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As the data produced by experimental biologists becomes more quantitative, there becomes a need for
more quantitative models. There are many ways to build models (rate equations and Markov processes come
to mind), and each method has time and place when they should be used. In this set of notes, we explore
statistical mechanics as a method to build models for biology. Gene regulation, receptor-ligand binding, and
macromolecular crowding are just some of the cases that can be treated using statistical mechanics. Given
its utility in biology and its widespread use in this course, it is important to have a good handle on statistical
mechanics. Most of what you will need to know is outlined in this set of notes. These notes are divided
as follows. First, we first introduce concepts such as microscopic states and entropy. We then derive the
Boltzmann distribution, the heart and soul of statistical mechanics. Finally, we present several applications
of statistical mechanics to different problems in biology to give a flavor for how these kinds of models are
used.

1 Microstates and Entropy

Bulk properties of systems are of great interest when performing experiments in physics. When dealing with
gases, it is more useful to know the volume, pressure, and temperature than the coordinates and velocities of
the individual gas molecules. This is also the case in biology. The average expression of a gene in a population
of cells is a quantity that is often measured. Naturally, the macroscopic properties are influenced by what
is happening at the microscopic level. The fast molecules in the gas help determine a gas’ temperature
just as the position and binding partners of transcription factors determine the level of gene expression.
Here is where statistical mechanics comes in. Statistical mechanics helps connect microscopic behavior with
macroscopic phenomena. Before proceeding, we need to understand the concept of a ”microstate.”

Microstates are similar to the matrix. No one can tell you what a microstate is; you have to see it for
yourself. Wikipedia defines a microstate as ”a specific detailed microscopic configuration of a system that
[... a] system visits in the course of its thermal fluctuations.” While this definition is correct, it is more
illuminating to look at several concrete cases.

Figure 1 shows three cases where we can define microstates. The first figure shows a lattice model
of a receptor in a solution of ligands. In this case, each spatial configuration of the ligands represents a
different microstate. Some microstates, like the ones with ligand bound to the receptor, have more functional
significance for others. For fun, let us figure out how many microstates there are for this figure. There are
16 sites on the lattice and 1 site for the receptor - this gives 17 total sites for the 4 ligands. There are 17
ways to pick the first ligand, 16 ways to pick the second, 15 ways to pick the third, and 14 ways to pick
the fourth site. This gives 17 ∗ 16 ∗ 15 ∗ 14 = 57120. There is an error with this calculation - we forgot to
account for the fact that the ligands are indistinguishable. The method of counting treated the ligands as
if they were labeled 1, 2, 3, and 4, but in reality we can’t distinguish one ligand from another. There are
4 ∗ 3 ∗ 2 ∗ 1 = 4! = 24 ways to label the 4 ligands, so we must divide our answer by 24. This gives 2380 as the
number of possible microstates. As a general rule, the number of ways to choose R identical objects from a
set of N objects is given by

(
N
R

)
= N !

R!(N−R)! .
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(a) Molecules in solution. (b) Protein folding.

(c) Ion Channels.

Figure 1: Different examples of microstates.

The second figure shows a schematic of a protein. The microstates in this case are the conformations of
the backbone. If the properly folded protein performs some function, then we have a clear dependence of a
bulk quantity (the activity of the protein) on which microstates are occupied. It is interesting to note that
with a continuous representation of the backbone, there are an uncountably infinite number of configurations
for the backbone. We can count the number of microstates though, either by making a discrete model of
the backbone or by making some changes to how we count. This nuance is not that important. The third
figure shows an ion channel. There are only two microstates this system occupies - open and closed. A bulk
quantity of interest in this case could be the probability a channel is open. This would determine the flux of
ions into a cell, a process that has a wide range of effects from controlling volume to transmitting signals in
the nervous system.

While the calculation above may seem elementary, it is actually of utmost importance to statistical
mechanics. The number of available microstates will impact the equilibrium behavior of any system. It
stands to reason that having some measure of how many microstates are in a system would be very useful.
There is a problem with simply counting microstates - the result you get is not additive. Consider the case of
ligands in solution - in that example there are 2380 possible microstates. If we expand our system to include
an identical solution that is in a separate beaker, then the number of microstates become 23802 = 5664400.
It would be nice to have some measure that doubles when we double our system. We can get such a measure
by taking the logarithm of the number of microstates. In other words, if Ω is the number of microstates,
then we can define

S = kB log Ω, (1)

where kB is Boltzmann’s constant, to get an additive measure of the number of microstates. S is called the
entropy. In our thought experiment, the entropy of the solution is S = kB log 2380 = 7.77kB and when we
double the system the entropy becomes S = kB log 23802 = 2kB log 2380 = 15.54. It can be shown that, up
to a constant, this is the only definition that is additive.

2 The Boltzmann Distribution

Let us consider the following problem: suppose we have a small box in equilibrium with a large heat bath.
What is the probability the box occupies a microstate with energy E? Let’s start by stating what we know.
Because the heat bath and system are in thermal equilibrium, they have the same temperature T . Let’s
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Figure 2: A small system in equilibrium with a heat bath.

denote the energy of the system as E and the energy of the heat bath as EB . The total energy is given by

ET = EB + E. (2)

The heat bath and system can exchange energy, but the total energy ET must remain a constant. Because
the heat bath is much larger than the system by assumption, then E should be much lower than EB . We
have already specified which microstate the box occupies. We have no such specification for the heat bath;
all we know is that it has energy EB = ET − E. It could be in a multitude of microstates. The number of
microstates accessible to it depends on its energy. Let Ω (EB) denote the number of microstates of the heat
bath when it has energy EB .

What distinguishes one microstate of the heat bath from another? Nothing. It only makes sense that it
is equally likely for the heat bath to be in one microstate as opposed to another. This concept is called equal
a priori probability and is at the heart of statistical mechanics. Although the microstates are equally likely,
the number of microstates differs depending on how much energy the heat bath as donated to the box. The
probability of the box having energy E should be proportional to the number of microstates the heat bath
has when it has donated E to the box. In other words,

p ∝ Ω (ET − E) . (3)

As stated above E is small compared to ET . This invites a taylor expansion, which we do after taking the
logarithm of both sides. This gives

log p ∝ log Ω (ET − E) , (4)

∝ log Ω (ET ) +
(

∂ log Ω (x)
∂x

)
x=ET

(ET − E) , (5)

∝ log Ω (ET ) +
1

kB

(
∂S (x)

∂x

)
x=ET︸ ︷︷ ︸

T

(ET − E) , (6)

∝ const− E

kBT
. (7)

This means

p ∝ e
− E

kBT , (8)

=
1
Z

e
− E

kBT , (9)
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where
Z =

∑
states

e
− E

kBT (10)

is a normalization constant called the partition function. For simplicity, people often let β = 1
kBT . e−βE is

often called the Boltzmann factor; when one sums over microstates that have the same Boltzmann factor
the result is often called the statistical weight. This is the most important formula in statistical mechanics.
If you remember anything from these notes, remember this. This rule allows us to calculate the probability
of the box being in any microstate. The box can represent anything - DNA and transcription factors, the
conformation of a membrane, you name it. If you can calculate the statistical weight, you can use the toolkit
of statistical mechanics.

Before proceeding, there is one major requirement that must be met before using this formula - the
system under study must be in equilibrium. This is often not the case in biology. However, even if we limit
ourselves to cases where we are justified in assuming equilibrium exists, statistical mechanics still very useful.

3 Applications

All of statistical mechanics can be summarized in e−βε. Now that we have the rule for determining the
probability of microstates, let us work out some biologically relevant examples.

3.1 Receptor-Ligand Binding

Lets consider the previous example of a lattice model of ligands binding to a receptor. Suppose there is one
receptor, N ligands, and V sites in the solution. Binding to the receptor confers an energy bonus ε. Let’s

V

N

V

N−1
e−β

State Weight

Figure 3: States and weights of ligands binding to a receptor

calculate the probability a ligand is bound to the receptor. This probability is given by

pbound =
∑

bound states e−βEstate∑
bound states e−βEstate +

∑
unbound states e−βEstate

(11)

Let us find the partition function by considering the unbound and bound states separately. If no ligand is
bound to the receptor, then the energy is 0. This gives a Boltzmann factor of e0 = 1. When we sum over
states, the sum just becomes the number of microstates. How many microstates correspond to the unbound
macrostate? There are V sites and we must choose N so there are

(
V
N

)
microstates. The statistical weight is

then
(

V
N

)
. Now suppose a ligand is bound to the receptor. The Boltzmann factor is e−βε and the sum over
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states is e−βε ×# microstates. There are now only N − 1 ligands in solution, so the number of microstates
is

(
V

N−1

)
. The statistical weight is then

(
V

N−1

)
e−βε. Plugging in our expressions gives

pbound =

(
V

N−1

)
e−βε(

V
N−1

)
e−βε +

(
V
N

) ,

=
V !

(N−1)!(V−N+1)!e
−βε

V !
(N−1)!(V−N+1)!e

−βε + V !
N !(V−N)!

,

=
1

1 + V !(N−1)!(V−N+1)!
N !(V−N)!V ! eβε

,

=
1

1 + V−N+1
N eβε

.

Let’s work with the assumption that the solution is dilute. This means that V >> N − 1. We can then
rewrite the equation as

pbound =
1

1 + V
N eβε

, (12)

=
N
V

eβε + N
V

. (13)

(14)

Let’s examine this equation to gain some intuition. First, note that 0 ≤ N
V ≤ 1. If the binding is very

favorable, then ε << 0, eβε ≈ 0, and pbound ≈ 1. If the binding is very unfavorable, then ε >> 0, eβε >> 1,
and pbound ≈ 0. All of this agrees with our intuition. It is important to note is that when ε is near kBT ,
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Figure 4: pbound vs ε for N
V = 0.25.

then pbound has some intermediate value. This arises because the terms in our equation reflect a competition
between energy and entropy. It is energetically beneficial to bind to the ligand (if ε < 0) but taking a
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ligand out of solution reduces the solution’s entropy. At energy scales around kBT it is this competition that
determines the system’s behavior. It turns out that the energy scales of a number of biological processes live
right at this border. For these reasons, it is convenient to use kBT as a ruler for energies. To summarize,

• At energy scales much smaller than kBT , thermal fluctuations and entropy dominate.

• At energy scales much larger than kBT , energy minimization dominates.

• At energy scales around kBT , the competition between energy and entropy determines system behavior.

3.2 DNA Force Extension

The creation of optical tweezers has allowed experimentalists to examine the effect of forces on biological
systems. One class of experiments that has arisen from these tools are force extension experiments. A
polymer, often DNA, is held in a fixed position at one end. An optical tweezer is then used to pull on the
other end with a constant force and the end to end distance of the polymer is measured. This experiment
provides a good example of how statistical mechanics can be used to generate a quantitative model.

F

F

x

Figure 5: DNA force extension experiment.

For this experiment let’s model DNA with a one dimensional random walk. There are N segments of
length b and they are allowed to point either right or left. Let NR be the number of segments that point
right and NL be the number of segments that point left. Naturally we have the constraint

N = NR + NL. (15)

We want to find the average extension as a function of the applied force. Let x be the distance of the end
along the x-axis. Then

x = (NR −NL) b,

= (2NR −N) b.

The energy of a configuration is given by

E = −Fx, (16)
= Fb (N − 2NR) . (17)

Before continuing, we need to know the number of microstates correspond to a given extension. The extension
is completely determined by NR. We have N segments, so the number of ways we can choose NR of them
to point right is just

(
N

NR

)
. The partition function is then

Z =
N∑

NR=0

(
N

NR

)
e−βFb(N−2NR), (18)
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= e−βFbN
N∑

NR=0

(
N

NR

) (
e2Fb

)NR
, (19)

= e−βFbN
(
1 + e2βFb

)N
, (20)

=
(
eβFb + e−βFb

)N
. (21)

The average extension is given by

< x >=
N∑

NR=0

b (2NR −N)

(
N

NR

)
e−βFb(N−2NR)

Z
. (22)

If we stare at our expression for the partition function long enough, we see that if we differentiate Z with
respect to βF and divide by Z we get < x >. In other words,

< x > =
1
Z

∂

∂(βF )
Z, (23)

=

(
beβFb − be−βFb

)
N

(
eβFb + e−βFb

)N−1

(eβFb + e−βFb)N
, (24)

=
Nb

(
eβFb − e−βFb

)
(eβFb + e−βFb)

, (25)

= Nb tanh (βFb) . (26)

Again, the results agree with our intuition. With low applied force, entropy wins and the DNA stays
crumpled. With high applied force, energy wins and the DNA is elongated.
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Figure 6: Force-extension curve of DNA.

4 Recommended Reading

• Dill, K. and Bromberg, S., Molecular Driving Forces.
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