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These lecture notes provide a brief introduction to the physics of biological

membranes, with a particular focus on the connection between the physical

properties of membranes and the overall shapes of vesicles and cells. No at-

tempt is made at carrying out a complete survey of this vast topic, which lies

at the intersection of such disparate fields as topology, differential geometry,

elasticity theory, statistical physics, thermodynamics, biochemistry, structural

biology, and cell biology, to name just a few. Our discussion is based primarily

on Refs. [1–3].
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Chapter 1

Phenomenology of membranes

This chapter provides an introduction to the basic phenomenology of biological membranes, and the
vesicles and cells obtained by closing up membranes to form continuous surfaces with no boundaries.
Section 1.1 discusses the structure of membranes, while Sec. 1.2 points at the great diversity observed
in the overall shapes of vesicles and cells.

1.1 The structure of membranes

Biological membranes are one of the most important hallmarks of life. They separate the cellular
contents from the external environment, and thereby establish the spatial boundary of life, separat-
ing “animate” from “inanimate” matter. From a practical perspective, membranes must be able to
maintain vast differences in chemical composition between the cell and its surroundings but, at the
same, also allow the passage of nutrients into the cell and the passage of waste products out of the
cell. Moreover, all communication of cells with the outside world passes through cell membranes in
one form or the other and, hence, membranes need to allow for the flow of information. Finally, while
membranes must be mechanically stable enough to withstand a hostile environment, the function and
growth of cells is intimately tied to their shape and, thus, membranes must be sufficiently malleable
to allow cell growth, cell division, and dynamic changes of cell shape. All of this has to be achieved
in a reproducible manner. Thus, membranes must be able to reconcile a dazzling array of partly
contradictory demands.
What material is able to satisfy the design specifications outlined above? Promising candidates are

found among chemical compounds known as surfactants (surface active agents), exhibiting attractive
interactions between different chemical substances which, by themselves, are effectively immiscible.
Soap, for instance, consists of a polar headgroup, which is soluble in water, and a “water-avoiding”
hydrocarbon chain. Thus, soap is an amphiphilic molecule able to dissolve tiny oil droplets in water.
Cell membranes, however, are exposed to water on either side of the membrane. Thus, we are look-
ing for surfactants which spontaneously assemble into bilayers, with their hydrophobic tails pointing
inwards and their hydrophilic heads pointing outwards (see Fig. 1.1).
For the cell to work efficiently, and the cell membrane to be stable, the self-assembly of bilayers

must be able to operate in solutions containing very low surfactant concentrations. Surfactants which
satisfy this requirement can be found among a class of molecules known as lipids and, indeed, lipids
turn out to be a basic building block of membranes. Although there exists a great variety of different
lipids (more than 1000 different types of lipids have been identified in cells), the membranes of all
cells contain lipids sharing the same basic molecular architecture. In particular, the polar headgroup
of lipids is easily incorporated into the hydrogen-bonding network of the surrounding water, occupies
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CHAPTER 1. PHENOMENOLOGY OF MEMBRANES

Figure 1.1: Schematic illustration of amphiphilic molecules and their possible arrangement into bilay-
ers. (After Ref. [3].)

around 0.4–0.7 nm2 in the bilayer, and has a thickness of typically around 0.5 nm. The hydrophobic
part of lipids generally consists of two fatty acid chains, made up of 15–18 repeating units of CH2
groups. At a length of approximately 0.1 nm per CH2 group, each hydrocarbon chain has a total
length of around 2 nm. This length of hydrocarbon chains thereby reflects the operating temperature
of the cell so that, while the chains must be long enough to ensure efficient expulsion from water
and stability of the bilayer, they must also be short enough to allow malleability of membranes. An
exception to the bilayer architecture of membranes are archea, which feature a monolayer of bolalipids
consisting of one long hydrocarbon chain and two polar headgroups.

Bilayers versus micelles

While the bilayer is an attractive arrangement for amphiphilic lipids, it is not the only large-scale
arrangement one can imagine. In particular, as illustrated in Fig. 1.2, spheres or cylinders, the
interiors of which are filled by the hydrophobic tails of lipids, are alternative possibilities. A more
exotic arrangement are inverted micelles, such as shown in Fig. 1.2, for which the headgroups point
towards the inside of the micelle. Can one understand the competition between the bilayer and other
large-scale arrangements on the basis of the molecular architecture of lipids alone? We will address
this question below using molecular packing arguments and find that, on a heuristic level, the large-
scale arrangement of lipids can be deduced from a dimensionless quantity known as the shape factor
S = vhc/(a0lhc), where vhc is the volume of hydrocarbon chains, a0 is the headgroup area, and lhc
is the chain length.
First note that, if the radius of the spherical micelle displayed in Fig. 1.2 is equal to R, we

determine the number of lipids contained in the micelle as 4πR2/a0 from the micelle surface area, and
as 4πR3/(3vhc) from the micelle volume

1. For these estimates to be consistent, we need R = 3vhc/a0,
while we must also have R ≤ lhc. Thus, for

S / 1/3 (1.1)

lipids are able to self-organize into spherical micelles. However, to accommodate lipids with larger
hydrocarbon tails, spherical micelles must distort to form ellipsoids. In an extreme case, the micelle
will distort into a cylinder of radius R which, in a slice of thickness t contains πR2t/vhc = 2πRt/a0
lipids, which gives R = 2vhc/a0. Thus, we estimate that for

1/3 / S / 1/2 (1.2)

distorted micelles will occur, with the lower bound obtained from the previous calculation. For single-
tailed lipids one finds S ≈ 0.4 and, thus, such lipids are expected to form distorted micelles.

1The boundary of the sphere approximating the micelle is defined as the neutral surface of bending, i.e., the surface
of constant area under bending. For lipid monolayers, one can approximate the neutral surface of bending by the surface
sweeped out by the points joining the polar headgroups and the hydrocarbon tails of lipid molecules.
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CHAPTER 1. PHENOMENOLOGY OF MEMBRANES

Figure 1.2: Coarse-grained representation of different lipid geometries, and their effect on the large-
scale arrangement of lipids. (After Ref. [3].)

As the shape factor increases beyond 1/2, lipid tails are no longer able to pack into objects with
curvature2 corresponding to the inverse of the lipid tail length. Thus, larger-scale structures will
become favorable. In particular, as S approaches 1, we have vhc → a0lhc, which corresponds to lipids
which have equal head and base areas. Thus, for

1/2 / S / 1 (1.3)

we expect lipids to self-assemble into bilayers. Lipids with two hydrocarbon tails have S ≈ 0.8 and,
thus, it is reasonable that such lipids form bilayers, as is indeed observed. Moreover, also note that
lipids with two hydrocarbon tails will be less likely to dissolve in water due to their larger hydrophobic
surface area. This further facilitates the formation of lipid bilayers even at low lipid concentrations.
Finally, as S increases beyond 1, lipids are expected to form structures such as inverted micelles.

Heterogeneity of biological membranes

Contrary to the simple picture presented above, biological membranes do not only consist of one type
of lipid, but generally contain a variety of different lipid species which are distinguished, for instance,
by the lengths of their hydrophobic tails, the charges on their headgroups, or whether hydrocarbon
chains contain only single C-C bonds or also some double C-C bonds. Saturated hydrocarbons (single
bonds) tend to straighten out when lipids form bilayers, whereas unsaturated hydrocarbons (double
bonds) generate a kink in the carbon tail, which makes the dense packing of lipids more difficult and
thereby reduces the in-plane viscosity of membranes. Other (more special) lipid molecules, such as
cholesterol, can fill the gaps formed by kinks, and thereby compensate for unsaturated carbon bonds as
far as the mechanical properties of membranes are concerned. Such changes in the physical properties
of biological membranes can have profound consequences for their biological function.
In addition to a variety of different lipids, biological membranes also contain membrane proteins,

which are crucial for the more sophisticated biological functions carried out by membranes. In fact,
proteins typically make up most of the mass of biological membranes, and their mean spacing can be
estimated to be only around 4 nm. Thus, the composition of biological membranes is generally very
heterogeneous. In a classic cartoon representation [see Fig. 1.3(A)], the membrane is pictured as a
two-dimensional fluid in which proteins can diffuse more or less freely in the plane of the membrane,
but cannot move out of the plane. Further refinements of this cartoon [see Fig. 1.3(B)] emphasize
crowding of molecules in membranes, the possibility of phase separation by both lipids and proteins
in order to minimize membrane deformations, and the coupling between lipid and protein domains.

2We will define geometrical concepts such as “curvature” later on in these notes.
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CHAPTER 1. PHENOMENOLOGY OF MEMBRANES

Figure 1.3: Classic cartoon representation of the structure of membranes [panel (A)], and its refine-
ments [panels (B) and (C)]. (After Ref. [3].)

Finally, membrane properties might also be influenced by objects located outside the plane of the
membrane [see Fig. 1.3(C)], such as the cytoskeleton of the cell, or domains of membrane proteins
which protrude above neighboring parts of the membrane and thereby make them inaccessible.

1.2 Vesicles and cells

In the preceding section we discussed the phenomenology governing the self-assembly of lipid bilayers.
But how do lipid bilayers self-organize at even larger scales to form vesicles or cells, which can be more
than six orders of magnitude larger than the size of individual lipid molecules? Key to answering this
question is an understanding of the physical principles driving the energetics of large bilayer structures.
As we shall discuss in detail later in these notes, the large-scale behavior of closed vesicles is mostly
determined by the energetic cost associated with bending the bilayer membrane. In the simplest
description of vesicles, this energetic cost takes a constant value independent of the size of the vesicle.
The boundaries of an open bilayer sheet, however, introduce an energetic cost which is proportional
to the length of the boundary. Thus, on simple energetic grounds, we expect that for bilayers of large
enough area it will be energetically favorable to close up into vesicles and, thus, to form the basis for
cellular life.

Bilayer vesicles

Figure 1.4 shows a series of images of a bilayer vesicle taken taken at different temperatures. For
the lowest temperatures considered, the bilayer vesicle has a simple spherical shape. But, as the
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CHAPTER 1. PHENOMENOLOGY OF MEMBRANES

Figure 1.4: Budding transition of a bilayer vesicle. (After Ref. [4].)

temperature is increased, the vesicle shape becomes increasingly rod-like (the technical term being
prolate ellipsoid). Considering that the vesicle area is increased at the higher temperature, whereas
the solution is chosen so that the vesicle volume remains essentially unchanged, this might not be
too surprising. However, as the temperature is increased even further, the symmetry of the shape
is broken again, and the vesicle is increasingly pear-shaped. Finally, at even higher temperatures,
the neck closes and we return to a similar shape as at the lowest temperature considered, but now,
apparently, with two spherical vesicles instead of one. In fact, although not visible from the image,
the two spherical compartments in the highest-temperature image are connected by a narrow bilayer
cylinder.
The “budding transition” described above, which is somewhat reminiscent of the biological process

of exocytosis, does, however, not always occur as the temperature is being increased. As shown in
Fig. 1.5, the “up/down” reflection symmetry can also be restored among further heating, in which
case no budding occurs. Moreover, instead of developing a rod-like shape, spherical vesicles can also
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CHAPTER 1. PHENOMENOLOGY OF MEMBRANES

Figure 1.5: From left to right, the panels correspond to T = 20.7, 32.6, 40.0, and 44.3◦C, respectively.
(After Ref. [5].)

acquire a pancake-shape (oblate ellipsoid) upon heating (see Fig. 1.6). Upon further heating, the
vesicle then develops interesting shapes known as discocyte and stomatocyte, which will be discussed
further in Sec. 3. These observations illustrate two essential physical properties of typical bilayer
vesicles. First, the observed shape changes suggest that bilayer membranes are fluid in the sense that
they do not resist shear. At the same time, however, the bilayer structure is also robust in the sense
that no holes or formed and, while the spherical shape deforms significantly, the bilayers are not “cut”
and “glued together” to form even more complicated shapes which could, presumably, be even more
favorable from an energetic perspective. Indeed, the latter point is confirmed by carrying out similar
experiments on vesicles as shown in Figs. 1.4–1.6 with a different topology (number of handles), such
as tori, which are not observed to transform into spherical shapes.
All of the vesicle shapes described above are also exhibited by cells. For instance, Fig. 1.7 shows

experimental images of red blood cells which, as the experimental conditions are varied, reliably re-
produce the shapes in Fig. 1.6. Not too surprisingly, however, the extra layers of molecular complexity
present in real cells allow the formation of even more intricate shapes, such as the so-called echinocyte
shapes shown in the right three panels of Fig. 1.7. Broadening our scope, we note that biological cells
come in a great variety of different shapes and sizes, such as illustrated in cartoon form in Fig. 1.8.
A unified, predictive understanding of all of these cell shapes represents a daunting challenge, to say
the least, and has so far not been achieved. However, given that all biological membranes share the
same basic construction principles, one can contemplate meeting this challenge by gradually building
up our systematic understanding of cell shape and size.

The above examples illustrate that even vesicles consisting of simple components (a single species
of lipid molecules) are able to exhibit complicated shapes which are stable but can, nevertheless,
be transformed from one shape to another in a reproducible manner as a function of well-defined
variables such as temperature or chemical environment. This suggests that it might be possible to
understand, at least to some degree, cell shape without invoking the full biochemistry of cells, such
as complicated molecular machines. A vast body of work, relating the results of experiments to a
systematic understanding of vesicle and cell shape in terms of physics, and vice versa, shows that

Figure 1.6: From left to right, the panels correspond to T = 43.8, 43.9, 44.0, and 44.1◦C, respectively.
(After Ref. [5].)
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CHAPTER 1. PHENOMENOLOGY OF MEMBRANES

Figure 1.7: Representative shapes from the stomatocyte–discocyte–echinocyte sequence of red blood
cells obtained from experiments (left images) and theory (right plots). See also Sec. 3.3. (After
Ref. [6].)

Figure 1.8: Schematic illustration of the great diversity in cell shape found in nature, with E. coli,
which roughly has the shape of a cylinder of length 2 μm and thickness/height 1 μm, as a “measurement
stick”. For details, see Fig. 2.8 of Ref. [3]. (After Ref. [3].)
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CHAPTER 1. PHENOMENOLOGY OF MEMBRANES

this is indeed the case. Importantly, such a quantitative understanding of cell and vesicle shape can
be used to determine what classes of observed shapes require more complicated mechanisms beyond
the basic physics of membranes. Moreover, a quantitative framework for understanding vesicle and
cell shape allows the systematic testing of different, more complicated, mechanisms for the observed
shapes by building on the basic phenomenology known from previous experiments. In these lecture
notes, we will focus on the overall shape of vesicles and cells, and only consider the most basic “layer”
of our understanding on which more complicated descriptions may be built. A similar approach can
be (and, indeed, has been) applied to other aspects of biological membranes, such as the coupling
between the properties of membranes and the proteins embedded in them. Finally, trivial as this
point may seem, there is no reason to believe that not all aspects of living systems are amenable to
the type of systematic reasoning and understanding illustrated here for biological membranes.
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Chapter 2

Theory of membranes and vesicles

In this chapter we develop the basic physical and mathematical concepts which allow a systematic
understanding of the shapes of membranes and vesicles. Section 2.1 discusses the major classes of
membrane deformations. In many settings, bending deformations are found to dominate over other
types of membrane deformations, and we will therefore discuss the physics of bending deformations
in somewhat greater detail in Sec. 2.2. Finally, in Sec. 2.3 we develop the mathematical language
appropriate for the quantitative discussion of membrane deformations and their consequences.

2.1 Membrane deformations

A useful starting point for the physical description of membranes is continuum elasticity theory, which
is the classical mechanics of continuous media. In standard (discrete) mechanics, two fundamental
quantities are the displacement of some mass from its equilibrium position, and the force associated
with this displacement. In continuum mechanics, the two corresponding quantities are referred to
as strain and stress, respectively. For a general three-dimensional system, strain and stress will be
tensor rather than scalar quantities (for instance, the strain and stress tensors are often taken to be
3 × 3 matrices). Strain is a dimensionless quantity and corresponds to the spatial variation of the
displacement vector characterizing the deformation of a continuous body. The (internal) stress tensor
captures the (internal) forces which tend to return the body to its equilibrium arrangement, and its
components have units of force per unit area along some appropriate axis. Thus, just as the motion
of discrete bodies is determined by laws governing the relationship between displacement and force,
the deformation properties of continuous bodies are determined, to a large extent, by the relationship
between strain and stress.
Viewing membranes as continuous media, one can apply continuum elasticity theory to determine

the energetic cost associated with arbitrary membrane deformations. While such a formal approach
has undoubtedly many strengths, it will be more instructive for us to focus on the different types of
membrane deformations which seem most relevant from a physical perspective, and to formulate, in the
spirit of Taylor expansions, lowest-order descriptions for the elastic costs associated with these defor-
mations. Our motivation for following this approach is as follows. From an experimental perspective,
we are mainly interested in the dominant membrane deformations and their relative importance as a
function of the specific experimental setup, rather than a complete treatment of the problem allowing
for all possible membrane deformations. From a theoretical perspective, provided that our intuition
has been “good” in the sense that we do indeed consider the dominant types of membrane deforma-
tions, such an approach allows us to do calculations without carrying any superfluous mathematical
baggage. In particular, we will consider four different classes of membrane deformations, which are
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CHAPTER 2. THEORY OF MEMBRANES AND VESICLES

Figure 2.1: Illustration of four basic classes of membrane deformations. (After Ref. [3].)

illustrated in Fig. 2.1: changing the membrane area, bending, changing the membrane thickness, and
shearing. These four types of deformations allow us to capture the basic phenomenology implied by
the microscopic properties of membranes and their coupling to the environment, such as the particular
types of lipids and proteins constituting the membrane, interactions of the membrane with an external
cytoskeleton, and differing chemical conditions on the two sides of the membrane.

Changing the membrane area

Pulling along the sides of a membrane, we exert a tension, τ , or force per unit length, on the membrane.
If the original state of the membrane corresponds to its equilibrium state, the tension will be opposed
by the internal stress in the membrane (see Fig. 2.2). Following Hooke’s law, the energetic cost of
compressing or stretching a membrane is therefore given by

Garea =
Ka
2a0
(Δa)2 , (2.1)

where we have assumed that the change in membrane area Δa from the equilibrium area a0 is ho-
mogeneous throughout the membrane, and Ka is a the area-stretch modulus with units of energy per
unit area. Characteristic values of Ka fall in the range Ka ≈ 55–70kBT/nm2. The above expression
can be generalized by including higher-order terms or allowing a spatial dependence of Δa.

Figure 2.2: Illustration of the energetics associated with a change in membrane area. (After Ref. [3].)
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CHAPTER 2. THEORY OF MEMBRANES AND VESICLES

Figure 2.3: Illustration of the energetics of membrane bending. (After Ref. [3].)

Bending the membrane

Among the types of membrane deformations considered in Fig. 2.1, bending (see Fig. 2.3) turns out
to be the dominant deformation for fluid lipid bilayers, and we therefore devote the next section
exclusively to the bending of membranes. For now, we only note that the description of bending is
intimately related to the concept of curvature, which will be discussed in greater detail in Sec. 2.3.
We can characterize “how much” a membrane is bent at a particular point on the membrane by
constructing a circle which just about follows the membrane in the direct vicinity of this point (see
Fig. 2.4). The curvature is then defined as the inverse of this radius, with a positive or negative sign
depending on whether the circle is drawn above or below the surface, which corresponds to the surface
curving upward or downward, respectively. Thus, if the radius is very large (i.e., the membrane is
nearly flat in this particular direction), the curvature is small, and vice versa. As we shall see, the
radius of such a circle touching the surface has a precise mathematical definition, and is referred to
as an osculating circle. Furthermore, the minimal and maximal values of the radii of the osculating
circles associated with a particular point on the membrane define the principal curvatures, C1 and
C2, associated with this point. On this basis, one defines the mean curvature, H, and the Gaussian

Figure 2.4: Illustration of osculating circles of radius R1 and R2, respectively. (After Ref. [3].)
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CHAPTER 2. THEORY OF MEMBRANES AND VESICLES

curvature, G, as

H :=
1

2
(C1 + C2) , G := C1C2 . (2.2)

Thus, the mean curvature has dimensions of inverse length, and the Gaussian curvature has dimensions
of inverse length squared.
We will show in Sec. 2.3 that physically meaningful quantities constructed from the radii of curva-

ture can only depend on the values of H and G, respectively. Moreover, since in general the distinction
between “up” and “down” when defining the curvature is arbitrary, only the square of the curvature
can appear to lowest order (but see the next section). Thus, to lowest order, the bending energy must
take the form

Gbend =
Kb
2

∫
dSH2 +

KG
2

∫
dSG , (2.3)

where the integral
∫
dS is to be taken over the neutral surface along which the total contour area of the

surface remains constant (see Fig. 2.3), and Kb and KG are the bending rigidities associated with the
mean and Gaussian curvatures, respectively. Typical values for the bending rigidity Kb are Kb ≈ 10–
20kBT for fluid membranes. As will be discussed below, very little is known experimentally about the
value (or even sign) of KG, which is ultimately due to certain fundamental mathematical properties
of surfaces. Finally, note from Fig. 2.1 that bending deformations are special in the sense that their
description necessarily involves curved surfaces. Thus, we will need to employ differential geometry
to give precise mathematical meaning to the various terms in Eq. (2.3). The relevant concepts will be
developed in Sec. 2.3, and until then we will content ourselves with a more qualitative discussion of
bending energy.

Changing the membrane thickness

Thickness changes are the “perpendicular analog” to the compression or expansion of the membrane
area discussed above (see Fig. 2.5). In general, lipid bilayers and membrane proteins will have a
mismatch in their hydrophobic thicknesses. Thus, the energetic cost associated with thickness changes
is particularly relevant for the description of membrane proteins, and it is useful to allow a positional
dependence of the membrane thickness, Δw = w(x, y)−w0, where 2w0 is the equilibrium thickness of
the membrane. To lowest order, the energy penalty associated with thickness deformations is again

Figure 2.5: Illustration of the energetics of thickness deformations. (After Ref. [3].)
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CHAPTER 2. THEORY OF MEMBRANES AND VESICLES

Figure 2.6: Schematic representation of shearing. (After Ref. [3].)

obtained in analogy to Hooke’s law, which gives us

Gwidth =
Kw

2

∫
dS

(
w − w0
w0

)2
, (2.4)

where Kw has units of energy per unit area. A typical value for Kw is Kw ≈ 60kBT/nm2.

Shearing the membrane

As illustrated in Fig. 2.6, shear deformations displace the molecules which constitute a membrane
relative to each other, while leaving the area per molecule unchanged. A membrane will only resist
such a deformation if the relative positions of its constituent molecules are fixed by some lattice
structure. Thus, fluid membranes are, by definition, unable to support shear deformations. But shear
deformations can become relevant if the membrane is coupled to an external lattice structure such
as the cytoskeleton [see Fig. 1.3(C)]. Since we only focus here on the most basic factors influencing
membrane shape, we will not consider shear deformations in greater detail. However, in Sec. 3.3 we will
consider the shapes of red blood cells, which can only be fully accounted for if, in addition to bending,
shearing and stretching deformations are included. This provides an illustration of the general strategy
of building on the most basic membrane deformations to gradually dissect the mechanisms driving a
particular type of cell shape.

2.2 Bending energy

What type of membrane deformation determines the overall shape of vesicles and cells? The answer to
this question clearly depends on the particular experimental system at hand, and on the energy scale
we are interested in. Our focus will be on isolated vesicles with an energy scale set by the thermal
energy. Thus, we first note that, in the absence of interactions with a cytoskeletal network, it will be
possible to neglect shear deformations if the temperature is high enough for the membrane to be in
its fluid state. Second, just as for a conventional fluid, we expect fluid membranes to strongly resist
changes in overall volume. Thus, for perturbations brought about by thermal fluctuations, it should
be possible to neglect effects related to area and thickness changes. These expectations are confirmed
experimentally [7] by applying tension to membranes. This leaves us with bending as the likely
candidate for the most basic type of membrane deformation. Much theoretical and experimental work
has indeed confirmed that the shapes of vesicles can very well be described on the basis of the energetic
cost associated with bending deformations, systematically adding in other types of deformations as
dictated by the experimental system under consideration. In this section we will therefore discuss in
greater detail the classic theory of bending, which is able to account for the basic phenomenology of
vesicle and cell shapes.
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CHAPTER 2. THEORY OF MEMBRANES AND VESICLES

As argued in the previous section, the simplest description of bending is given by Eq. (2.3). Several
variants of this expression for the bending energy have been studied in the literature, with each variant
incorporating the complexity of the underlying molecular interactions to a different degree. Below we
will consider three classic versions of Eq. (2.3). But before embarking on a more detailed discussion
of bending, let us mention an important mathematical result. The Gauss-Bonnet theorem states that

∫
dSG = 4π(1− g) , (2.5)

where the integer g is the genus of the surface, i.e., the number of handles, and thereby characterizes
the topology of the surface. For instance, a sphere has g = 0, whereas a torus has g = 1. Thus, if
we assume that KG is constant throughout the surface and only consider shapes of fixed topology,
the bending energy will be independent of the Gaussian curvature. Changing the topology would
require cutting the surface and, hence, would amount to a very strong perturbation of the system.
This makes it very difficult to measure KG, but also means that, in practice, it will be sufficient to
restrict our attention to shape transformations which conserve a given topology. Thus, from now on
we will neglect any contributions to the bending energy stemming from the Gaussian curvature.

Minimal model

From Eq. (2.3) and the Gauss-Bonnet theorem, the simplest description of bending is given by

G =
Kb
2

∫
dSH2 , (2.6)

where, for simplicity we have dropped the subscript “bend”. The above form for the bending energy
is expected to apply to lipid bilayers which consist of symmetric, homogeneous lipid monolayers.

Spontaneous curvature model

On a phenomenological level, we can include a potential asymmetry between the two monolayers
constituting a bilayer membrane by assuming that there is a preferred mean curvature H = C0. Thus,
the expression for the bending energy is modified to

G =
Kb
2

∫
dS(H − C0)

2 , (2.7)

where C0 is the spontaneous curvature. The expression for the bending energy in Eq. (2.7) is often
referred to as the Helfrich-Canham-Evans free energy of bending. The microscopic meaning of C0 is
most easily understood by returning to the shape factor S defined in Sec. 1. In a lipid monolayer, we
will only have C0 = 0 for “cylindrical” lipids with S ≈ 1. Similarly, a bilayer membrane will exhibit a
spontaneous curvature if the two monolayers consist of lipids with different shapes. Another possible
realization of spontaneous curvature is exposure of the two membrane leaflets to different chemical
environments. Refinements of the spontaneous curvature model allow for membrane inhomogeneity,
in which case the spontaneous curvature can vary along the surface and, indeed, couple to the surface
shape.

Area-difference-elasticity model

The spontaneous curvature model recognizes that the two sides of the membrane may have different
molecular compositions, but neglects any effects arising from the finite membrane thickness. In par-
ticular, depending on the curvature and the membrane thickness, it may be energetically favorable

17



CHAPTER 2. THEORY OF MEMBRANES AND VESICLES

to adjust the number of lipids on the two sides of the membranes which, in our coarse-grained rep-
resentation of the system, corresponds to a change in relative membrane area. In order to find the
difference in area between the two surfaces separated by a membrane width 2w, consider two arcs of
radius R1 − w and R1 + w, respectively, where R1 is one of the two principal radii of curvature. For
small w, the ratio of the lengths of outer and inner arc is given by

R1 + w

R1 − w
= 1 + 2

w

R1
+ . . . . (2.8)

Repeating the same argument for the second principal radius of curvature, this gives us to leading
order the value 1 + 2wH for the ratio of the areas associated with outer and inner leaflets, which is
independent of the surface parameterization used. Thus, the total difference in area between outer
and inner leaflets is given by

Δm = 2w

∫
dSH , (2.9)

to leading order in w. Depending on microscopic interactions, Δm may or may not vanish for an
unstressed system. Thus, assuming that deviations from the optimal value Δm0 which correspond to
stretching or compressing the two leaflets impose the same energy cost, we arrive at a bending energy
of the form

G =
Kb
2

∫
dS(H − C0)

2 +
K?b π

8Aw2
(Δm−Δm0)

2 , (2.10)

where the nonlocal bending rigidity K?b can be related to the area stretch modulus. Thus, it has been
argued on theoretical grounds that K?b /Kb may be of order unity. The spontaneous curvature C0 in
Eq. (2.10) can be absorbed into a redefined preferred area-difference Δm0. The above model for the
bending energy is referred to as the area-difference-elasticity (ADE) model.

2.3 Differential geometry of membranes

In this section we give a more precise mathematical definition to concepts such as “membrane shape”
and “membrane curvature” on the basis of differential geometry. Differential geometry is the mathe-
matical language appropriate for discussing the behavior of curved surfaces of arbitrary dimensions,
embedded in spaces of arbitrary dimensions. As a result, differential geometry defines the (active
or passive) “stage” on which physical phenomena play out, and is of general importance throughout
science. However, implied by the general significance of differential geometry is also a high a degree
of abstraction. While the abstract formulation of differential geometry, detached from any specific
physical realization, is essential for the development of a powerful mathematical apparatus, it tends
to obscure the implications of mathematical results for a specific physical system at hand. The aim
of this section is to provide an introduction to the basic concepts of differential geometry relevant for
membranes. In doing so, we will emphasize the connection to membranes as much as possible, but
remind the reader that many more, potentially useful, results can be obtained from a more abstract
treatment.

The concept of curvature

Before discussing the differential geometry of membranes, let us briefly review the concept of “curva-
ture” in two-dimensional space. The curvilinear motion of an object in the x-y plane can be described,
in parametric form, by a vector r = r(s) = (x(s), y(s)). In classical mechanics, r might describe the
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Figure 2.7: Osculating circle of a one dimensional curve. (After Ref. [3].)

motion of some object, in which case the variable s would denote time. The tangent vector, t = t(s),
along the curve is obtained by differentiating r(s),

t = t(s) =
d

ds
r =

(
dx

ds
,
dy

ds

)

. (2.11)

Thus, t smoothly follows the curve r, and thereby provides the “link” between adjacent points. Viewed
differently, if we imagine walking along the curve r, t determines the direction in which we walk at
each point. This suggests that we can obtain the change in direction by differentiating t which, in
classical mechanics, corresponds to the acceleration of the object exhibiting curvilinear motion. Now,
depending on the specific r, t′ will, in general, have components tangential and perpendicular to t.
The tangential component of t′ provides a measure of the change in the magnitude of t, while the
perpendicular component provides a measure of the change in direction, which is most relevant for
our purposes and will therefore be evaluated below.
First, note that in Sec. 2.2 we defined the curvature of a spherical object as the inverse of its

radius R, a definition which is easily adapted to one-dimensional curves (see Fig. 2.7). The parametric
representation of a circle with radius R and arc length s̄, related to s by s̄ = Ks, is given by rc(s̄) =
R(cos

(
s̄
R

)
, sin

(
s̄
R

)
). In order find the curvature along arbitrary r, consider two points along the curve

r, separated by ds, with tangent vectors t and td, respectively. Assuming that the two vectors subtend
an angle dθ, the component of the difference vector td − t perpendicular to t is given by td sin dθ.
Now, locally approximating r by rc, we have dθ = Kds/R. Passing to the limit ds→ 0, this gives us

dt

ds

∣
∣
∣
∣
normal

= lim
ds→0

td
sin dθ

ds
= lim
ds→0

td
dθ

ds

(circle)
=

K2

R
, (2.12)

where we have emphasized the step at which we locally approximate r by rc. Thus, if we use the same
units for s and s̄, which corresponds to K = 1, we can define the curvature

1

R
≡ n ∙

(
d2r

ds2

)

(2.13)

for arbitrary (differentiable) curves r, where n is the unit normal vector perpendicular to t.

Mathematical definition of surfaces

Membranes are two-dimensional objects embedded in three-dimensional space. Thus, we will focus on
surfaces defined by

r :
(
u1, u2

)
7→ r

(
u1, u2

)
, (2.14)
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corresponding to a map from the two-dimensional surface parameterized by
(
u1, u2

)
to the three-

dimensional vector r which sweeps out the points on the surface. As for our one-dimensional curve,
the tangent vectors are given by

eμ = r,μ :=
∂r

∂uμ
, (2.15)

from which we obtain the unit surface normal vector

n =
e1 × e2
|e1 × e2|

. (2.16)

As an illustration of the above definitions, let us consider a particular representation of the mapping
in Eq. (2.14) known as the Monge parameterization, in which we define a surface by its height h over
some plane with orthonormal coordinates x and y. This representation of a surface is appropriate
for surfaces with no overhangs and should, for instance, be contrasted with the description of a
cylindrically symmetric surface in terms of cylindrical coordinates. For the Monge representation, the
above definitions give1

r = (x, y, h(x, y)) , ex = (1, 0, hx) , ey = (0, 1, hy) , n =
1

(
1 + h2x + h

2
y

)1/2 (−hx,−hy, 1) .(2.17)

As can be seen from the above expressions, the x- and y-components of n vary with the change in h
in the x- and y-directions, whereas the z component is fixed by the condition that n is a unit vector.
Thus, as expected, if the surface is varying quickly in the x-direction, the magnitude of n will be
dominated by its x-component, and vice versa.

The first and second fundamental form

Two quantities of paramount importance in differential geometry are the first and the second funda-
mental form, respectively. The first fundamental form or metric is the matrix defined by

gij := ei ∙ ej . (2.18)

The name “metric” is inspired by the observation that the element of arc length squared is given by

(ds)2 =
2∑

i,j=1

(
eidu

i
)
∙
(
ejdu

j
)
=

2∑

i,j=1

gijdu
iduj . (2.19)

Moreover, we have

|e1 × e2|
2 = |e1|

2|e2|
2 sin2 φ = g11g22

(
1− cos2 φ

)
= g11g22 − (e1 ∙ e2)

2 = g11g22 − g12g21 = det g ≡ g ,
(2.20)

where we have used that, by virtue of the commutativity of the dot product, g12 = g21. Thus, the
area element of the surface, dS, is given by

dS = |e1du
1 × e2du

1| =
√
gdu1du2 . (2.21)

For the Monge parameterization, these definitions imply

gij =

(
1 + h2x hxhy
hxhy 1 + h2y

)

, g = 1 + h2x + h
2
y . (2.22)

1We neglect any subtleties related to the the notation for contravariant and covariant vectors appropriate for a more
careful treatment.
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In order to motivate the definition of the second fundamental form, let us return to our previous

observation that, for a one-dimensional curve, the curvature is defined by 1R ≡ n ∙
(
d2r
ds2

)
. For a point

on a two-dimensional surface, we can define a local tangent plane through the vectors e1 and e2, which
determine the local surface normal n. Thus, there is an infinite number of two-dimensional planes
which contain n, and are therefore locally normal to the surface (see Fig. 2.4). Choosing a fixed but
arbitrary normal plane, we are effectively dealing with a one-dimensional curve, determined by the
surface contour within this particular normal plane, embedded in the two-dimensional normal plane.
Again, we parameterize the curve by the variable s, i.e., we let r = r(s). For simplicity we focus on
the Monge representation, in which case the chain rule of differentiation gives us

dr

ds
= rx

dx

ds
+ ry

dy

ds
, (2.23)

d2r

ds2
= rxx

(
dx

ds

)2
+ ryy

(
dy

ds

)2
+ rx

d2x

ds2
+ ry

d2y

ds2
+ 2rxy

dx

ds

dx

ds
. (2.24)

Because rx = ex ≡ e1 and ry = ey ≡ e2 are orthogonal to n, we therefore find

n ∙
d2r

ds2
= n ∙

(

rxx

(
dx

ds

)2
+ ryy

(
dy

ds

)2
+ 2rxy

dx

ds

dx

ds

)

(2.25)

=
2∑

i,j=1

(n ∙ ei,j)
dui

ds

duj

ds
. (2.26)

Note that all the information regarding the particular normal plane we have chosen is contained in the
term dui

ds
duj

ds . In other words, the term n ∙ ei,j is a property of the surface alone, and does not depend
on the specific normal plane we have chosen. This motivates us to define the second fundamental
form, bij , as the matrix

bij := n ∙ ei,j . (2.27)

In the Monge representation, bij is given by

bij =
1

(
1 + h2x + h

2
y

)
(
hxx hxy
hyx hyy

)

. (2.28)

Note that the second fundamental form, just as the first fundamental form, is symmetric in its two
indices.
The left-hand side of Eq. (2.25) is also referred to as the normal curvature κN to emphasize that

it is the curvature associated purely with the surface, rather than the curvature of, e.g., some curve
defined on the surface (although, as noted before, κN does depend on the specific normal plane chosen).
Using Eq. (2.19), it follows that

κN =

∑2
i,j=1 bijdu

iduj

∑2
i,j=1 gijdu

iduj
. (2.29)

From Eq. (2.29) one can obtain the extremal curvatures of the surface by performing a variational
calculation, with the result that there are two extremal curvatures, one minimum and one maximum,
in directions of the surface which are orthogonal to each other. Thus, one obtains expressions for the
mean and Gaussian curvatures for arbitrary surface shapes.
Instead of following the rigorous, but rather formal, treatment outlined above, we will motivate

the definition of the mean and Gaussian curvatures in a more intuitive fashion. First of all, note that
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our ultimate goal is to find quantities which provide a physical characterization of the curvature of a
given surface. From Eq. (2.29), this means that they must only depend on

mik =
2∑

j=1

bijg
−1
jk , (2.30)

where g−1jk is the inverse of gjk. Moreover, any physical description of a surface must be invariant
under coordinate transformations since, while the surface is a physical object, our description in terms
of a particular coordinate system is not. This principle, if formulated somewhat more carefully, lies
at the heart of a range of physical theories, such as the theory of relativity. Thus, whatever quantity
we construct from mik must be invariant under transformations such as a rotation of the coordinate
system. From linear algebra we know that, for a 2 × 2 matrix, there are two such quantities: the
trace of the matrix, and its determinant. Now, the elements of the matrix mik have dimensions of
inverse length, which means that trmik also has dimensions of inverse length, whereas detmik has
dimensions of inverse length squared. Thus, we associate trmik with the mean curvature, and detmik
with the Gaussian curvature, respectively. As for the case of a one-dimensional curve, we set any
proportionality factors equal to 1, meaning that we use the same units for the radius of our (fictitious)
circle and the surface arc length. Heuristically, we therefore arrive at the expressions

2H :=
1

R1
+
1

R2
= trmik = tr




2∑

j=1

bijg
−1
jk



 = tr




2∑

j=1

g−1kj bji



 , K :=
1

R1

1

R2
= detmik =

b

g
,

(2.31)
where, as before, R1 and R2 are the two principal radii of curvature, and we have used that tr (AB) =
tr (BA) and det(AB) = det(A) det(B) for two square matrices A and B of the same order. The above
result is confirmed by the derivation of H and K from Eq. (2.26). For the Monge representation, we
therefore find

H =
hxx

(
1 + h2y

)
+ hyy

(
1 + h2x

)
− 2hxhyhxy

2g3/2
, (2.32)

K =
hxxhyy − h2xy

g2
. (2.33)
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Chapter 3

Equilibrium shapes

This chapter shows how the theoretical concepts developed in the previous chapter can be applied to
predict the shapes of vesicles and cells. In Sec. 3.1 we introduce the basic techniques generally used
to find minimum energy shapes. Section 3.2 demonstrates how these techniques are employed to find
the dominant vesicle shapes implied by bending deformations. Finally, in Sec. 3.3 we illustrate how
these ideas can be applied to real cells by considering the shapes of red blood cells.

3.1 Minimization of membrane energy

On physical grounds we expect that vesicles will adopt the shape for which the energetic cost arising
from membrane deformations is minimized. We thereby assume that nonequilibrium effects are small,
i.e., that the system is not perpetually driven away from its equilibrium state, and that the effects
of thermal fluctuations can be neglected. The former assumption can be satisfied by constructing a
sufficiently well-controlled environment for the experimental study of vesicles. The latter assumption,
to which we will return in Sec. 4, generally holds because the moduli characterizing membrane defor-
mations are large compared to the thermal energy scale set by kBT . But this assumption will break
down if several different shapes are in close competition for the minimization of energy, such as during
budding. A further subtlety arises from the observation that bilayer vesicles are often not stable for
an arbitrarily long time. However, on experimentally relevant time scales (which are generally in the
range of a few hours) vesicles are stable and can be considered as residing in a well-defined constrained
equilibrium.
Three distinct (but related) approaches have been employed [1] for the determination of the mini-

mum energy shape of vesicles: (a) solution of the Euler-Lagrange equations for an appropriate expres-
sion for the free energy, (b) variational determination of minimum energy shapes within a reduced set
of shapes, and (c) discretization of the surface by a lattice and numerical energy minimization. The
most widely employed (and most general) approach for the minimization of vesicle energy relies on
the Euler-Lagrange equations. The concepts underpinning this approach will be discussed below. A
more detail exposition of these techniques, as well as appropriate references, can be found in Ref. [1].

Euler-Lagrange equations

For a general surface r = r(u1, u2), the bending energy is given by G = G[r]. The square brackets
thereby remind us that G depends on a function describing the global vesicle shape, rather than a
finite set of variables. From a mathematical perspective, this means that G is a functional, which can
be viewed as the limit N →∞ of a function depending on N arguments. To see why this is the case for
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vesicles, note that G =
∫
du1du2f(r), where the function f may also depend on the various derivatives

of r and includes any factors related to the metric of the surface. This expression means that, in order
to find G, we must associate with each of the uncountably-infinite number of points (u1, u2) a value
of the integrand. If this rule or function, encoded by f , is arbitrary, then G is a functional. Thus,
the problem of finding equilibrium vesicle shapes amounts to the functional analogue of finding the
minima of some function subject to given constraints.
In order to see how functional minimization is performed, let us consider the simple case of a

functional I = I[u(s)] which depends only on the scalar function1 u. This will allow us to illustrate
the basic concepts of functional minimization without the complications arising from the differential
geometry of two-dimensional surfaces. We define I through

I[u(s)] =

∫ a2

a1

dsf(u(s), u′(s)) , (3.1)

where we have assumed that the integrand depends on u and u′ in order to be consistent with the
paradigmatic case of functional minimization found in the physics literature. For membranes, the
integrand will involve higher-order derivatives, but the corresponding functional minimization is per-
formed following similar steps as presented here.
The extrema of I are found by taking its functional derivative which, in direct analogy to the

derivative of a function, is defined by

δI[u(s)]

δu(s)
:= lim
ε→0

I[u(s) + εη(s)]− I[u(s)]
ε

, (3.2)

for some arbitrary function η(s). Expanding f(u(s), u′(s)) as a Taylor series, one finds

f(u+ εη, u′ + εη′) = f(u, u′) + ε
∂f

∂u
η + ε

∂f

∂u′
η′ + . . . , (3.3)

and, thus,

δI[u(s)]

δu(s)
= lim

ε→0

∫ a2

a1

ds
1

ε

[

ε
∂f

∂u
η + ε

∂f

∂u′
η′ + . . .

]

(3.4)

=

∫ a2

a1

ds

[
∂f

∂u
η +
∂f

∂u′
η′
]

(3.5)

=

∫ a2

a1

ds

[
∂f

∂u
+
d

ds

∂f

∂u′

]

η +

[
∂f

∂u′
η

]a2

a1

. (3.6)

The value of
[
∂f
∂u′ η

]a2

a1
depends on the physical system under consideration. The simple scalar case

which we discuss here is usually applied to situations where fixed boundary conditions are imposed at
a1 and a2 (for instance, u(s) may describe the height), in which case u(s) cannot vary at s = a1, a2,
and, hence, η(a1) = η(a2) = 0. Similarly, for a closed surface such as a vesicle, our integral must satisfy

periodic boundary conditions, which implies that
[
∂f
∂u′ η

]a2

a1
= 0. Moreover, because η is arbitrary, the

term in square brackets in Eq. (3.6) must vanish for arbitrary s. Thus, Eq. (3.6) reduces to

∂f

∂u
+
d

ds

∂f

∂u′
. (3.7)

The above equation is referred to as the Euler-Lagrange equation for the functional I defined in
Eq. (3.1). Given the ubiquity of standard differential calculus, it is not surprising that Euler-Lagrange
equations appear throughout physics.

1The function u(s) should not be confused with the variables u1 and u2 we use to parameterize surfaces.
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Lagrange multipliers

If no constraints are imposed on our system, finding the vesicle shape amounts to the solution of the
Euler-Lagrange equations appropriate for a two-dimensional surface. In practice, however, the shape
of a vesicle must respect certain constraints such as conservation of vesicle volume or conservation of
vesicle surface area. The above treatment can be expanded to include constraints via the method of
Lagrange multipliers. To see how this works from a conceptual perspective, assume that our constraint
is given by

J =

∫ a2

a1

dsg(u(s), u′(s)) = J0 , (3.8)

where J0 takes some constant value corresponding, e.g., to the total arc length in our one-dimensional
example. As a result, the values of u(s) are no longer independent in the interval a1 < s < a2, but
must be chosen so that Eq. (3.8) is satisfied. This makes the corresponding minimization problem
nonlocal and (seemingly) very hard to solve. But note that δJδu = 0, which allows us to circumvent
these difficulties by minimizing, instead of the functional I defined in Eq. (3.1), the functional

∫ a2

a1

ds
[
f(u(s), u′(s)) + λg(u(s), u′(s))

]
, (3.9)

where λ is called the Lagrange multiplier. Unless Eq. (3.8) is satisfied in a trivial way, i.e., for arbitrary
u(s), the solution ū(s) which minimizes Eq. (3.9) will depend on λ. This particular ū(s) can then be
substituted back into Eq. (3.8) to replace the unknown λ by the known J0.
Thus, using the method of Lagrange multipliers, minimizing a functional under certain constraints

simply amounts to solving a standard (unconstrained) minimization problem, followed by the evalua-
tion of one integral for each constraint. This last step is often not even necessary since it is generally
more convenient to work with an implicit definition of Lagrange multipliers. For the general case of N
constraints to be imposed on a functional, N terms involving Lagrange multipliers are added to the
functional to be minimized. Hence, functional calculus allows us, at least in principle, to find vesicle
shapes for arbitrary deformation energies and an arbitrary number of constraints. In practice, the
mathematical manipulations involved are too complicated to allow general solutions and it is necessary
to focus on particular classes of shapes derived, e.g., by perturbing a spherical shape, or axisymmetric
shapes sweeped out by rotating an arbitrary non-intersecting curve around the symmetry axis, and to
numerically solve the corresponding Euler-Lagrange equations. As a result, it is often useful to com-
plement the above methodology by alternative methods such as the variational and computational
approaches mentioned above.

3.2 Shapes with minimal bending energy

The combination of the minimization concepts discussed in the previous section and the theoretical
principles developed in Sec. 2 has allowed the systematic exploration of vesicle and cell shapes from
a theoretical point of view. Moreover, using bilayer vesicles, controlled experiments on cell shape
can be performed. One common strategy is thereby to change the surface area of vesicles at a fixed
volume by changing the temperature. This is made possible by different thermal expansion properties
of lipid bilayers and the solutions in which they are embedded. Another common technique for the
experimental analysis of bilayer vesicles is pipette aspiration, in which a pipette with micrometer
diameter is used to probe the mechanical properties of vesicles. We will return to this technique in
Sec. 4.
As argued in Sec. 2, the resistance of bilayers to area compression and area expansion is much

larger than their resistance to bending deformations, while, in the fluid state, there is no resistance to
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Figure 3.1: Typical axisymmetric equilibrium shapes of bilayer vesicles and their symmetries: sphere,
prolate, oblate, pear-shape, stomatocyte, doublet, extreme stomatocyte, dumbbell, and a (discocyte)
biconcave surface (top to bottom, left to right). (After Ref. [1].)

shear deformations. Thus, the most fundamental theory of vesicle shape is built on minimization of
bending energy, subject to constraints appropriate for a particular experimental setup. The aim of this
section is to summarize the vesicle shapes obtained within this most basic description of cell shape.
Such an analysis can then serve as a starting point for the analysis of more complicated shapes, such
as those of the red blood cells discussed in the next section.
Before embarking on a discussion of the vesicle shapes implied by the various models of bend-

ing considered before, it will be useful to preview the different classes of shapes we will encounter.
Figure 3.1 shows the axisymmetric shapes of minimal bending energy obtained by breaking various
symmetries of the sphere. Allowing for axisymmetry as well as reflection symmetry, one obtains
prolate and oblate ellipsoids, which are defined by rotating an ellipse about its major and its minor
axes, respectively. Following the shapes away from the sphere, one obtains dumbbells and biconcave
surfaces. Breaking the up-down symmetry, pear shapes and stomatocytes bifurcate from prolates and
oblates, respectively. Interesting limits of these shapes exhibiting a singular surface are the doublet
and the extreme stomatocyte.

Minimal model

The simplest description of bending is given by the Helfrich-Canham-Evans model with zero sponta-
neous curvature. As mentioned in Sec. 2, for surfaces of fixed topology, the surface integral over the
Gaussian curvature always gives the same constant, irrespective of shape. Thus, we are left with the
bending energy

G =
Kb
2

∫
dSH2 . (3.10)
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Figure 3.2: Symmetry classes of minimum energy shapes corresponding to the minimal model with
increasing reduced volume: stomatocytes, oblates, and prolates (left to right). (After Ref. [8].)

As far as comparisons of the relative energies of vesicle shapes are concerned, the above description
of vesicle shape is parameter free.
If no constraints are imposed on the vesicle under consideration, except that the surface must be

free of intersections, the problem of finding the shapes minimizing Eq. (3.10) reduces to what is known
as the “Willmore problem” in the mathematical literature. The solution to this problem depends on
the topology of the surface, i.e., the number of handles. For genus 0, which corresponds to spherical
topology, it has been shown that the sphere is the unique solution to the Willmore problem. This means
that, if no constraints such as fixed volume or fixed surface area are imposed, Eq. (3.10) implies that
our vesicle will adopt the shape of a sphere. Increasing the genus of the surface, i.e., adding a handle,
we obtain a surface of toroidal topology. A possible solution to the Willmore problem for surfaces of
genus 1 is the Clifford torus, which can be shown to be the shape of lowest G among all axisymmetric
tori. For surfaces of higher genus, the solution to the Willmore problem is degenerate and, as a
result, there are multiple shapes which minimize G. This has led to the prediction that vesicles of
such a topology will continually change shape from one Willmore surface to another. Amazingly, this
phenomenon, which is referred to as “conformal diffusion”, has been observed experimentally. This
gives strong support to energies based on Eq. (3.10) as an appropriate fundamental description of
vesicles and cells.
Returning to the physically most relevant case of spherical topology, we note that, as mentioned

above, experiments often probe vesicle shape by changing the surface area at fixed volume. By
convention, the sequence of shapes is determined as a function of the reduced volume, vred, defined
as

vred =
V

(4π/3)R3
≤ 1 , (3.11)

where the equality only holds for the sphere. Figure 3.2 summarizes the sequence of axisymmetric
shapes with minimal energy obtained for the bending energy in Eq. (3.10) as a function of the reduced
volume:

• vred < v
a
red: Stomatocytes.

• vared < vred < v
b
red: Oblates.

• vbred < vred < 1: Prolates.

Here vared and v
b
red are some characteristic values of the reduced volume. It is thought that the above

sequence of shapes in fact represents the global energy minima for a given value of the reduced volume.
Note that, because no pear shapes occur, the bending energy in Eq. (3.10) does not admit budding.
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Spontaneous curvature model

The simplest description incorporating asymmetry between the two bilayers is given by a non-zero
spontaneous curvature C0, in which case our expression for the bending energy becomes

G =
Kb
2

∫
dS(H − C0)

2 . (3.12)

Admitting a non-zero spontaneous curvature amounts to introducing a length scale C−10 into the
system. As a result, the bending energy now depends on vesicle shape and vesicle size. Moreover, the
sign of C0 influences the cell shape such that a negative C0 favors regions of negative curvature, and
vice versa.
According to Eq. (3.12), the energies of vesicle shapes depend on the value of the spontaneous

curvature in addition to the reduced volume. Thus, we need to expand our parameter space to
two dimensions. Figure 3.3 summarizes the results of minimal energy calculations (and experiments)
performed on the basis of Eq. (3.12). There are four large regions of axisymmetric shapes in parameter
space. In addition to the prolates, oblates, and stomatocytes which were already found above with
C0 = 0, a positive C0 can now also lead to a region in which pear shapes represent minima of the
bending energy. Non-axisymmetric shapes have so far only been partially investigated on the basis
of Eq. (3.12). Moreover, if the spontaneous curvature is generated by an inhomogeneous composition
of either or both monolayers, we expect that lipid molecules will migrate to regions of curvature
commensurate with their overall shape. In this interesting case already alluded to above, the energy
minimization problem becomes considerably more involved.

Figure 3.3: Minimum energy shapes of the spontaneous curvature model. (After Ref. [1].)
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Figure 3.4: Experimentally observed vesicle shapes as in Fig. 1.5, and corresponding shapes predicted
from theory for the same temperatures. (After Ref. [5].)

Area-difference-elasticity model

Finally, let us consider the situation where the two monolayers can have an area difference Δm. As
seen before, this case is described by the ADE model with bending energy

G = Kb

[∫
dS(H − C0)

2 + α(Δm−Δm0)
2

]

. (3.13)

While it can be shown that the set of stationary shapes of the ADE model is the same as for the
spontaneous curvature model, the additional material parameters included in the ADE mean that
the sequence of shapes will be different. It is found [1, 2] that shapes with more variations in their
curvature become favorable as the value of Δm0 is increased, which, from a microscopic perspective,
may be viewed as adding excess lipids to the outer layer.

As illustrated by Figs. 3.2 and 3.3, Eq. (3.13) and its special cases allow the prediction of the
vesicle shape for a particular set of parameters. How can these considerations be related to the shapes
of real vesicles and cells? Given a particular cell shape, it will in general be possible (with some
interesting exceptions which we will discuss in the next section) to determine the corresponding model
parameters by fitting theoretical to experimental shapes. However, the choice of model will generally
not be unique. In order to determine which model represents the “true” description of the vesicle or
cell at hand, one can then experimentally vary parameters which, according to theory, are relevant
for cell shape, such as the reduced volume or chemical differences on the two sides of the membrane.
Different models will differ in their predictions regarding the outcome of such experiments. Thus,
we can use this strategy to “weed out” models which do not capture the observed changes in cell
shape. As an example, Figs. 3.4 and 3.5 show sequences of vesicle shapes predicted by appropriate
variants of the ADE model for small changes in temperature (reduced volume). Agreement with the
corresponding experimental shapes is obtained.

Figure 3.5: Experimentally observed vesicle shapes as in Fig. 1.6, and corresponding shapes predicted
from theory for the same temperatures. (After Ref. [5].)
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CHAPTER 3. EQUILIBRIUM SHAPES

3.3 The shape of red blood cells

As illustrated in Sec. 1, red blood cells can adopt a variety of different shapes. We are now in a position
to determine which features of these shapes can be accounted for from minimization of bending energy,
and which (if any) require additional mechanisms. Under physiological conditions, red blood cells have
a biconcave discoid (discocyte) shape (see Fig. 1.7 in Sec. 1). It is known experimentally that the
shape of red blood cells can be systematically modified using two distinct sets of chemical reagents.
One set of reagents (high pH, cholesterol enrichment, high salt, etc.) induces a series of shapes called
echinocytes (see Fig. 1.7). But a second set of reagents (low pH, cholesterol depletion, low salt, etc.)
produces a sequence of stomatocytes (see Fig. 1.7). This main sequence of shapes is universal in the
sense that the order in which the different shapes appear does not depend on the specific chemical
reagent used, only to which one of the two sets a particular reagent belongs.
As shown in the previous section, we are able to account for discocytes and stomatocytes on the

basis of minimization of bending energy alone. However, echinocytes are not predicted by minimiza-
tion of bending energy. This suggests that the shape transformations exhibited by red blood cells
are driven, at least in part, by other types of membrane deformations. Indeed, from a biological
perspective, one of the characteristic features of the membrane of red blood cells is the coupling of
the membrane to an underlying cytoskeletal (spectrin) network. As a result, terms corresponding to
shearing and stretching2 must be considered in the overall energy budget. If these terms are included,
the complete echinocytes–discocytes–stomatocytes sequence, as well as several shapes lying outside
this main sequence, can be accounted for [6] by only varying the single parameter Δm0. This suggests
that the dominant effect of the two sets of reagents driving the shape of red blood cells is to increase or
decrease Δm0. Thus, biochemistry only comes into the picture on the level of coarse-grained, effective
parameters, which provides a potential explanation for the apparent insensitivity of red blood cells to
the underlying chemistry of reagents.

2The relevance of stretching results from the large deformations which are locally induced in some shapes competing
with the shapes of the main sequence.
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Chapter 4

Fluctuating membranes

While in the previous chapter we treated membrane shape as a static physical observable, experiments
show that, not too surprisingly, the shape of membranes is fluctuating incessantly due to thermal
excitations (see Fig. 4.1). In this chapter we will develop the basic theory of membrane fluctuations,
which allows a quantitative understanding of how fluctuations affect the overall shape of vesicles and
cells. Two important quantities characterizing membrane fluctuations are the correlation length and
the amplitude of fluctuations, which are discussed in Secs. 4.1 and 4.2, respectively. Finally, in Sec. 4.3
we show how our theoretical understanding of membrane fluctuations can be used to measure basic
membrane properties such as the membrane bending rigidity.

4.1 Surface correlation function

As discussed in Sec. 2, we represent the local orientation of a surface at position r by a unit normal
vector n = n(r). The scalar product n(r1) ∙ n(r2) provides a measure of the surface fluctuations: For
small separations Δr = |r1−r2| along the surface, we expect n(r1) ∙n(r2) ≈ 1, whereas, as we increase
Δr, the surface normals will tend to become de-correlated, which means that n(r1) ∙n(r2) approaches
zero and, for even larger Δr, may even become negative. The average 〈n(r1) ∙ n(r2)〉, taken over the
entire surface and over all thermally excited surface configurations, therefore provides a quantitative
measure of how “wavy” the surface is. Thus, 〈n(r1) ∙ n(r2)〉 is referred to as the correlation function

Figure 4.1: Time sequence of experimentally observed vesicle shapes, with an elapsed time of 6.3 s
between subsequent frames. The vesicle fluctuates about an axisymmetric prolate shape, and the long
axis has a length of approximately 20 μm. (After Ref. [9].)
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of the surface. As we shall see, we have

〈n(r1) ∙ n(r2)〉 ∝ exp

(

−
Δr

ξp

)

, (4.1)

where ξp is the correlation or persistence length associated with a given surface. Thus, the correlation
length provides a crucial measure of how much the surface shape is affected by thermal fluctuations.
The aim of this section is to obtain an expression for ξp in terms of the fundamental physical parameters
characterizing a membrane.

Transformation of 〈n(r1) ∙ n(r2)〉 to Fourier space

As shown in Sec. 2, we have n(r) = (−hx,−hy, 1) ∙ (1 + hx + hy)−1/2 in the Monge parameterization
of surfaces. For small surface deformations, we therefore obtain

n(r) =

(

−hx,−hy, 1−
1

2

[
h2x + h

2
y

]
)

+O
(
h3x, h

3
y

)
, (4.2)

where we have used the result (1+x)n = 1+nx+ . . . obtained via Taylor expansion. Equation (4.2) is
the starting point for all calculations carried out in this chapter, and is correct up to quadratic order in
hx and hy. A term +O

(
h3x, h

3
y

)
is therefore implicit in all expressions to be derived, and we will return

to the significance of higher-order terms below. Using the shorthand notation hx,y;1,2 ≡ hx,y(x1,2), we
find

n(r1) ∙ n(r2) = hx;1hx;2 + hy;1hy;2 + 1−
1

2

[
h2x;1 + h

2
y;1

]
−
1

2

[
h2x;2 + h

2
y;2

]
(4.3)

= 1−
1

2
(hx;1 − hx;2)

2 −
1

2
(hy;1 − hy;2)

2 . (4.4)

We see from the above expression that the surface orientation at two points on the surface is the same
if the derivatives of the height function at these points are the same. However, the correlation in the
surface orientation decreases with increasing differences in the derivatives such that the symmetries
h→ −h and (x, y)→ (−x,−y) are not violated.
Denoting the total membrane area by A, the Fourier transform h(q) of the height function h(x)

is defined by

h(x) =
A

(2π)2

∫
dq eiq∙xh(q) , (4.5)

where q = (q1, q2). From Eq. (4.5) we immediately find

hx;1 − hx;2 =
A

(2π)2

∫
dq iqx

(
eiq∙x1 − eiq∙x2

)
h(q) , (4.6)

where qx denotes the x-component of q. Keeping in mind that z
2 = z z∗ for a complex number z,

where the superscript ∗ denotes the complex conjugate, we therefore obtain

(hx;1 − hx;2)
2 =

A2

(2π)4

∫
dq

∫
dq′ qxq

′
x

(
eiq∙x1 − eiq∙x2

) (
e−iq

′∙x1 − e−iq
′∙x2
)
h(q)h∗(q′) . (4.7)

In order to find the positional average, 〈∙〉pos, of the above expression, we note that, due to the
symmetry of the surface in the x- and y-directions, only the relative distance Δr or, alternatively,
Δx = x1−x2, enters the positional average. Thus, the positional average is obtained by applying the
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operator 1A
∫
dx1dx2δ (Δx− (x1 − x2)). Integrating the delta function over x2 amounts to replacing

x2 by x1 −Δx and, thus, we find

〈(hx;1 − hx;2)
2〉pos =

A

(2π)4

∫
dx1

∫
dq

∫
dq′ qxq

′
xe
i(q−q′)∙x1

(
1− e−iq∙Δx

) (
1− eiq

′∙Δx
)
h(q)h∗(q′) ,

(4.8)
upon pulling out factors of eiq∙x1 and e−iq

′∙x1 from the first and second brackets in Eq. (4.7), respec-
tively.
In order to proceed, we note that, by definition of the Dirac delta function,

δ(x) =
1

(2π)2

∫
dxeiq∙x , (4.9)

we have

〈(hx;1 − hx;2)
2〉pos =

A

(2π)2

∫
dq

∫
dq′ qxq

′
xδ(q− q

′)
(
1− e−iq∙Δx

) (
1− eiq

′∙Δx
)
h(q)h∗(q′)

(4.10)

=
A

(2π)2

∫
dq q2x

(
1− e−iq∙Δx

) (
1− eiq∙Δx

)
h(q)h∗(q) . (4.11)

Multiplying out the brackets, and using that cos x = 1
2

(
eix + e−ix

)
, this finally gives us

〈(hx;1 − hx;2)
2〉pos =

A

(2π)2

∫
dq q2x (2− 2 cosq ∙Δx)h(q)h

∗(q) . (4.12)

Returning to Eq. (4.4) and taking the thermal as well as the positional average, we therefore find

〈n(Δx) ∙ n(0)〉 = 1−
A

(2π)2

∫
dq
(
q2x + q

2
y

)
(1− cosq ∙Δx) 〈h(q)h∗(q)〉therm , (4.13)

where we use Δx rather than Δr to emphasize that this result was obtained in the Monge represen-
tation and, thus, only applies to surfaces with no overhangs.

Thermal average

In order to evaluate 〈h(q)h∗(q)〉therm, we need to specify the energy cost associated with the fluctu-
ations in h(x). For future convenience, we will consider a membrane which is allowed to bend and is
also set under a tension τ . The free energy of such a membrane is given by

G = τ

(∫
dS − S0

)

+
Kb
2

∫
dSH2 , (4.14)

where, for simplicity, we have used our most straightforward description of the bending energy. Tension
opposes the creation of new contour area (via an increase in the inter-lipid spacing) relative to the
reference area S0 set by the projection of the membrane onto the x, y-plane. As mentioned before, we
have dS = (1 + h2x + h

2
y)
1/2dx in the Monge representation, and H = hxx + hyy to leading order in h.

Thus, we find that

G =
τ

2

∫
dx
(
h2x + h

2
y

)
+
Kb
2

∫
dx (hxx + hyy)

2 . (4.15)
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As before, it will be convenient to transform Eq. (4.15) to Fourier space. For the surface tension,
we obtain

τ

2

∫
dx
(
h2x + h

2
y

)
=
τ

2

∫
dx
A2

(2π)4

∫
dq

∫
dq′
(
qxq
′
x + qyq

′
y

)
ei(q−q

′)∙xh(q)h∗(q′) (4.16)

=
τ

2

A2

(2π)2

∫
dq

∫
dq′
(
qxq
′
x + qyq

′
y

)
δ(q− q′)h(q)h∗(q′) (4.17)

=
τ

2

A2

(2π)2

∫
dq q2h(q)h∗(q) , (4.18)

where again we have used that δ(x) = 1
(2π)2

∫
dxeiq∙x. Similarly, we find for the bending energy

Kb
2

∫
dx (hxx + hyy)

2 =
Kb
2

∫
dx
A2

(2π)4

∫
dq

∫
dq′
(
q2x + q

2
y

) (
q′2x + q

′2
y

)
ei(q−q

′)∙xh(q)h∗(q′)(4.19)

=
Kb
2

A2

(2π)2

∫
dq

∫
dq′
(
q2x + q

2
y

) (
q′2x + q

′2
y

)
δ(q− q′)h(q)h∗(q′) (4.20)

=
Kb
2

A2

(2π)2

∫
dq q4h(q)h∗(q) . (4.21)

Thus, in Fourier space our expression for the energy in Eq. (4.15) reduces to the appealing form

G =
A2

2(2π)2

∫
dq
(
τq2 +Kbq

4
)
h(q)h∗(q) . (4.22)

Based on the above expression for the total energy, we can now evaluate the thermal average
over h(q)h∗(q) by invoking the celebrated law of equipartition of energy: Each degree of freedom of
a system, i.e., each independent dynamic variable which is quadratic in the expression for the total
energy, receives on average 12kBT in thermal energy. The degrees of freedom of our surface are given
by the h(q) and, hence, we rearrange our expression for the total energy as

〈G〉therm =
A

(2π)2

∫
dq
A

2

(
τq2 +Kbq

4
)
〈h(q)h∗(q)〉therm , (4.23)

where with each independent Fourier mode a wavenumber q is associated. Thus, the density of Fourier
modes is given by (2π)2/A in Fourier space, and we have

〈h(q)h∗(q)〉therm =
kBT

A (τq2 +Kbq4)
. (4.24)

As expected, 〈h(q)h∗(q)〉 increases with temperature but decreases with the total area available to
fluctuations, and increasing tension and bending modulus.

Calculation of the correlation length

With the above results in hand, we are now ready to obtain a general expression for the correlation
length. Substituting Eq. (4.24) into Eq. (4.13) we find

〈n(Δx) ∙ n(0)〉 = 1−
kBT

(2π)2

∫
dq
(1− cosq ∙Δx)
(τ +Kbq2)

. (4.25)
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Figure 4.2: Plots of (a) 1 − J0(z) and (b)
1−J0(z)
z versus z = qΔx.

For a closed, unperturbed, and (meta-)stable vesicle, we have τ = 0, and the above expression reduces
to

〈n(Δx) ∙ n(0)〉 = 1−
kBT

(2π)2Kb

∫
dq
(1− cosq ∙Δx)

q2
. (4.26)

We proceed by transforming to polar coordinates and measuring angles relative to Δx:

dq = q dq dθ , q ∙Δx = qΔx cos θ . (4.27)

Thus, one finds

〈n(Δx) ∙ n(0)〉 = 1−
kBT

2πKb

∫
dq

q
[1− J0(z)] , (4.28)

where z = qΔx and the Bessel function J0(z) ≡ 1
2π

∫ 2π
0 cos(z cos θ) (see Fig. 4.2).

While, in principle, the limits of integration in the q-integral are 0 and ∞, we have, in practice,
the upper cutoff π/b set by the intermolecular spacing b (see below). Moreover, noting that Δx ≥ b,
limz→0

1−J0(z)
z = 0, and 1−J0(z)z = 1 − J0(z) ≈ 0.2 for z = 1 (see Fig. 4.2), we approximate the lower

cutoff by 1/Δx. In this regime we can then set 1 − J0(z) ≈ 1 and, thus, we find

〈n(Δx) ∙ n(0)〉 ≈ 1−
kBT

2πKb
ln
πΔx

b
. (4.29)

We can now define the correlation length ξp more precisely as the distance over which the correlation
function decays to 1/e,

1−
kBT

2πKb
ln
πξp

b
≈
1

e
, (4.30)

which gives us

ξp ≈
b

π
e1.3πKb/kBT . (4.31)

The above result shows that the correlation length decreases (exponentially) with increasing tempera-
ture, which means that there will be fluctuations of shorter and shorter wavelength as the temperature
is being increased. The scale for thermal fluctuations is set by the bending rigidity, which opposes
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thermal fluctuations. Note that for the values b ≈ 1 nm and Kb ≈ 10kBT typical for lipid bilayers, we
obtain ξp ≈ 105 km. This suggests that, as assumed in Sec. 3, in general there will be a well-defined
overall vesicle shape on which thermal fluctuations merely act as a perturbation. Also note, how-
ever, that if we raise the temperature by approximately 10◦K, our estimate for the correlation length
decreases to ξp ≈ 20 nm. This illustrates that, depending on the specific setup, fluctuations can
be of great importance. For biological membranes, the bending rigidities typically reported are one
order of magnitude higher than for pure lipid bilayers, with a corresponding increase in the expected
correlation length for a given temperature.
In the calculation of the correlation length carried out above, we restricted ourselves to surfaces

which can be described within the Monge representation, and only considered contributions to lowest
order in h. The former assumption is justified in a self-consistent manner by our finding that, in
general, the correlation length is very large compared to the vesicle size. Thus, membranes will be
relatively smooth and, in particular, we can hope to be able to neglect interactions between opposite
sides of the vesicle. However, when neglecting higher-order contributions in h, we ignored the possi-
bility of interactions between different modes, i.e., different length scales. Given that the spectrum
of fluctuations, as well as the resistance to bending and tension, will depend on the length scale con-
sidered, it is not at all obvious that this assumption is justified. Interactions between different length
scales can be accounted for by the renormalization group, which provides a systematic framework for
integrating out and averaging over small scale degrees of freedom, and thereby relates the values of
model parameters (or indeed general Hamiltonians) over different length scales. For our problem of
calculating the persistence length, a renormalization-group calculation suggests that

ξp ∼ be
4πKb/3kBT , (4.32)

which, in fact, is not too far from our estimate in Eq. (4.30). Moreover, the renormalization group also
shows that quantities such as the bending rigidity are dependent on the length scale considered, as well
as the temperature. Indeed, the bending rigidity is found to decrease linearly with the temperature,
and logarithmically with the length scale.

4.2 Amplitude of fluctuations

The correlation length calculated in the preceding section characterizes how much the surface orien-
tation is de-correlated along the surface contour by thermal fluctuations. Using the results obtained
above, we can estimate the typical amplitude of fluctuations. As before, we will work in the Monge
representation and consider only terms to lowest order in h. The quantity we wish to calculate is
〈h(x)2〉, where, as before, the angular brackets indicate an average over the surface and any thermal
excitations of the surface. Applying the Fourier transform in Eq. (4.5), we find that

h(x)2 =
A2

(2π)4

∫
dq

∫
dq′ ei(q−q

′)∙xh(q)h∗(q′) . (4.33)

Similarly as before, we apply the operator 1A
∫
dx to take the positional average of the above expression

for a given surface configuration. Noting that δ(x) = 1
(2π)2

∫
dxeiq∙x, this leaves us with

〈h(x)2〉pos =
A

(2π)2

∫
dq

∫
dq′ δ(q− q′)h(q)h∗(q′) (4.34)

=
A

(2π)2

∫
dqh(q)h∗(q) . (4.35)
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The thermal average of the above expression is found from Eq. (4.24), which means that

〈h(x)2〉 =
kBT

(2π)2Kb

∫
dq
1

q4
. (4.36)

Transforming the above expression to polar coordinates, we find

〈h(x)2〉 =
kBT

(2π)2Kb

∫ π/b

π/A1/2
dq
2πq

q4
, (4.37)

where, as before, we use the inverse maximal linear dimension and the inverse lipid spacing to approx-
imate the lower and upper cutoffs on this momentum-space integral1. Thus, we find that

〈h(x)2〉 =
kBT

4πKb





(
A1/2

π

)2

−

(
b

π

)2


 ≈
kBT

4π3Kb
A . (4.38)

As expected, the amplitude of fluctuations grows with temperature and the area accessible to fluc-
tuations, but decreases with the bending rigidity. For the values Kb ≈ 10kBT and A ≈ 1 μm2, the
above expression gives

(
〈h(x)2〉

)1/2 ≈ 100 nm, or
(
〈h(x)2〉

)1/2 ≈ 300 nm if the temperature is raised
by 10◦K from room temperature and the bending rigidity is kept fixed. This suggests that, as a very
rough estimate, one expects amplitude fluctuations in biological membranes of the order of 100 nm
over a lateral length scale of the order of 1 μm.
As an aside, we again note that we could have taken into account the coupling of different length

scales by employing the renormalization group. In particular, the non-rigorous step of introducing
ad hoc a lower (or, similarly, upper) cutoff in Eq. (4.37), necessary to prevent the divergence of the
integral at q = 0, is a signature that we have not correctly accounted for the large-scale (and/or
small-scale) behavior of the system. These difficulties are resolved by the renormalization group.

4.3 Measuring bending rigidity from thermal fluctuations

As found in Sec. 4.1, the presence of fluctuations at finite temperature means that the projected surface
area of a membrane will generally be reduced relative to the corresponding contour surface area. For
a tensionless membrane, we concluded that the strength of fluctuations and, hence, the reduction in
area are governed by the dimensionless ratio of temperature and bending rigidity. If tension is applied
to the membrane, thermal fluctuations will be “ironed out”, and we expect the projected membrane
area to increase. The aim of this section is to derive, based on the theory of fluctuating membranes
presented above, a mathematical expression for the reduction in projected surface area, which will
depend on the temperature, the bending rigidity, and the applied tension. Thus, we will see how one
can measure the bending rigidity of a membrane by applying tension via measurement of the change
in the projected membrane area, i.e., the change in membrane fluctuations.

1More precisely, the motivation for this choice of limits comes from the solution of partial differential equations via
Fourier series (see, e.g., Ref. [10]): For a spatial interval 0 < x < A1/2, the possible wavenumbers are generally given by
kn =

nπ

A1/2
. Thus, k ' π

A1/2
. The upper cutoff is obtained using the same argument but with A1/2 instead of b. Now

the minimal prohibited wavenumber is given by k1 =
π
b
, meaning that the wavenumbers k ' π

b
do not have physical

significance.
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Surface undulations

As shown in Sec. 4.1, the reduction in surface area of the projected surface is, to leading order in h,
given by 12

∫
dx
(
h2x + h

2
y

)
for a given surface configuration. Taking the thermal average and, as in

Eq. (4.18), transforming to Fourier space, we find for the reduction in surface area, Ar,

Ar =
1

2

∫
dx〈
(
h2x + h

2
y

)
〉 =

A2

2(2π)2

∫
dq q2〈h(q)h∗(q)〉 . (4.39)

The thermal average in the above expression is again evaluated via Eq. (4.24), which we derived using
equipartition of energy, leading to

Ar =
AkBT

2(2π)2

∫
dq

1

τ +Kbq2
. (4.40)

The integrand in the above expression only depends on the absolute value of q. Thus, upon trans-
forming to polar coordinates and carrying out the (trivial) angular integration, we find

Ar =
AπkBT

(2π)2

∫
dq

q

τ +Kbq2
. (4.41)

Changing the integration variable to z = τ +Kbq
2 means that qdq = 1

2Kb
dz, leading to

Ar =
AπkBT

2Kb(2π)2

∫
dz

z
. (4.42)

As before, the physical description provided by the above integral is only valid in q between the lower
and upper cutoffs π/A1/2 and π/b, respectively. Thus, we find

Ar =
AπkBT

2Kb(2π)2
log
τ +Kb

π2

b2

τ +Kb
π2

A

. (4.43)

The above expression implies that Ar vanishes if kBT/Kb → 0, or τ/Kb →∞; thermal fluctuations in
the surface are suppressed by bending rigidity for zero temperature or infinite tension. But also note
that these two limits are approached in a very distinct way, which we will exploit below.

Removing surface undulations by micropipette aspiration

In order to relate our expression for Ar to a quantity which can be measured experimentally, we
need to specify a reference state relative to which changes in the projected surface area should be
evaluated. Thermal fluctuations are most pronounced for τ = 0, which suggests that we use this
region of parameter space to explore the relation between the bending rigidity of a given membrane
and thermal fluctuations. Thus, we define the quantity

ΔA ≡
Ar(τ = 0)−Ar(τ > 0)

A
(4.44)

=
kBT

8πKb
log

(
A

b2
τ +Kb

π2

A

τ +Kb
π2

b2

)

=
kBT

8πKb
log

τA
Kbπ2

+ 1

τb2

Kbπ2
+ 1
≈
kBT

8πKb
log

(

1 +
τA

π2Kb

)

, (4.45)

where, in the last step, we assumed that τb2 � Kb.
It is useful to briefly pause at this stage, and to reflect on the operational meaning of ΔA. Our

definition of ΔA instructs us to first measure the projected surface area in the tensionless regime, to
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Figure 4.3: Videomicrographs showing an increase in apparent vesicle area by micropipette aspiration.
The vesicle diameter is approximately 20 μm. With increasing tension the apparent surface area is
found to increase by approximately 1 per cent (upper to lower panel). (After Ref. [11].)

repeat the measurement after a (small) tension has been applied, to take the difference between the
two values for the projected area, and, finally, to divide the result by the contour area of the surface, A.
Implicit in this procedure is that, first of all, the contour area can be measured, a point we will return
to below. Second, we also assume that the contour area does not change as tension is applied to the
surface (or as fluctuations perturb the surface), meaning that the expansion of the projected surface
area due to increased tension is purely due to decreased surface area taken up by fluctuations. This
is, of course, only a good assumption if the tension is small enough so that the spacing between
lipid molecules does not increase appreciably. For large enough tension, this assumption will break
down. In this regime, Eq. (4.45) must be modified to include membrane stretching, the membrane no
longer fluctuates appreciably, and the modified version of Eq. (4.45) can then be used to measure the
area-stretch modulus following a similar procedure as outlined here for the bending rigidity.
The experimental realization of the scenario described above is achieved through micropipette

aspiration measurements (see Fig. 4.3). In these experiments, a small pipette, with diameter d ≈ 10 μm
or less, is used to probe vesicles or cells contained in a solution, with typical sizes of several micrometer.
The pipette is connected to a pump, which allows the application of a known pressure difference
between the pipette and the solution. Thus, vesicles can be “grabbed” and “held”. Upon increasing
the pressure difference, the bilayer is partially sucked into the inside of the pipette without rupturing
it. Using video microscopy, it is then possible to characterize the shape of the deformed vesicles. On
the basis of the known pressure difference, this allows [3] the calculation of the surface tension via the
Laplace-Young law. Thus, it is possible to measure the tension and the surface area of the vesicle. If
the surface area is large enough, Eq. (4.45) further simplifies to

ΔA ≈
kBT

8πKb
log τ + C , (4.46)

where we have absorbed all terms which do not depend on the surface tension into the term C.
Measurement of ΔA as a function of log τ will therefore give us a straight line with gradient kBT8πKb

.
On this basis it is possible, for a known temperature, to experimentally measure the bending rigidity
of lipid bilayers, which is the material parameter most crucial for the description of vesicle and cell
shape developed in these notes.
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