Lecture 3: Sizing Up Viruses

The Parts List of a Virus

http://faculty.washington.edu/jais/microscopy.html

Cells and the Viruses That Infect Them

Bacteria

Note: the viral parts list is very small (10-100 pieces) with ger roughly of 10kb. They accomplish so much with so little.

T cells

+HIV

http://faculty.washington.edu/jais/microscopy.html

"Phage and the Origins of Molecular Biology"

Adapted from Molecular Expressions

Bacteriophage Structure

An infected bacterium: note that virus injects DNA and leaves body

Analogy: Put 500m of Golden Gate E suspension cable in the back of a Fe

Views of the Lambda Phage Genome

Phage T4 Genome

- Despite their supposedly simplicity and the existence of sequenced genomes, there is still much that we don't know about what goes on in these genomes.
- 168,903 base pairs in the genome

Life Cycle of a Bacteriophage

Who Are the Real Predators Out There?

The density of bacteriophage in the ocean is 50 x 10⁶/ml while the density of sharks is much less than 10⁻⁶/ml!

It is estimated that 40% of the bacterial background is infected everyday by bacteriophage - that is a predator!

Phage as Model Systems for Physical Biology

- Phage provide a setting within which we can ask sharp, quantitative questions and test precise models of biological phenomena.
- Some universal biological themes: macromolecular assembly in a crowded environment, orchestration in space and time, polymer translocation, gene expression, evolution, nature's nanotechnology etc.
- Close to having a full census (molecular inventory) and full structure of phage.
- An opinion: phage have not outlived their ability to teach! Rossman

Plant Viruses and the "Reconstitution of L

 1955 Fraenkel-Conrat and Williams - first example of complex biological entity reconstituted outside off cell.

- > 2000 protein units co-assemble with RNA molecule.
- Headlines: "Life created in test tube!"

Plant Viruses and the "Reconstitution of L

Fig. 7. Leaf symptoms of cowpea chlorotic mottle virus.

- Cowpea chlorotic mottle virus plant virus.
- 4 separate RNA molecules constitute its genome.
- Structure known with atomic resolution.

Reconstitution of CCMV

Formation of an Infectious Nucleoprotein from Protein and Nucleic Acid Isolated from a Small Spherical Virus¹

J. B. BANCROFT ERNEST HIEBERT

Department of Botany and Plant Pathology

Lilly Hall of Life Sciences Purdue University Lafayette, Indiana 47907

Accepted April 4, 1967

Structure of Viruses

- Characteristic size scale is 30-100 nm.
- Structures are known at "atomic resolution" - see Viper website.
- Highly symmetric think hard about what this implies about assembly!

The HIV Life Cycle

- Key point: viruses hijack the host cell to make new viruses.
- Once again, many of the great themes of biology are played out in this microcosm.
- HIV a convenient and intriguing prism 4 Reverse Transcription: Single stands of Viral RNA are converted into double-stranded DNA by the reverse transcriptise enzyme.
- There are many interesting physical processes that take place in this life cycle that will catch our fancy: binding, membrane fusion, transcription and its control, integration, assembly, budding!

This one picture literally provides a road map for the entire course. Almost all of our big themes are revealed right here!

Views of the HIV Genome

http://www.aladatana.waafadu/aladatana/html/aannaatiana/fial html

Making a Virus: Mature Virions

 Cryo electron microscopy provides a window on virion structure.

Enllan at al

Structural Heterogeneity of HIV Particles

- Mean diameter approximately 120nm.
- Average volume approximately 45,000 nm³
- Approximate mass per virus particle is 1fg (650 Mda)

Each picture is 160nm wide.

The HIV Protein Parts List

- This is a nice and thought provoking picture, but...
- Be careful, which features of this cartoon do we REALLY know?
- When shown cartoons like this, you have to ask yourself what is known and how. Compare the cartoon to the actual data what is the data? Try to make a cartoon sometime and it will reveal lots about what we don't know.

Making a Virus

- Yogi Berra said "You can observe a lot just by watching." We will pursue a corrolary: you can learn a lot just by estimating.
- Estimation question: how many Gag proteins does it take (roughly) to make an HIV virion? We begin by considering the immature virus.
- Does the cartoon make sense?
- To figure out the number of Gag proteins, we need an estimate of the area per protein.

$$N_{Gag} \approx \frac{A_{virus}}{A_{lipid}} \approx \frac{4\pi r_{virus}^2}{\pi r_{protein}^2}$$

N terminus

а

b

С

d

Fuller *et al.*

Important Yogi Berra remarks

- "Nobody goes there anymore; it's too crowded."
- "If you come to a fork in the road, take it."
- "You should always go to other people's funerals; otherwise, they won't come to yours."
- "It was impossible to get a conversation going; everybody was talking too much."
- "You've got to be very careful if you don't know where you're going, because you might not get there."

Acquiring a Membrane: How HIV Gets Its Lipids

http://www.homepage.montana.edu/~spincus/sp_hiv.html

http://faculty.washington.edu/jais/microscopy.]

This scanning electron microscope picture demonstrates HIV budding (arrows) from the surface of an infected T-lymphocyte magnified 80,000X.

Lipid Composition of the HIV Membrane

Figure 2-20 Essential Cell Biology, 2/e. (© 2004 Garland Science)

 Fact of life: lipids come in many different shapes and chemical forms. Brugger et al.

HIV lipid census provides a partial picture of the virion.

What Are Lipids Like?

- Typical sizes: 2.5nm
- Typical masses: 750 Da
- Area per molecule: 1/4 nm^2
- A useful place to find stuff out is Avanti Polar Lipids.

Lipid Content of HIV Particles

The actual molecular census of the HIV virus.

Table 1. Phospholipid composition of MT-4 cells and HIV-1

	MT-4 cells (mol % ± SD)	HIV-1 (mol % ± SD)
PC	43.0 ± 2.9	16.0 ± 1.0
SM + DHSM	10.4 ± 1.6	33.1 ± 1.2
PE	17.0 ± 1.5	8.2 ± 1.3
pl-PE	15.9 ± 0.5	27.0 ± 3.3
PS	7.4 ± 0.8	15.5 ± 2.2

Lipids were extracted and analyzed for phospholipid content as described in *Materials and Methods*. Values are expressed either as mol percentage of a given phospholipid to total phosphate (MT-4 cells) or as mol percentage of a given phospholipid to the total of all phospholipids quantified (HIV-1).

Table 2. The lipid composition of HIV-1

Lipid molecules per average HI virion

PC	26,000
SM	37,000
DHSM	17,000
PE	13,000
pI-PE	44,000
PS	25,000
Chol	134,000
Cer	160
HC	600

For details, see Supporting Text.

Capsid Structure

- Fascinating structure of the internal capsid of HIV.
- Shape conferred by geometric rules about 5-fold defects.

Bottom View

Side View

Sundquist et al.

Distribution of Spike Complexes

Zhu et al., Nature 2006

Distribution of Spike Proteins?

Zhu et al., Nature 2006

Viruses and the Great Themes of Biolo

- How do viruses make new viruses?
- How do viruses evolve? (including to evade the host defenses)
- How do cells defend against viruses?
- How do cells make decisions and how is that decision making altered by the presence of viruses?

