292, 
2004.
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Today: give over-
view of main con-
cepts and approach

Wed: optional tutorial

Thu: “stick in sand” + 
“fingers on keyboard”
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Some Examples of Biological Dynamics and Feedback

Questions

• How do bacteria “decide” which way to swim (run/tumble) to find food?

• How does a neutrophil “sense, compute and actuate” to control its motion?

• What controls the stages and rate of the cell cycle?

This week: develop tools for answering these questions through analysis of molecular 

scale dynamics and feedback

Approach

• Focus on transcriptional regulation, building on stat mech story

• Make use of modern tools from dynamical systems to quantify and classify dynamic behavior

• Combination of “stick in the sand” and “fingers on the keyboard” techniques
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Model System: The Lac Operon

Key idea (Jacob & Monod, 1950s): produce proteins 

when you need them

• Bacterial growth dependent on nutrient environment

• Lactose only consumed if glucose is not present

• Q: How does E. coli decide when to produce proteins?

• A: Lac “operon” (! control system) 

• KPT07: “Lac operon is the hydrogen atom of regulation”
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http://en.wikipedia.org/wiki/Image:Bacterial_growth_monod.png

How does it work?

• Proteins for digesting lactose are controlled by 

binding of repressor and activator

• CAP (activator): recruits RNA polymerase when 

bound to cAMP, whose concentration is controlled 

by absence of glucose (+glucose ⇒ no cAMP)

• Repressor: blocks transcription by causing DNA 

looping unless it is bound to allolactose, a 

byproduct of lactose metabolism

• Feedback: if lactose present, then create proteins 

required to metabolise lactose, which turns on lac 

operon (required to matabolise lactose)Mahaffy and Savev, 1999
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Operon Layout and Census
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KPT07
The regulatory landscape

• Repressor binds in a region that 

blocks the binding of RNAP

• If CAP is present (activated by 

cAMP, which is present in the 

absence of glucose), it recruits 

RNAP

• Can assign energies to each of 

these events and work out 

statistical mechanics (see text)
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Repressor and DNA Looping

Repressor can act through DNA looping

• Binding at secondary sites on DNA (eg, within lacZ)

Can use statistical mechanics to predict repression

• Analysis: compute Pbound of RNA for different situations

• Experiments: knock out secondary binding sites and see 

what happens

• Still get repression, with O1 being the strongest factor
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Lewis, ???

Repression =
pbound(R = 0)

pbound(R)
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Rates of Transcriptional Regulation

Primary timescales:

• DNA production:  250-1000 bp/sec

• mRNA production:        10-30 bp/sec 

• Protein production:       10-30 aa/sec

DNA, protein from KPT07, mRNA production from Vogel & Jensen

Other important rates

• mRNA half life :        ~100 sec 

• Protein half life:   ~5 x 104 sec 

• Protein diffusion

(along DNA):  up to 104  bp/sec

• Assume that activators and repressors 

reach equilibrium state much more 

quickly than other time scales

Half life times from Yildirim and Mackey, 2003; Protein diffusion from Blainey et al, 
PNAS 2006.
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From Numbers to Equations: Dynamical Modeling 

Modeling philosophy: Ask questions first, build model later

• Many different models possible for the same system; no such thing as “the model”

• The model you use depends on the questions you want to answer

• Never build a model without first posing the questions

Analysis and design based on models

• A model provides a prediction of how the system will behave

• Feedback can give counter-intuitive behavior; models help sort out what is going on

• Models don’t have to be exact to be useful; they just need to help explain (and predict)
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Dynamic Modeling Approaches

Possible approaches to modeling

• Molecular dynamics - keep track of

vibration of molecules and detailed

reaction dynamics

• Monte Carlo/Stochastic simulation -

extend ideas from statistical mechan-

ics to include time

• Continuum/partial differential equa-

tions - keep track of evolution in 

space and time

• Reduced order models - ordinary dif-

ferential equations that capture bulk

properties

Choice of model depends on the questions you want to answer

• Modeling takes practice, experience and iteration to decide what aspects of the system are 

important to model at different temporal and spatial scales

• Good models make testable predictions and produce “surprising” results 
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Statistical Mechanics: The “Analytical Engine”

Provides an equilibrium view of the world

• Computes the “steady state” probability that a situation occurs

• Based on energy arguments; allows study of complex situations
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The Master Equation: Detailed Events

Key idea: transition rates between microstates

• Enumerate micro-states corresponding to the 

system of interest

• Define the system “state” in terms of the individual 

probabilities of each microstate at each instant in 

time

• Dynamics are given by the rate of change of 

probability of each individual state

Transition rates depend on Boltzmann model

• Define the individual rates of transition based on 

the difference in energy between the states

• v = vibrational frequency (1013)

• Assumes at most two species interacting at a time

10

Gallivan, 2002

kH′→H

kH→H′

H H ′
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Simulating the Master Equation for Chemical Reactions

Stochastic Simulation Algorithm (SSA)

• N states (X1, X2, ..., XN) where Xi is the number of copies of molecule Si in the system

• M reaction channels Ri that define changes in the state. !ij(X) = change in Xi for Rj

• Propensity function: ai(X) dt = probability that reaction i will occur in time interval dt

• “Gillespie algorithm”: determine how many reactions occur in a given time step and execute 

them.

• Choose time steps to be small enough that propensity functions are roughly constant

Example

• Propensity function: a1(X) = c1 X" Y1 to

account for multiple copies of each species

Tools

• StochKit (Linda Petzold) - C++ libraries

• MATLAB - SimBiology (includes SSA)
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http://www.caam.rice.edu/~caam210/reac/lec.html
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Chemical Kinetics: The Law of Mass Action

Alternative approach: keep track of concentrations

• If number of molecules is large, we can keep track of concentration of each species

• No longer track individual events; assume an average rate of events and use ODEs

Michaelis Menten kinetics

• Model for enzyme controlled reactions

• Assume first reaction is fast compared to the second
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Questions:

• In the absence of glucose, what 

concentration of lactose is required for 

the lac operon to become “active”?

• Focuses on “bistability”: lac operon has 

two stable equlibrium points:

- low lactose: machinery off

- high lactose: machinery on

Model

• Ordinary differential equation for rates 

of transcription, translation and 

degradation of #-galactosidase (#-gal) 

and allolactose

• Assume levels of lactose outside the 

cell is constant and level of permease 

(from lacY) is constant to simplify the 

model

• Takes into account time delays in 

producing proteins (RBS transcription 

+ protein translation)

Yildirim-Mackey Model for the Lac Operon
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dA

dt
= αAB

L

KL + L
− βAB
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KA + A
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Mahaffy & Savev, QAM 99
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Model Derivation: !-Gal Production

mRNA production

• Production rate related pbound via a 

modified Hill function, ala

• RNA degradation via exponential decay

• Account for time delay in translation of 

RBS via !M :

- Use allolactose concentration, A, at 

time t - !M

- Exponential factor to account for 

dilution due to cell division

Protein production

• Assume rate of production is 

proportional to amount of mRNA

• Include protein degradation via 

exponential decay

• Add time delay to account for time to 

produce functional protein, !B
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dM

dt
= αM

1 + K1(e−µτM A(t− τm))n

K + K1(e−µτM A(t− τm))n
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M = lacZ mRNA concentration

B = #-gal concentration

A = allolactose concentration

dB

dt
= αBe−µτBM(t− τB)− γ̃BB dM

dt
= α

(
[1− pbound(A)] + ε

)
− γM
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Model Derivation: Allolactase Dynamics

Allolactose

1. Converted from lactose with Michaelis 

Menten-like kinetics (Huber et al)

2. Converted back to glucose and galactose

3. Degradation 

Lactose (internal)

1. Transported to interior of cell by permease

2. Loss back to external environment

3. Converted to allolactose by #-gal

4. Degradation

Permease

1. Produced by lacY gene (after delay)

2. Degradation
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Determining the Constants

Yildirim, Santillan, Horike and Mackey:

• µ - dilution rate, based on 20 minute cell division time

• "x - production rate, based on steady state values

• #x - decay rate, based on half life experiments

• !M - time delay to produce RBS, based on RNA 

elongation rates

• !B - time delay to translate protein, based on protein 

length and translation speed

• n - Hill coefficient (no justification!)

• K - based on basal rate of production (Yagil & Yagil)

• K1 - based on dissociation constant (Yagil & Yagil)

• Kx - measured by Wong, Gladney and Keasling (97)

• $A - loss of allolactase, through conversion to glucose 

and galactose.  Measured by Hubert et al (75)

Note: repressor binding model is pretty ad hoc...
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Equilibrium Analysis

General approach

• Nonlinear ODE with parameters p

• Equilibrium point: f (x*, p) = 0.  Value 

depends on parameters x*(p)

• Equilibrium point is (asymptotically) stable 

if solutions starting near x* converge to x*

• Check stability through linearization:

• Equilibrium point is stable if eigenvalues 
of the linearization have negative real part 
(⇒ solutions decay to zero at rate Re($))

• Can gain insight into dynamics by plotting 
value and stability of x*(p) [bifurcation 
diagram] and stable regions of p [stability 
plot]

Lac operon case

• Assume internal lactose concentration 
constant ⇒ can eliminate L, P dynamics

• Non-dimensionalize equations (rescale):

• Compute equilibrium points (solve 
nonlinear equations):

• Linearize & compute evalues (w/ delay...)
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ẋ = f(x, p) x = (M,B,A)

z = x− x∗

ż =

[
∂f

∂x
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(x∗,p)

]
z + h. o. t
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Some Predictions

Bistable behavior (saddle node bifurcations)

• Can have single or multiple equilibrium points 

depending on parameters

• Bifurcation plot: change in stability versus params

- Note: ossible hysteresis from saddle node

• Parametric stability plot: stability regions

• Simulations: nearby initial conditions can lead to 

different steady state solutions

• Use to predict behavior (for future experiments)
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Comparison to Experiment

!-gal activity for Le = 8 x 10-2 mM

• Experimental data from Knorre (1968) for 

E. coli ML30 (%) and Pestka et al. (1984) 

for E. coli 294 (&)

• Model simulation using constants from 

Table 1 (slide 16) with µ = 2.26 x 10-2 

min-1 and #x (= ??) fit to data

Oscillation in #-gal w/ phosphate feeding

• Periodic phosphate feeding from Goodwin 

(1969)

• Simulation used µ = 2.26 x 10-2 min-1 and 

#x (= ??).  Other parameters unchanged.

• Q: how should we assess these data?
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Questioning the Model

Do time delays matter?

• lacZ transcription:

- Half life (#M) ! 1.73 min

- !M = 0.1 min; µ!M  = 3 x 10-3

- exp(-µ !M) = 0.997

• #-gal production:

- Half life (#B) ! 900 min

- !B = 2 min (cf lacZ half life)

- exp(-µ !B) = 0.942

Do we learn anything new from the model?

Can we use the model for prediction, design, ???
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