
BE/APh161: Physical Biology of the Cell
Homework 2

Due Date: Wednesday, January 21, 2015

“Doubt is the father of creation.” - Galileo Galilei

1. Number of mRNA

In this problem, we are going to work our way through an estimate of the
number of mRNA molecules found in a bacterium and in a yeast cell. The
idea of the estimate is to try to figure out over the entire set of genes in
the organism, how many total copies of mRNA will be found in the cell. To
do the estimate, we will first consider the case of a bacterium and then for
yeast, we will make the assumption that things play out the same way and
simply scale up our bacterial estimate. Our starting point is the number of
proteins in a cell, which for a bacterium we take to be 3× 106. This means
that in order to make a new cell, this many proteins have to be synthesized
in the 1000-3000 s of the cell cycle (depending upon growth conditions). If
the ribosome translates at a rate of 20 aa/s, figure out a range of values
for how many proteins each mRNA can crank out per minute. The range
comes from how tightly packed the ribosomes are. What is the highest rate
at which translation could occur (hint: think about the size of the ribosome
and how tightly packed they can be)? Now use this to estimate the total
number of mRNAs that are needed to supply the protein needed during a
cell cycle. Provide estimates for both bacteria and budding yeast.

2. Diffusion

We have been interested in making estimates of the time scale associated
with a number of biological processes. One of the most ubiquitous processes
is diffusion, which is our “go to” null hypothesis for how molecules get around
in cells.

In class I noted that the time scale for diffusing a distance L is given by
t = L2/D, where D is the diffusion constant. In this problem, we will for-
mally derive this result. Note that parts (a) and (b) are effectively problem
13.2 of PBoC. Also, reading much of chap. 13 of PBoC will be very helpful
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for doing this problem.

(a) Our goal is to find the diffusive profile for some molecular species as
a function of time. If we are given an initial concentration, we can use
the diffusion equation to determine the concentration distribution at a later
time. To that end, consider the one-dimensional diffusion equation in free
space given by

∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2
. (1)

In particular, consider that the initial concentration distribution is given by
c(x, 0) = δ(x), where δ(x) is the Dirac delta function and basically means
that there is a spike at the origin. In particular, you will show that

G(x, t) =
1√

4πDt
e−

x2

4Dt , (2)

where we introduce the Green function G(x, t) to signify that this is the
concentration profile for the special case in which the initial concentration is
the spike at the origin as represented by the delta function.

To obtain the solution, we will Fourier transform the diffusion equation
in the spatial variable x according to the Fourier transform convention

f̃(k) =
1

2π

∫ ∞
−∞

f(x)e−ikxdx, (3)

and
f(x) =

∫ ∞
−∞

f̃(k)eikxdk. (4)

Using these definitions, Fourier transform both sides of the diffusion equation
to arrive at the ordinary differential equation

dc̃(k, t)

dt
= −Dk2c̃(k, t). (5)

Solve this differential equation to obtain c̃(k, t) and make sure to use the
initial condition c(x, 0) = δ(x) to find c̃(k, 0). Then invert the Fourier trans-
form on c̃(k, t) to find c(x, t). NOTE: You will need to use completion of
the square to carry out the inversion. Make sure you explain all of your
steps. We are big on having you not only do the analysis correctly, but also
to explain what you are doing and why you are doing it. Also, explain why
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Figure 1: Comparison between passive diffusion and active transport in neu-
rons. (a) Schematic of a neuron. (b) An effector molecule is activated and
then diffuses along the axon to the cell body. (c) Receptor is incorporated
into a vesicle and then actively transported by a dynein molecule along a
microtubule.

I said this is the solution for “free space”. Why would this solution fail to
describe diffusion in a finite box?

(b) Using the solution we obtained above, find 〈x〉 and 〈x2〉. In general, we
have that

〈xn〉 =

∫∞
−∞ x

nc(x, t)dx∫∞
−∞ c(x, t)dx

. (6)

Explain what you find for both the first and second moments of the distribu-
tion as a function of time and explain how it relates to the estimated diffusion
time t = L2/D which we use to find the time scale for diffusion over a length
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L. Using the Einstein-Stokes relation given by

D =
kBT

6πηa
, (7)

where η is the viscosity which for water is ηwater = 10−3 Pa s and a is the
radius of the diffusing particle, estimate the diffusion constant for a protein
in water and make a log-log plot of diffusion time vs distance (with distances
ranging from 1 nm to 1 m) and comment on its biological significance. Also,
make a plot of the solution for the point source as a function of time by
showing c(x, t) at various times t using the same diffusion constant.

(c) In their book “Cell Signaling”, Lim, Mayer and Pawson give the classic
story about diffusion in neurons and how diffusion will take prohibitively long
times. See Figure 1 for their depiction of the comparison between passive
diffusion and active transport. Using what we have learned about diffusion,
work out the time for diffusion of a protein over the 10 cm length of a neu-
ron. Compare this to the time for a molecule to be transported actively by
a motor. Do you agree with their assessment that active transport is efficient?

3. Flies by the numbers.

In this problem, like with our treatment of bacteria in class, we try to system-
atically explore some of the quantitative features of the Drosophila embryo.

(a) Make a sketch of an adult Drosophila with scale bars indicating the sizes
of the head, wings and eyes. Using your sketch and your scale bars estimate
the number of cells in the fly eye and the fly wing. For the eye, make sure
you look at the structure of the eye and explain the key elements (see Figure
20.32 of PBOC2, for example). As usual, make sure you provide the rationale
for your estimates.

(b) Do problem 20.2 of PBOC2. This part of the problem is intended to
give a feeling for the time it takes to transcribe genes crucial for embryonic
development.
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4. Hill functions, the good, the bad and the ugly.

As discussed in class, a Hill function is of the form

p(x) =
( x
Kd

)n

1 + ( x
Kd

)n
. (8)

This function is used generically in the biological literature for a host of
different processes where x is concentration and p(x) could be the binding
probability as a function of concentration, the activity of some molecule as
a function of concentration or the probability that a ligand-gated ion chan-
nel is open as a function of concentration. Said differently, people are very
indiscriminate in their uses of this function which ultimately makes it little
more than an unsubstantiated fitting scheme.

(a) Plot such a function for the cases of n = 1, 2 and 4. Comment on
what the “Hill coefficient” tunes.

(b) Imitating the argument for pbound given in class and provided in Sec-
tion 6.4.1 of PBOC2, consider a reaction involving a receptor with two bind-
ing sites. Imagine the reaction

L + L + R ⇀↽ L2R, (9)

where the notation L2R means that the receptor is doubly bound. If we
define the dissociation constant as

K2
d =

[L]2[R]

[L2R]
, (10)

imitating the argument given in Section 6.4.1 of PBOC2, show that we find

pbound([L]) =
( [L]
Kd

)2

1 + ( [L]
Kd

)2
. (11)

Interpret what it means to assume the chemical reaction in eqn. 9. Specif-
ically, what does this whole procedure say about the states of single occu-
pancy?
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(c) Now let’s redo the problem “correctly” by accounting for all of the
states and their corresponding weights. What are the allowed states of this
two-site receptor? Using our statistical mechanics approach described in class
for simple ligand-receptor binding, work out the states and weights and find
expressions for the probability of the empty state p0([L]), the singly-occupied
states p1([L]) and the doubly occupied state p2([L]). For the energy of the
doubly occupied state, consider a total energy of the form 2εb + εint, where
εint is an “interaction energy” that imposes cooperativity in the binding. To
do this problem and to make plots you will need to ascribe actual energies.
Consider the case where εb = −5 kBT and εint = −2 kBT . Make a single plot
using Matlab that has p0, p1 and p2. Use a log axis on the x-axis.

5. Dynamics of Populations.

In this problem, we are going to flex our muscles with the use of Matlab
in order to look at the dynamics of populations. All of our estimates about
the growth of E. coli have focused on the molecular processes that need to
take place in order to grow cells. Interestingly, these molecular details can
be ignored resulting in macroscopic growth equations such as

dN

dt
= rN, (12)

where N(t) is the number of cells in our 5 mL growth tube (for example) as
a function of time.

(a) Using a division time of 30 minutes, work out the value of the param-
eter r and then write a Matlab code and figure out the number of cells as a
function of time given that in your 5 mL tube you started out with one cell
at time t = 0. As an aside, given this growth rate, how long would it take
for the mass of cells from repeated doubling to equal the mass of the Earth?

(b) Obviously, the model written above has the fatal flaw that in the
long-time limit, it doesn’t account in any way for the depletion of resources.
To that end, we introduce the “logistic equation” for population growth that
can be written as

dN

dt
= rN(1− N

K
). (13)

Like you did for the previous part of the problem, integrate this equation
numerically in order to find the number of cells as a function of time. What
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value of K should you use so that the number of cells saturates at 5× 109?

7


