
BE/APh161: Physical Biology of the Cell
Homework 2

Due Date: Wednesday, January 30, 2013

“Every calling is a great calling when greatly pursued.” - Oliver Wendell
Holmes

RP to class: for all problems involving the use of some computer code, please
submit your code with the homework.

1. Counting Proteins with Partitioning Statistics.

In this problem we consider the concentration of mRNA or proteins as a
function of time in dividing cells. In particular, the point of this problem is
to work out the concentration of mRNA or protein given that we start with a
single parental cell that has N copies of this mRNA or protein (in the exper-
iments of Golding et al. they watch the mRNA dilution effect while in the
experiments of Rosenfeld et al. this is a fluorescently-labeled transcription
factor). In the Rosenfeld experiment described in the paper you will read,
at some point while the culture is growing, the production of the protein
is stopped by providing a chemical in the medium and then the number of
copies per cell is reduced as a result of dilution as the cells divide.

(a) Begin by reading the paper by Rosenfeld et al. entitled “Gene Regu-
lation at the Single-Cell Level” (posted on the website with the homework)
and write a one paragraph commentary on the paper with special reference
to how they used the partitioning idea that is the subject of this paper. What
is the experiment they did and what were they trying to learn?

(b) For this part of the problem, let’s focus on the protein dilution effect.
Work out a differential equation for the change in protein concentration as
a function of the time that has elapsed since production of the protein was
stopped. Solve the equation and make sure that your result depends upon
the cell cycle time. Note that here we are only interested in the dilution that
results from the original N copies of the protein being partitioned into an
ever-larger number of daughter cells, not in the dilution that occurs as each
individual cell lengthens in preparation for the next round of division. Note
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also that in this part we’re interested in a continuous model—you’ll look at
the discrete version in part (c).

(c) We can repeat a calculation like that given above using a discrete
language. Imagine that before cell division, the number of copies of a given
transcription factor in the cell is N . In particular, for every cell doubling, the
number of proteins is reduced by a factor of 2. Using such a picture, write
a formula for the average number of proteins per cell as a function of the
number of cell divisions and relate this result to that obtained in part (b).
Furthermore, by using the fact that 2 = exp (ln 2), reconcile the discrete and
continuous pictures precisely.

(d) Interestingly, the model used in part (c) opens the door to one of the
most important themes in physics, namely, that of fluctuations. In particu-
lar, as the cells divide from one generation to the next, each daughter does
not really get N/2 copies of the protein since the dilution effect is a stochastic
process. Rather the partitioning of the N proteins into daughter cells during
division follows the binomial distribution. Analyzing these fluctuations can
actually lead to a quantification of the number of copies of a protein in a cell.
In this part of the problem, work out the expected fluctuations after each

division by noting that the fluctuations can be written as
√
< (N1 −N2)2 >,

where N1 and N2 are the number of proteins that end up in daughter cells

1 and 2 respectively. Show that
√
< (N1 −N2)2 > =

√
N (hint: you’ll need

to use the binomial theorem.) I would like you to actually derive the result
as was described in class rather than looking up the properties of binomial
distributions. Also, remember that N1 +N2 = N .

(e) Next, look at the Rosenfeld paper and explain how measuring fluores-
cence variations can be used to calibrate the exact number of copies of the
fluorescent protein in a cell. Assume that the fluorescence intensity in each
cell can be written as I = αN , where α is some calibration factor and N the

number of proteins. Find a formula relating
√
< (I1 − I2)2 > and Itot, where

Itot = αN . Make a plot of
√
< (I1 − I2)2 > versus Itot and explain how to

get the calibration factor α from this plot.

(f) Extra credit: Now we are going to repeat the Rosenfeld experi-
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ment numerically in order to fit the calibration factor. Consider a fluo-
rescent protein such that the calibration factor between the intensity and
the number of fluorophores is 50. Generate intensity data by choosing
N1 + N2 = 10, 50, 100, 1000 and 5000 and for each case, “partition” the
proteins from the mother cell to the two daughters 100 times (i.e. as if you
are looking at 100 mother cells divide for each choice of the protein copy

number). Then, make a plot of the resulting
√
< (I1 − I2)2 > vs Itot just as

we did analytically in the previous problem. What I mean is that you need
to make a plot of all of your simulation results. Then, do a fit to your “data”
and see how well you recover the calibration factor that you actually put in
by hand. Plot the fit on the same graph as all of the “data”.

2. Diffusive Time Scales

In class I noted that the time scale for diffusing a distance L is given by
t = L2/D, where D is the diffusion constant. In this problem, we will for-
mally derive this result. Note that parts (a) and (b) are effectively problem
13.2 of PBoC. Also, reading much of chap. 13 of PBoC will be very helpful
for doing this problem.

(a) Our goal is to find the diffusive profile for some molecular species as
a function of time. If we are given an initial concentration, we can use
the diffusion equation to determine the concentration distribution at a later
time. To that end, consider the one-dimensional diffusion equation in free
space given by

∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2
. (1)

In particular, consider that the initial concentration distribution is given by
c(x, 0) = δ(x), where δ(x) is the Dirac delta function and basically means
that there is a spike at the origin. In particular, you will show that

G(x, t) =
1√

4πDt
e−

x2

4Dt , (2)

where we introduce the Green function G(x, t) to signify that this is the
concentration profile for the special case in which the initial concentration is
the spike at the origin as represented by the delta function.
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To obtain the solution, we will Fourier transform the diffusion equation
in the spatial variable x according to the Fourier transform convention

f̃(k) =
1

2π

∫ ∞
−∞

f(x)e−ikxdx, (3)

and
f(x) =

∫ ∞
−∞

f̃(k)eikxdk. (4)

Using these definitions, Fourier transform both sides of the diffusion equation
to arrive at the ordinary differential equation

dc̃(k, t)

dt
= −Dk2c̃(k, t). (5)

Solve this differential equation to obtain c̃(k, t) and make sure to use the
initial condition c(x, 0) = δ(x) to find c̃(k, 0). Then invert the Fourier trans-
form on c̃(k, t) to find c(x, t). NOTE: You will need to use completion of
the square to carry out the inversion. Make sure you explain all of your
steps. We are big on having you not only do the analysis correctly, but also
to explain what you are doing and why you are doing it. Also, explain why
I said this is the solution for “free space”. Why would this solution fail to
describe diffusion in a finite box?

(b) Using the solution we obtained above, find 〈x〉 and 〈x2〉. In general, we
have that

〈xn〉 =

∫∞
−∞ x

nc(x, t)dx∫∞
−∞ c(x, t)dx

. (6)

Explain what you find for both the first and second moments of the distribu-
tion as a function of time and explain how it relates to the estimated diffusion
time t = L2/D which we use to find the time scale for diffusion over a length
L. Using the Einstein-Stokes relation given by

D =
kBT

6πηa
, (7)

where η is the viscosity which for water is ηwater = 10−3 Pa s and a is the
radius of the diffusing particle, estimate the diffusion constant for a protein
in water and make a log-log plot of diffusion time vs distance (with distances
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ranging from 1 nm to 1 m) and comment on its biological significance. Also,
make a plot of the solution for the point source as a function of time by
showing c(x, t) at various times t using the same diffusion constant.

3. Chemotaxis and Receptor Binding

As described in class, bacterial chemotaxis is claimed to be the best studied
signal transduction problem in biology. In this problem, we work through
some of the statements and results in a few of the classic papers I presented
in class. We develop a feeling for the numbers by examining direct quota-
tions from the experimental papers that have really driven the field recently
as well as a commentary on this work by Dennis Bray. Begin by reading both
of these papers which are attached on the website.

In their 2002 paper in PNAS entitled “Receptor sensitivity in bacterial
chemotaxis”, Sourjik and Berg say: “The changes in receptor occupancy en-
countered by bacteria swimming in spatial gradients (e.g., near the mouth
of a capillary tube in the capillary assay) are very small. For example, in
the tracking experiments, cells about 0.6 mm from the tip of a capillary
tube (consider a pipette with a radius of 5.0 µm) containing 1 mM aspar-
tate moved in a gradient of steepness 0.02 µM/µm at a mean concentration
of about 8 µM. A 10-µm run straight up such a gradient would change the
concentration from 8 to 8.2 µM, i.e., by 2.5 %. Assuming Kd values for as-
partate of 7.1 µM and 62 mM (see above), this step gives a fractional change
in receptor occupancy of about 0.003”. RP to class: the two Kd values
correspond to the fact that two of the different chemotactic receptors (Tar
and Tsr) will bind aspartate, but with quite different affinities. For your
estimates, only consider the smaller Kd since the larger one will be irrelevant
at the concentrations of interest here.

Your job is to carry out calculations that exploit the numbers given above
and using what you know about the definitions of concentration, the size of
E. coli cells and about the meaning of Kd and simple binding curves (i.e.
pbound = (L/Kd)/(1+(L/Kd)), corresponding to the simplest model in which
there is only a single binding site per receptor and there is no cooperativ-
ity between receptors). First, use the steady-state diffusion equation for a
spherically symmetric source to estimate the concentration at 0.6 mm from
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the pipette. The idea is to solve the 3D diffusion equation in spherical coor-
dinates, given that the concentration at the source (i.e. the pipette) is 1 mM
and that the concentration in the far field is zero. (NOTE: we work this out
in chap. 13 of PBoC in a different context, but the ideas are all the same.)
Do you agree with them about the concentration being 8 µM at a distance
of 0.6 mm? Next, examine the statement about the consequences of a 10-µm
run and also about the fractional change in occupancy. Do you agree with
their numbers? Do you agree with the qualitative thrust of their statements?

In his commentary on the paper of Sourjik and Berg, Dennis Bray says:
“The mystery can be expressed in a different way. Estimates of the binding
affinity of aspartate to the membrane receptor of wild-type E. coli typically
give a dissociation constant in the range 15 µM. A bacterium responding to a
change in occupancy of 0.1% is therefore sensing concentrations of aspartate
of a few nanomolar. And yet we know from decades of observations that the
same bacterium is also capable of responding to gradients of aspartate that
extend up to 1 mM. Somehow, E. coli is able to sense aspartate over a range
of at least 5 orders of magnitude in concentration by using just one molecular
species of receptor!”

Your job is to actually do the estimate/calculation that supports the claim
made by Bray. In particular, examine a 0.1% change in occupancy and see
what that means about the change in concentration given that the Kd has
the value claimed. Also, if there is a change of concentration of order a few
nanomolar, how many fewer molecules are there in a box of size 1 µm3 due
to such a concentration difference at the front and back of a cell?
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