BE/APH161 - PHYSICAL BIOLOGY OF THE $C \in L L$

Rob Phillips

Applied Physics and Bioengineering
California Institute of Technology

CONFRONTING THEORY AND
 EXPERIMENT: A SIMPLE CASE

$50 \begin{aligned} & \text { Number of } \\ & \text { repressors }\end{aligned} 900 \quad \Delta \varepsilon_{\mathrm{rd}}\left(\mathrm{k}_{\mathrm{B}} \mathrm{T}\right)$

5×10^{-3}
$2.1 \times 10^{-4} \quad-16.2$
Oehler et al. (1994)
$\begin{array}{lll}0.048 & 3.1 \times 10^{-3} & -13.7\end{array}$
Becker et al. (2005)
Vilar and Leibler (2003)
Bintu et al. (2005)

COUNTING MESSENGER RNAS IN CELLS

-Fixed cells
Zenklusen et al. '08

DNA probe \downarrow

- Live cells

Golding et al. '05

INFORMATION PROCESSING IN LIVING CELLS: BEYOND FIRST APPROXIMATIONS

Ido Golding

Department of Physics

Center for the Physics

ON THE USEFULNESS OF MODELS

George E. P. Box
"It should be remembered that just as the Declaration of Independence promises the pursuit of happiness rather than happiness itself, so the iterative scientific model building process offers only the pursuit of the perfect model. For even when we feel we have carried the model building process to a conclusion, some new initiative may make further improvement possible. Fortunately to be useful a model does not have to be perfect." George Box

RNA DISTRIBUTION IN YEAST

a

Zenklusen et al. '08

MRNA PRODUCTION IN E.COLI

Golding et al. '05

A

MRNA PRODUCTION HAPPENSIN BURSTS

the poisson distribution

(thanks to Al Sanchez and Jane Kondev)

$$
\begin{aligned}
& \text { What is the distribution } \\
& \text { of people per square? } \\
& P(m)=\frac{e^{-\mu} \mu^{m}}{m!} \\
& \mu=\frac{23 \text { people }}{60 \text { squares }}=0.36 \\
& 0.8
\end{aligned}
$$

INTERACTIONS CAN CHANGETHE

 DISTRIBUTIONIndependent singles: Poisson distribution of people

感		
		䆛
	9	98
8		8

$\operatorname{var}(\mathrm{P})=\mathrm{hPi}$

Valentine's Day: Poisson distribution
O of couples

	89			
849			$8+9$	
	$\text { db } 4$			

$\operatorname{var}(\mathrm{P})=2 £ \mathrm{hPi}$

NOT POISSON

Zenklusen et al. '08

MRNA PRODUCTION OCCURS IN BURSTS

What is the origin of transcriptional bursts?

TWO-StATE PROMOTER

\varnothing

Master equation for a two state promoter

Repressor
binding site

$2 \longrightarrow 1$
m
$k_{R}^{\text {off }} \Delta t$

$r \Delta t$

1 or 2
$\mathrm{m} \longrightarrow \mathrm{m}-1$
$\gamma \Delta \mathrm{t}$

PROMOTER
 STATE

 STATE

m
$k_{R}^{o n} \Delta t$

WEIGHT

$\cdot{ }^{\circ}=1 /(72 \mathrm{~min})$ be the rate that changes with induction.

STOCHASTIC MODEL OF TRANSCRIPTION

Kepler and Elston 'O2

Phenotypic conseeuences of noise

Maamar, Raj, and Dubnau '07

High noise

Low noise

Amount of noise in expression of a single gene determines the number of competent cells in a population.

Introduction of variability

Mettetal and van Oudernaaden '07

SYNTHETIC GENETIC SWITCH

stable solutions

PHASE PORTRAIT FOR THE SWITCH

b)

SYNTHETIC GENETIC SWITCH

Collins et al. - see course website

GENE EXPRESSION IN CYANOBACTERIA

a, Snapshots of phase-contrast image showing cell F and its progeny and b, related bioluminescence image at different times t (given in days, a 24 h period of time) from the beginning of the measurement. Pixels in the bioluminescence images were binned 3 times 3 (pseudo-colour, where red is high signal intensity and blue is low signal intensity). Scale bar, 5 microm. c, The size of the cell F and all its progeny as a function of time measured from the phase-contrast images (non-binned pixels). The arrows point to the time where the snapshots in (a) and (b) were taken. d, The total number of pixels occupied by F and its all progeny versus time (black line) plotted in a logarithmic scale. The red line is the corresponding exponential growth fit: total size $(t)=$ initial size times $2 t /$ tau with tau $=23.04$ plusminus 0.17 h. e, Density of bioluminescence for the same cell and all its progeny versus time. f, The average density of bioluminescence versus time (black line) and its fit (red line) with: left fenced(t)right fence $=$ $B+A \cos (2 p i t / T 0+$ phi0 $)$. The resulting period is $T 0=25.4$ plusminus 0.12 h , the initial phase phi0 $=52$ plusminus 2.8°, the
 amplitude $A=12.9$ plusminus 0.3 counts per pixel and the offset $B=14.8$ plusminus 0.3 counts per pixel.

GENE EXPRESSION IN CYANOBACTERIA

a, Upper part shows the phase-contrast snapshots of colonies A and B; lower part shows the related bioluminescence images. Scale bar, 5 microm. b, Normalized density of bioluminescence of individual cyanobacterial cells. Each colour corresponds to the progeny from one of the initial cells: red line, colony A; black line, colony B. c, Phase of individual oscillators as a function of their original colony and their evolution in time: red square, colony A; asterisk, colony B. An example of the exact location for three of the cells tracked and their phase evolution is shown, marked by the corresponding coloured lines: magenta, orange and purple. The change of the phase in time was quantified by a fit over a different period of time: the first 2 days (days 5-7), the entire time (days 5-10.5) and the last 2 days of the measurement (days 8.5-10.5). The fit function is left fenced(t)right fence $=B+A \cos (2 p i t / T 0+p h i)$, with $T 0=24.78$ h. The line segments in each graph, with corresponding colours, represent the resulting vector Pres $=$ sumPi, where Pi is the unit vector whose orientation is the measured angle of the same colony cell i.

SYNTHETICTRANSCRIPTIONAL osCILLATOR

(Elowitz, Leibler, Nature 2002)
Time (min)

c

COUPLING OF GENES IN NETWORKS

