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How Cells Decide as Seen Through Three Hall
of Fame Model” Organisms

E. coli

yeast Fruit fly

+ Various organisms are accorded hall of fame status as " "'model” organisms either
because they are specialists at some particular process of interest or they are
experimentally convenient (grow fast, easily accessible).

* Each of these organisms offers something extremely important on the question
of how cells decide.



The Central Dogma of Molecular Biology: How
Genes Lead to Proteins

*+ Crick and others mused over the ““two A XY,
great polymer languages’. DNA polymerase |  primase
+ Central dogma explains the chain of :X::k: ?i‘“hilfff;ﬂ”\;}; REPLICATION
events relating them.
* Theribosome is the universal NTNTNTA T RET
translating machine that speaks both N
languages. T, o A Polvmerase
‘,;P J\_r'\..r'\.—'\f'\ DNA - TRANSCRIPTION
*+ We have seen what genes are and how RNA message
they serve as the informational
memory of organisms. But we have mRNA
NOT said how they are controlled. potypeptide chain | ribosome
ufu--‘-:—t---- mRNA TRAMNSLATION

‘cf&rh.uh '-b.-*ﬁf% protein

Now we have the background to tackle the question we started
with: how do cells make decisions?




The Big Message

The Puzzle: All the cells in a given organism (almost) carry the same

genetic information. And yet, depending upon where they are within

the organism, they turn out quite differently.
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The Insight: The genome (i.e. genetic material) is under exquisite

control. Genes are turned on and off in response to environmental cues.




Not All DNA Codes for Proteins

The E. coli genome is a circle with
roughly 4.7 million base pairs.

How many genes? An estimate.

The genes related to sugar usage
have been one of the most
important stories in the history of
modern biology and biochemistry
(and take us right back to the great
debate on vitalism played out with
Pasteur in the 1800s).

“Promoter” region on DNA is
subject to intervention by various
molecular bou at govern
the gene.
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Measuring the Diet of a Bacterium

Slit

Monochromator

{replica grating)

Source

Photocell
Cuvet

JOURRAL OF BACTERICLOGY, D, 1999, o, THE-T406
THIZT -S53N 5 0, I =1

Yol 181, Mo, 24

Copwrght © 1%, Amencan ooty for Microbology, All Bights Peserved

GUEST COMMENTARY

Bacterial Growth: Constant Obsession with dN/dt

FREDERICK . NEIDHARLT®
Department of Microbiologe and foemunalogy, University of Michigan, Ann Arhor, Michigaon 485000620,

Une of life's inesatable disappomements—ane felt often by
seientists and artists, but nat anly by them—eomes from ex-
pecting athers to share the particulanties of ane's awn sense of
e and avnder. This truth eame bome o me recently when 1
prcked up Mizhael Guollens fine book Five Fouations Tha
Changed the Wardd {4) and dseovered that my equation—the
ane that shaped my scientific sarser—wns not considered one
af the five,

tantly, its imatation o explore—affected me prefoondly. The
first-nrder mate constant & s the growth equaton seemed o
me the ideal toal by which to assess the state of a culture of
cells, ne., the rate at which they were |'|r:'r|:|'-rrn|n_::_ life, as it
were. | elected o pursue my Phl), stedies wath Bors Ma-
gasnilk, studying the malesular basis of diauxe grosth, Over
the ensuwing half-century, clese analysis of growth curves was o
be a contral feature of my woark, 2t | followed my intense

*+ Growth curves have served a central role in dissecting the physiology of cells of all

types.

*+ In particular, we know much about how cells decide based upon watching them
grow and seeing what they like to eat.
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Deciding What to Eat: Giant Discoveries Often Arise
From Seemingly Arcane Topics

Fascinating twist of history of science:
human curiosity leads to investigation of
seemingly arcane topics (spectral lines
of atoms, specific heats of solids,
peculiarities in the orbits of Uranus or
Mercury, etc.) from which emerge hugely
important insights.

An example: nutrition of single cells like
yeast and bacteria.

Yeast cells express preferences about
which sugar to use.

Interestingly, the proteins used to digest
the less preferable sugars are only
synthesized when those sugars are
present and the more preferable sugars
are absent.
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Anﾊintriguing aspect of multicellular organisms is the fact that there are a wide variety of different cell types, this despite the fact that each and every cell carries the same genetic information.ﾊ ﾊOne of the key mechanisms giving rise to distinct cellular identities is particular ``decisions'' that are made about which genes to express at different times and places in an organism's history.ﾊ Interestingly, decision making is not restricted to multicellular organisms, nor even to eukaryotic cells.ﾊ Indeed, the modern theory of gene regulation was born out of efforts to understand how bacterial cells decide which sugars to utilize at any given time.ﾊ In this talk, I will describe the ways in which statistical mechanics can be used to examine the regulatory processes that take place in the lives of cells.ﾊ These simple models result in surprising predictions and I will also describe our experimental efforts to probe this rich behavior both in test tubes and in living cells.ﾊ


»
A Model System for Mathematically Dialing In

Transcription

+ The way all of this works was first figured out in the context of a very specific
guestion in bacteria. How do cells implement the decision that they prefer some
sugar sources (i.e. glucose) over others (i.e. lactose)?

*+ What emerged was a picture in which genomic DNA is controlled by an army of
molecular bouncers (transcription factors) that activate or repress expression of
their genes of interest.
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Repressors: The Cartoon

+ Repressor molecules inhibit
action of RNA polymerase.

promoter

+ Repressors can be under the start oftraﬁscription
control of other molecules (i.e.

inducers) that dictate when ) °p‘*ra‘°’
repressor is bound and not.

inactive repressor

‘ RNA polymerase

tryptophan aCtIVE repressor

mMRBNA c——r
GENES ARE ON GENES ARE OFF

Figure 8-7 Essential Cell Biology, 2/e. (& 2004 Garland Science)
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Activators: The Cartoon

Activator molecules enhance the
action of RNA polymerase.

Activators can be under the

control of other molecules (i.e.
inducers) that dictate when bound activator SNl meIRse
activator is bound and not. RrteIn

Activators “RECRUIT” the

pOIymerase' binding site
for activator mRNA
protein EEmeeee——
5 l 3
Adhesive interaction between RNAP protein

and activator

Figure 8-8 Essential Cell Biology, 2/e. (8 2004 Garland Science)



2 My Question: Hopeful or hopeless
analogies?

*+ Question: How well can we characterize the transfer
function of regulatory networks?

* Arethese analogies with circuits useful and fruitful, or do
they obscure a fundamental difference of kind that will

. S — make the precise characterization of input-output relations
s L too difficult?

Nate: The reverse current
Reverse shown js typical of e
bi

| pemeesess @ Goal: Derive governing equations and test them.

Sea urchin

Regulatory network  Endomesoderm specification
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=~}
—— Activator wunknewn  ES = sarly signal
Repressor / Acti\fatol' unkn = unkncwn Nuel. = nuclearization = fl-catenin sounce rop = reprossorn Zyg. N. = zygotic Notch

Af-TCF = nuclearized b-fr-catenin-Tet ECNS = early cyloplasmic nuckearizaion system

Dobrin et al. (2004) Eric Davidson
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Computing How Cells Decide: the fold
Change

simple activation by CRP (C} simple repression by Lac repressor
+ The level of gene expression is described by a - L“"
. 16!
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Dialing in transcriptional response: How does fold-change ’e‘
vary with these parameters

(A)
. DNA architecture Molecular concentrations

*+ We are interested in finding “knobs” = indin site posit
- inding site position Inducer concentration

that we can dial in both as theorists 51'( E .
|l |

and as experimentalists. =Y I\
- =i - ==

* These knobs should elicit different S L
biological responses. 8 Repressor copy number
Binding energy ¥ 4
! " * a: &
I ': Promoter c-uFW number
R —BAs\-1
fold change = (1+—e ™) . -
N SN EE=E

Humber of transonption
w5

* ] =1y i i 200
Einding site position with respect to transoription start ()



Classic experiment on simple repression

repression
50 number of 900

. 2 o repressors
_X:- X_ 200 4700

01 lacZ
:X:-Ol: = XTI 2 320
N r~ .
_X:-ba lacZ XE s a

Oehler et al., 1994



Measuring fold change: The Cell as a test tube

Fold-change(YFP) =

Q
Fold-change(lacZ) =

light absorption

+ Install the architecture of interest in the cell and then “read out” the state of the DNA
and its battery of attendant proteins using gene expression.

Auxiliary Loaping Promater
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Enzymatic Assay (beta-Gal Assay)

*+ Enzymatic assays — promoter leads to the production of a protein that then does
some enzymatic action on the substrate which yields a product that can be
visualized.




A Standard Candle for Gene Expression

Cepheids variables

Cepheid Variable Star in Galaxy M100 HST-WFPC2

Apgil 23 May 4 May @

Huble Spc Iescop
* A prerequisite for doing the theory-experiment comparison in the way advocated

here is that one has to really know the meaning of the readout of the expression
level.

* In particular, is the response linear and do different measurement techniques tell

the same story?
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Modern biology is full of fluorescent images. How do we go form a qualitative interpretation of these images to a quantitative measurement? What we choose as a messenger might be affecting the measurement. We need to be careful not to be affecting the cells with our reporter!

Absolute measurements, molecular census, are not extremely common in biology. We lack standard candles such as the Cepheid variables in astronomy. We sometimes normalize by one gene, but how do we know that gene is a good standard (this is Quake’s point).






Does the Measurement Depend Upon the
Technigue Used?

Number of lacZ molecules Cells get sick at high
10° 10’ 107 10° 10° LacZ levels

Expression level of
relevant promoters

® |ac promoter, no IPTG
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YFP fluorescence (au)

Cell autofluorescence
limits fluorescence

107" 10° 10" _ !02 10° 10° 10° measurements
LacZ activity (MU)

One of our concerns in adopting the quantitative mindset was to see to what extent all
measurements on these systems are in agreement.

But, there are many different readouts of gene expression.

With this result in hand, we turn to exploring how the expression changes in a case
where we tune various parameters for the single-site repression architecture.

Useful to attempt to make an absolute count of molecules.


Presenter
Presentation Notes
RP: Make a separate graph with the literature promoters. Measured values of expression in real world promoters vary over 5-6 orders of magnitude. Conductivity 31 orders of magnitude! This should be before talking about the different levels (Comparing the Reporters)

Title something like: It’s not enough to count, we need dynamic range!

Our ability of capturing these values with these two methods. Maybe have a bar graph for the literature promoters since this is only measured with lacZ.

Make the point about counting again.



Use words “counting”, “census”. Connect back to the precision theme.



What we choose as a messenger might be affecting the measurement. We need to be careful not to be affecting the cells with our reporter!



HG: Link to the histograms of fluorescence and to the growth rates.




Computing Probability of Promoter
Occupancy: An Example

*+ In this case, we consider the competition between repressor and RNA polymerase
for the promoter. (see Bintu et al., Vilar and Leibler)

+ For the simple repression motif, there is a simple expression for the fold change.

(A) STATE WEIGHT (B)  EXPERIMENTAL KNOBS o -
Repressor —= ~ ) -
binding site Binding energy o' ~ “‘\\
10 | .
' C ) N
— I s .
- £10 N
S P eBAgpy 5 |[AeatkeD] Ny
As NNS i . .
pd Repressor copy number — ™~ R\\
Repressor |——-105 | “\‘\
. 2R _pAe 10° -
| ; N © P A 0 "! 1 10 10 10° 10°
A g NS ; ; R (number of repressors)

[ fold change = (1+%e“8)1}
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IDEA: We have a model with knobs we can turn experimentally.



EP: Explain why the knobs do the right thing, give you the right behavior.

RP: Don’t use the phrase “very easy”!


Simple repression constructs and data
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Simple repression data
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arameter-free predictions of the repressor number:
Taking the census by thinking

+ Using the in-vivo binding energies determined from the Oehler et al. experiment and the
measured fold-changes, we can unequivocally determine the number of repressors that
are doing the repressing (at least as far as the statistical mechanics model is concerned).

: Prediction
2 Al (repressors/cell)
e« HGI04 9+1
* RBS1147 48 + 8
= RB5446 60 + 20
* RBS1027 130 £40
RBS1 220270
L 400+ 100
10° Oid 0Ol . 02 . 03
é'l * —}- .- ?.-J—F-------__-. _i’f
% _ ,f’i{f g
I& Fold-change = —-— s | 7
2R p—0e g kgT E _2 L “&
Pramoter N 8 10 7/ , -
Y . .
=, -
Chotls e
L
m“‘-+
| | ~18 =17 =16 —15 14 13 =12 —11 -10 -9

» Binding site energy (kgT)
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Learning to count all over again

We have used our model to take the repressor census, now we need to find out if that
census is correct.

Concept: break open the cells, paint their contents onto a surface, quantify the number of
molecules by decorating them (using antibodies) with luminescent probes.
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The outcome

*+ The model appears to be a viable quantitative description of the regulatory architecture.

+ In the strongly repressed limit (i.e. very little expression, large number of repressors), the
model seems to systematically underestimate the number of repressors.

(A)

Strain

HGC104
RBS1147
RBS446
RBS1027
RBSI

11

Direct measurement
(repressors/cell)

11 +2

3010
62 £ 15
130 £20
610 + 80
870+ 170

(B)

Number of repressors

10°

10°

10

I Prediction from gene expression
B Direct measurement

[=]

anll

p—

HG104
RBS1147
RBS446
RBS1027
RBS

Strain
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2oming at Problems Many Ways: Perrin, Avogadro
and Fluctuations

* Intriguing tradition of using fluctuation-based methods to shed light on the system of
interest. After this table, Perrin says: “the existence of the molecule is given a
probability bordering on certainty.”

* Perhaps boring (not to me) but necessary: do different approaches to the same
problem agree?

CONCLUSIONE.

120.—THE AGREEMENT BETWEEX THE VARIOUS DETER-
MIxATIONS.—In concluding this study, s review of varions
phenomena that have yielded values for the molecular magni-
tude enables us to draw up the following table : —

N
PFhemomens obarvad | T,

Viscosity of gases (kinetie theory) : .| os2n
Vertical distribution in dilufe emulsions it 68
Vertical distribution in concentrated emulsions . | B
Digplacements . 4 . | 84
Brownian movement | Rotations - . | B8
! Diffusion | : . .| 60
Density fluctuation in concentrated emulsions . | 60
Critical opalesconce . i 2 ; . | 78
Blueness of the sky . : . : . . | 68
Diffusion of light in argon . : - - .| o
Black body spectrum . ; ; . i . | 8l

Charge as microsoopic particles . . : . | BL(Y
( gr;ydad wcﬁryf; ‘ . ‘ . 62
TP here inm wced | . . .
BRadioactisity Radium lost . . - 64
{ Energy radiated | i : . | B0

Chur wonder is aroused at the very remarkable agreement
found between values derived from the consideration of such

.IEﬂl"I Perri“ widely different phenomena. Seeing that not omly is
the same magnitude obtained by each method when the

1 Methods by which it may be hopel, in the future, lo oblain resalts of great
preciion are given in italics
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Cells do vegas

+ If the partitioning is random, then the statistics will be like those resulting from coin

flips.

* Indeed, one of the main points of my whole talk is the way in which again and again
there are biological secrets hidden in distributions.

¢+ Cleverly, the fluctuations can be used to establish the standard candle!
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Using Drunks to Count Proteins and
Measure Expression

w=i Fhry:

+ Asymmetry in partitioning of proteins during
cell division gives a way to determine the
calibration factor relating fluorescence and

fold

way to count and to
change function.

YFP fluorescence (au)

Placuvs h

. : 10’

10 20 30 40
Time (frames)

(Rosenfeld, Young, Alon, Swain, Elowitz,

Science, 2005)

(ne) d4)-12e7 JO JaquinN
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The calibration and the fold change

+ Recall, the calibration factor allows us to eliminate the unwanted “arbitrary units” that
fluorescence is usually reported in and to replace it with explicit molecular counts.

+ The theory predicts a particular functional form for the fold-change for different choices
of the binding strength. Think back to the electronic circuit analogy — this is the analog
of the IV curve for the regulatory circuit.

Fluorescence seggregation
error squared, (I,-1,)* (au?®)

10°

Individual events
* Average

a: 26 +2 au/Lacl

10° 10°
Total Lacl-CFP in
parent cell, (I,+l,) (au)

Fold-change

10° |

S

S

Number of repressors



Lac Operon: The Single Molecule Census

cAMP receptor
protein

P = number of RNAP
molecules

= 1,500 ~ 2,000

B RNA
polymerase

E——

IaC repressor DNA| Gene of interest

Promoter

R = number of

lacA m@ repressor molecules

v oA

A= number of

activator molecules
‘f ~ 1,000

galactoside
acetyltransferase
(Beautiful work of David Goodsell)

lactose permease



Counting messenger RNAs In cells

*Fixed cells 3_’_,_‘_! DNA probe

Zenklusen et al. 08
2, MRNA

AAAAAAA Hap|0id

Live cells
Golding et al. 05

AMS2|MS2|MS2|MS2MS2|MS2] Target RNA

GFB. ~ GFP.  GFP.  GFP GFP.

¥ 9 S S Hr 9y

MS2 Binding Sites Target RNA

nl\.IA'




Information Processing in Living Cells:
Beyond First Approximations

Ido Golding

Department of Physics Ce;}‘er for the Physics

ﬂ I L L I N O I S of Living Cells

I UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Caltech 11/2008
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Exploring the mrna distribution
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Exploring the mrna distribution
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Engineering bacteria to report on gene activity

(RNA-tagging protein
in excess in the cell) . MS2-GFP

Gene of interest:

IPTG, arabinose

RNA target

RFP protein
o

Golding et al., Cell (2005)



Measuring mRNA & protein numbers

MRINA o« number of bound MS2-GFPs

oc photon flux from localized green fluorescence
Protein o« number of RFPs

oc photon flux from whole-cell red fluorescence

Histogram of
RNA copy number:

I peak =

inter-peak interval ~
50-100 X GFP =

1 transcript

count

estimated number of transcripts

, Controls:
(x| FISH

10° | :
e mRFP1
10" | 5 L = I ]

=S QPCR

10 |

Controls:
QPCR

Protein levels

induction level

O

o

0.01 0.1 1 1+ARA

Lux: Lutz & Bujard 1997 PTG (M) (Thanks to: A. Raj, A. van Oudenaarden)




RNA kinetics in individual cells

2 MRINA vs time
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MRNA production occurs in bursts
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What is the origin of transcriptional bursts?



MRNA production in E. coll

Experiment
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The Poisson distribution

What is the distribution

of people per square?
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Interactions can change the distribution
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Independent singles: Poisson Valentine s Day: Poisson distribution
distribution of people . of couples
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