
APh161: Physical Biology of the Cell
Homework 4

Due Date: 5 pm, Friday February 12, 2010

Comments from RP to Class:

This fourth homework explores several problems I have done in class in much
greater detail.

1. Free energy scale of entropy of chemical interaction in kBT
units.

The goal of this problem is to get you to examine entropy, free energy and
chemical potentials from a few different angles. In addition, the results of
part (b) will permit you to do the problem on the critical micelle concentra-
tion later in the homework. NOTE: in this problem I am a little imprecise
with my free energy definitions, using the Gibbs free energy G in the first
part and the Helmholtz free energy F in the second part.

(a) Entropy per molecule due to configurations. Imagine the chemical
reaction A + B 
 AB. The goal in this part of the problem is to estimate
the free energy scale due to entropy when a single reaction occurs changing
the number of molecules from NA, NB and NAB to NA − 1, NB − 1 and
NAB + 1. Estimate the free energy difference by using ∆G = −T (Sf − Si)
in conjunction with the Boltzmann expression for the entropy S = kB ln W .
As a result, we have

∆G = −kBT ln
Wf

Wi
, (1)

where Wf and Wi are the multiplicities for the system in the final and ini-
tial states, respectively. Hence, to obtain our estimate, all you need to do is
construct the ratio Wf/Wi. Use the lattice models favored in class in order
to write this result. Make sure to explain how you convert from the lattice
model which involves the number of ligands and the number of lattice sites
to a representation in terms of concentrations. Once you have a formula
for this free energy, make a numerical estimate of its value by using some
“typical” concentrations for reactants and products.

(b) Entropy per molecule including the distribution of kinetic energy as
part of the entropy. In this second part of the problem, we do something a
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little more sophisticated for the same reaction by considering the contribu-
tion to the entropy coming from the ways of distributing the kinetic energy.
That is, all of the molecules in our solution (or gas) share a certain amount
of total kinetic energy. But there are many different ways that they can do
this sharing and this provides a contribution to the entropy. This result will
prove useful to us in the next problem when we work out the critical micelle
concentration.

In this case, we will use the expression for the relation between the
Helmholtz free energy and the partition function, namely, F = −kBT ln Z.
To compute this, we use the fact that the total partition function is given
by

Ztot =
ZN1
N !

, (2)

where Z1 is the partition function of a single-molecule. This partition func-
tion can be computed in turn as

Z1 =
1
h3

∫
d3q

∫
d3pe−βp

2/2m, (3)

where h is Planck’s constant, q is the generalized coordinate and p is the
momentum for the molecule of interest. The first integral is just an integral
over all the configurations of the system and simply yields V , the volume
of the box in which the molecules of interest are jiggling around. Use the
identify

∫∞
∞ dpe−αp

2
=

√
π/α. and show that

Z1 =
V

h3
(2πmkBT )

3
2 (4)

and

Ztot =
V N

N !h3N
(2πmkBT )

3N
2 . (5)

Use the fact that we can write the chemical potential as

µ = F (N)− F (N − 1) (6)

and by using the fact that F = −kBT ln Ztot, show that

µ = −kBT ln
Ztot(N)

Ztot(N − 1)
. (7)

Now, demonstrate that this implies

µ = kBT ln cλ3
th, (8)
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where c is the concentration given by c = N/V and λth is the thermal de
Broglie wavelength and is given by

λth =
h√

2πmkBT
. (9)

With this result in hand, once again make an estimate of the free energy
scale associated with a single reaction by using the fact that

∆G = µAB − µA − µB. (10)

Make sure to explain the conceptual underpinnings of your estimate as well
as the numerical values you invoked. Like in part (a), you will have to think
about the “typical” concentrations in a chemical reaction and also, make
some decision about the masses of your reactants and products. The sim-
plest idea might be mA = mB = mAB/2.

2. Energy and Entropy Competition in Micelle Formation.

In this problem we examine some of the interesting forces that arise in the
crowded environs of the cellular interior in a way that will also permit you to
practice using the chemical potential you derived in part (b) of the previous
problem in an important and intuitive biological setting that you already
know a lot about - namely, the properties of lipids in solution. In class I gave
a quick impression of the hydrophobic effect as an idea that is invoked often
with great explanatory power. In this problem, you will estimate the mag-
nitude of the interfacial energy that is assigned to having certain chemical
groups in contact with water. This will give us an idea of how much free en-
ergy is gained when different molecules come into contact and sequester these
hydrophobic structural elements. The essential argument is that the water
molecules that surround the hydrophobic region of a molecule are deprived
of some of their entropy because they can adopt fewer hydrogen bonding
configurations. In particular, the water molecules are thought to form cages
known as clathrate structures such as are shown in the accompanying figure.

(a) Estimate the entropy lost for each water molecule by appealing to the
schematic of the tetrahedron shown in fig. 2. The basic idea is that if we
think of the O of the water molecule as being situated at the center of the
tetrahedron then the two H atoms can be associated with any two adja-
cent vertices (or, there are a total of six configurations). However, when in
the presence of the hydrophobic molecule, one of the faces of the tetrahe-
dron can be thought of as facing that hydrophobic molecule and hence all
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Figure 1: Schematic of the clathrate structure adopted by water molecules
surrounding a hydrophobic molecule.

configurations (three of the edges) facing that molecule are unavailable for
hydrogen bonding. How many configurations are available now? Compute
the entropy change of a single water molecule as a result of this configura-
tional inhibition using the celebrated Boltzmann equation already invoked
in problem 1, namely,

S = kB ln W, (11)

where S is the entropy and W is the number of microscopic configurations
available to the system in the given macroscopic state of interest. NOTE:
Section 5.5.1 of PBoC essentially does this calculation from start to finish.

(b) Next, we need to estimate how many water molecules neighbor a given
hydrophobic molecule. Consider the case of methane and ethane and ap-
proximate them as “spheres” and estimate the radius of sphere that repre-
sents the hydrophobic surface area they present. Next, estimate how many
water molecules neighbor these molecules and hence the total free energy
difference because of the lost entropy using the results you obtained in the
previous part of the problem. Convert your result into an interfacial energy
and use units both of J/m2 and cal/mol Å2. Compare the result to the rule
of thumb I quoted in passing in class which is 25 cal/mol Å2.

(c) Next, use the same argument as part (b) and work out a formula for the
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Figure 2: Schematic of the arrangements available to a water molecule when
in a complete network of other water molecules.

hydrophobic cost for an individual lipid in solution as a function of both
the length and the number of tails. This may sound vague. I am trying to
get you to think about how to construct a “toy model” of this problem. In
particular, consider the lipid tails as cylinders of length L and radius r and
use the formula for the area of a cylinder to approximate the hydrophobic
area presented by the tails. So really, all you have to do is figure out some
clean idea for the length of lipids as a function of the number of carbons in
the tails. Avanti Polar Lipids (a company that is a big provider of lipids)
has a website with properties of lipids, but really, I am just looking for a sen-
sible approximation and an explanation for the approximation rather than
a particular “right” answer.

(d) Now you will use what we learned above to construct a “toy model” of
lipids in solution and in aggregate form and then use this model to derive
the critical micelle concentration for lipid molecules. I mentioned this idea
in class. The point is that as you increase the concentration of lipids in
solution, there will be a concentration at which the free energy competition
favors the creation of lipid spheres with tails pointing inwards as opposed to
having free lipids wandering around in solution. There are many different
measurable parameters such as the surface tension, the osmotic pressure and
turbidity that permit a measurement of the onset of micellization.

The concept of your calculation is that we will construct a chemical po-
tential both for individual lipids and for micelles and the critical micelle
concentration will be that concentration at which these two chemical poten-

5



tials are equal. For ease, let’s take the entropy of the micelles to be zero.
That is, let’s ignore the fact that they are free to jiggle around in solution
or to rotate and hence pretend that they have no entropy. In addition, let’s
assume that the only contribution to the energetic part of the free energy
comes from the hydrophobic effect associated with the lipid tails. What this
means is that in the micellar state, we will also assert that the energetic
contribution to the micelle free energy (and chemical potential) is zero since
in those structures the lipid tails are sequestered. Further, when computing
the entropy of the lipid molecules, treat them as “point” particles. What I
mean by this is that you will merely compute their conformational entropy
and will ignore the fact that they can rotate, that their chains can wiggle
around. As a result, the chemical potential for the isolated lipids will have
two contributions: i) the energy contribution you worked out in part (c) of
this problem and the entropy like that you worked out in problem 1(b). Note
that the entropy you worked out will depend upon the mass of the lipids
through the thermal de Broglie wavelength (this is the same as depending
upon the length).

Work out the critical micelle concentration by equating the chemical
potentials for isolated lipids with that for micelles and do so for both single-
tailed and double-tailed lipid molecules. Look up examples of each type of
lipid and use the length of such tails in Å as part of your estimate. Also,
make a plot of the critical micelle concentration as a function of the chain
lengths, for chains varying in length between 12 and 20 carbons per chain.
Experimental data for the critical micelle concentration is shown in fig. 3.
Make sure to explain the qualitative trends you calculate and that are shown
in the experimental data.

3. Chemotaxis and Receptor Binding.

As described in class, bacterial chemotaxis is claimed to be the best studied
signal transduction problem in biology. In this problem, we work through
some of the statements and results in a few of the classic papers I presented
in class. We develop a feeling for the numbers by examining direct quota-
tions from the experimental papers that have really driven the field recently
as well as a commentary on this work by Dennis Bray. Begin by reading
both of these papers which are attached on the website.

In their 2002 paper in PNAS entitled “Receptor sensitivity in bacterial
chemotaxis”, Sourjik and Berg say: “The changes in receptor occupancy en-
countered by bacteria swimming in spatial gradients (e.g., near the mouth
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Figure 3: Experimental data for the critical micelle concentration. (taken
from David Boal, Mechanics of the Cell). “Single” and “double” refer to
the number of tails.

of a capillary tube in the capillary assay) are very small. For example, in the
tracking experiments, cells about 0.6 mm from the tip of a capillary tube
containing 1 mM aspartate moved in a gradient of steepness 0.02 µM/µm
at a mean concentration of about 8 µM. A 10-µm run straight up such a
gradient would change the concentration from 8 to 8.2 µM, i.e., by 2.5 %.
Assuming Kd values for aspartate of 7.1 µM and 62 mM (see above), this
step gives a fractional change in receptor occupancy of about 0.003”. RP
to class: the two Kd values correspond to the fact that two of the different
chemotactic receptors (Tar and Tsr) will bind aspartate, but with quite dif-
ferent affinities. For your estimates, only consider the smaller Kd since the
larger one will be irrelevant at the concentrations of interest here.

Your job is to carry out calculations that exploit the numbers given
above and using what you know about the definitions of concentration, the
size of E. coli cells and about the meaning of Kd and simple binding curves
(i.e. pbound = (L/Kd)/(1 + (L/Kd))). First, use the steady-state diffusion
equation for a spherically symmetric source to estimate the concentration
at 0.6 mm from the pipette. The idea is to solve the 3D diffusion equation
in spherical coordinates, given that the concentration at the source (i.e. the
pipette) is 1 mM and that the concentration in the far field is zero. (NOTE:
we work this out in chap. 13 of PBoC in a different context, but the ideas
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are all the same.) Do you agree with them about the concentration being
8 µM at a distance of 0.6 mm? Next, examine the statement about the con-
sequences of a 10-µm run and also about the fractional change in occupancy.
Do you agree with their numbers? Do you agree with the qualitative thrust
of their statements?

In his commentary on the paper of Sourjik and Berg, Dennis Bray says:
“The mystery can be expressed in a different way. Estimates of the binding
affinity of aspartate to the membrane receptor of wild-type E. coli typically
give a dissociation constant in the range 15 µM. A bacterium responding to
a change in occupancy of 0.1% is therefore sensing concentrations of aspar-
tate of a few nanomolar. And yet we know from decades of observations that
the same bacterium is also capable of responding to gradients of aspartate
that extend up to 1 mM. Somehow, E. coli is able to sense aspartate over a
range of at least 5 orders of magnitude in concentration by using just one
molecular species of receptor!”

Your job is to actually do the estimate/calculation that supports the
claim made by Bray. In particular, examine a 0.1% change in occupancy
and see what that means about the change in concentration given that the
Kd has the value claimed. Also, if there is a change of concentration of order
a few nanomolar, how many fewer molecules are there in a box of size 1 µm3

due to such a concentration difference at the front and back of a cell?

4. Concentrations by Dilution.

In this problem we consider the concentration of mRNA or proteins as a
function of time in dividing cells. This exercise provides some of the concep-
tual tools we will need to write down rate equations describing gene expres-
sion. In particular, the point of this problem is to work out the concentration
of mRNA or protein given that we start with a single parental cell that has
N copies of this mRNA or protein (in the experiments of Golding et al.
they watch the mRNA dilution effect while in the experiments of Rosenfeld
et al. this is a fluorescently-labeled transcription factor). In the Rosenfeld
experiment, at some point while the culture is growing, the production of
the protein is stopped by providing a chemical in the medium and then the
number of copies per cell is reduced as a result of dilution as the cells divide.

(a) For this part of the problem, let’s focus on the protein dilution effect.
Work out a differential equation for the change in protein concentration as
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a function of the time that has elapsed since production of the protein was
stopped. Solve the equation and relate the decay constant to the cell cycle
time. Note that here we are only interested in the dilution that results from
the original N copies of the protein being partitioned into an ever-larger
number of daughter cells, not in the dilution that occurs as each individ-
ual cell lengthens in preparation for the next round of division. Note also
that in this part we’re interested in a continuous model—you’ll look at the
discrete version in part (b). HINT: there are two ways to approach this
problem. You can consider the change in the concentration as a function of
the change in the number of cells into which the original N proteins are par-
titioned. Or you can note that for a bacterium like E. coli, it is a reasonable
assumption to imagine that the cell diameter is unchanged and that the size
is controlled by the cell length, such that the change in volume with time
is simply the change in length with time times a constant prefactor; then
consider the change in protein concentration as a function of the change in
the total volume into which the original N proteins are diluted.

(b) We can repeat a calculation like that given above using a discrete
language in which the number of proteins per cell is a discrete integer. Imag-
ine that before cell division, the number of copies of a given transcription
factor in the cell is N . In particular, for every cell doubling, the number of
proteins is reduced by a factor of 2. Using such a picture, write a formula for
the average number of proteins per cell as a function of the number of cell
divisions and relate this result to that obtained in part (a). Furthermore,
by using the fact that 2 = exp (ln 2), reconcile the discrete and continuous
pictures precisely.

(c) Interestingly, the model used in part (b) opens the door to one of
the most important themes in physics, namely, that of fluctuations. In par-
ticular, as the cells divide from one generation to the next, each daughter
does not really get N/2 copies of the protein since the dilution effect is a
stochastic process. Rather the partitioning of the N proteins into daughter
cells during division follows the binomial distribution. Analyzing these fluc-
tuations can actually lead to a quantification of the number of copies of a
protein in a cell. In this part of the problem, work out the expected fluctu-
ations after each division by noting that the fluctuations can be written as√
< (N1 −N2)2 >, where N1 and N2 are the number of proteins that end

up in daughter cells 1 and 2 respectively. Show that
√
< (N1 −N2)2 > = N

(hint: you’ll need to use the binomial theorem.)
Next, look at the Rosenfeld paper and explain how measuring fluores-

9



cence variations can be used to calibrate the exact number of copies of the
fluorescent protein in a cell. Assume that the fluorescence intensity in each
cell can be written as I = αN , where α is some calibration factor and N the
number of proteins. Make a plot of

√
< (I1 − I2)2 > versus Itot and explain

how to get the calibration factor α from this plot.

(d) Now we are going to repeat the Rosenfeld experiment numerically in
order to fit the calibration factor. Consider a fluorescent protein such that
the calibration factor between the intensity and the number of fluorophores
is 50. Generate intensity data by choosing N1 + N2 = 10, 50, 100, 1000 and
5000 and for each case, “partition” the proteins from the mother cell to the
two daughters 100 times (i.e. as if you are looking at 100 mother cells di-
vide for each choice of the protein copy number). Then, make a plot of the
resulting

√
< (I1 − I2)2 > vs Itot just as we did analytically in the previous

problem. What I mean is that you need to make a plot of all of your simu-
lation results. Then, do a fit to your “data” and see how well you recover
the calibration factor that you actually put in by hand. Plot the fit on the
same graph as all of the “data”.
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