
BE/APh161: Physical Biology of the Cell
Homework 3

Due Date: Wednesday, February 6, 2013

“The quality of a person’s life is in direct proportion to their commitment
to excellence, regardless of their chosen field of endeavor.” - Vince Lombardi

Helpful reading - for problem 1, chap. 13 of PBOC is useful. For problem
2, chaps. 6 and 7 provide the relevant background material. Note that in
problem 1, when you actually sit down and try this, you should first attempt
it with the book closed and really think hard about each detail on your own.

1. Diffusive speed limits: It’s not just a good idea, it’s the law

In order for a chemical reaction to take place, the reactants must be at
the same place at the same time. A very interesting calculation explores the
way in which diffusion can control the on rate for reactions. Imagine some
reaction in which A and B come together to form the complex AB. To sim-
plify the problem, we are going to imagine B as a sphere of radius a that is
fixed at the origin of our coordinate system. Further, we are going to imagine
that very far away the concentration of A is held at c0. What I really mean
by this is that limr→∞c(r) = c0, where c(r) is the concentration of reactant
A as a function of distance from the origin. Our goal is to compute the
so-called “diffusion-limited on rate” for the reaction. We begin by working
out the steady-state solution to the diffusion equation with the boundary
condition that c(a) = 0, which corresponds to the physical statement that
the sphere is a “perfect absorber”. What this really means is that every time
a molecule of A arrives at the sphere, the reaction occurs. (Note that this
tells us that the diffusion-limited on rate is the fastest that a reaction could
occur. It could be true that after the molecule arrives, it has to wait for some
favorable orientation to occur, for example, which would make the rate of
the reaction even slower).

(a) Solve the diffusion equation in steady state and find the concentration
profile c(r) as a function of c0 and a.

(b) Use that result to compute the diffusive flux J(a) at the surface of the
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sphere.

(c) Use the result of part (b) to write an equation for dn/dt, the rate at
which A molecules arrive at the sphere and thus the rate of production of
AB. The function n(t) simply tells me how many molecules have arrived at
the “perfect absorber” during the time between t = 0 and the time t.

(d) Now, use the result of part (c) to write an equation of the form

dn

dt
= konc0, (1)

and hence write an expression for kon. This is the so-called Smoluchowski
rate.

(e) Find a numerical value for this diffusion limited on rate, kon. Justify the
units it has and provide an actual numerical value by estimating the relevant
parameters that determine kon.

2. Binding Problems

In class, I have used two different schemes for writing the states and
weights and associated probability for binding. The first version we worked
out used the canonical ensemble and explicitly accounted for the L ligands
that are jiggling around in the vicinity of the receptor. In the second version
of the problem, we used the so-called grand canonical distribution which sup-
presses all explicit reference to the reservoir of ligands. In this problem, we
are going to quickly work through some examples of binding problems that
will give you practice in doing both distributions.

(a) Simple Binding. Consider the case of a receptor that can bind only one
ligand. Show the states and weights for this problem using both the canon-
ical and grand canonical distributions and use them to get the probability
that the receptor is occupied as a function of the concentration of ligand.
Make sure to explain your intermediate steps. I basically did this in class
and it is not here to annoy you or bludgeon you with repetition. The point
is for you to think through all of the details and to explain them.
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(b) Binding to a heterodimer. Consider a receptor with two binding pockets
that can each bind a ligand separately. Again, using the canonical and grand
canonical distributions, work out the average number of bound ligands as
a function of the ligand concentration. NOTE: include cooperative binding
by assuming that when both ligands are bound simultaneously, there is an
additional “interaction” energy ε. What happens to your formula when the
binding energies for the two sites are identical (i.e. a homodimer) and the
interaction energy is 0? Specifically, how does the resulting binding formula
compare to that for simple binding?

3. Chemotaxis and Receptor Binding: Part 2

In class, I noted that chemoreceptors come in groups. Consider the case in
which a cluster of N chemoreceptors works as a “team” in which either all
are active or all are inactive simultaneously, with no middle ground in which
some fraction are active and the rest are inactive.

(a) Using the grand canonical distribution, illustrate the states and weights
for the situation in which N chemoreceptors are assembled into a group that
is either all active or all inactive. Compute the probability that the chemore-
ceptors are active as a function of the concentration of ligands.

(b) In my opinion, one of the most important insights to come out of this
kind of analysis is the idea that all of the data for different mutants can
be “collapsed” onto a single master curve. Read the paper by Keymer et
al. and explain how they obtained the data collapse they show in Figure 5.
Specifically, rewrite your expression from part (a) of this problem in the form

pactive =
1

1 + e−βF
. (2)

What is the specific functional form of F that you get when you rewrite your
activity curve in this way and explain how this relates to the data collapse
revealed in their Fig. 5b.
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