
BE/APh161: Physical Biology of the Cell
Homework 3

Due Date: Wednesday, January 28, 2015

“It is better to debate a question without settling it than to settle a ques-
tion without debating it.” - Joseph Joubert

1. Kinetics of ligand-receptor binding

In class we discussed three different ways of working out the probability of
ligand-receptor binding. I did two of those methods through to completion
and in this problem, you will work out the details of the third of those
methods. We are interested in the quantities pbound([L], t) and punbound([L], t).
I claim that we can write the equation for punbound([L], t) as

dpunbound([L], t)

dt
= −kon[L]punbound + koffpbound. (1)

Explain why this makes sense. Using the constraint that pbound([L], t) +
punbound([L], t) = 1 (why is that true?), eliminate pbound from the differential
equation and obtain an equation strictly involving punbound. Find the analytic
solution to that problem and determine the long time limit for pbound and
demonstrate that it can be written in the same form considered in class,
namely,

pbound([L]) =
[L]/Kd

1 + [L]/Kd

. (2)

Given this result, how does Kd depend upon kon and koff?

2. Diffusive speed limits: It’s not just a good idea, it’s the law

In order for a chemical reaction to take place, the reactants must be at
the same place at the same time. A very interesting calculation explores the
way in which diffusion can control the on rate for reactions. Imagine some
reaction in which A and B come together to form the complex AB. To sim-
plify the problem, we are going to imagine B as a sphere of radius a that is
fixed at the origin of our coordinate system. Further, we are going to imagine
that very far away the concentration of A is held at c0. What I really mean
by this is that limr→∞c(r) = c0, where c(r) is the concentration of reactant
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A as a function of distance from the origin. Our goal is to compute the
so-called “diffusion-limited on rate” for the reaction. We begin by working
out the steady-state solution to the diffusion equation with the boundary
condition that c(a) = 0, which corresponds to the physical statement that
the sphere is a “perfect absorber”. What this really means is that every time
a molecule of A arrives at the sphere, the reaction occurs. (Note that this
tells us that the diffusion-limited on rate is the fastest that a reaction could
occur. It could be true that after the molecule arrives, it has to wait for some
favorable orientation to occur, for example, which would make the rate of
the reaction even slower).

(a) Solve the diffusion equation in steady state and find the concentration
profile c(r) as a function of c0 and a.

(b) Use that result to compute the diffusive flux J(a) at the surface of the
sphere.

(c) Use the result of part (b) to write an equation for dn/dt, the rate at
which A molecules arrive at the sphere and thus the rate of production of
AB. The function n(t) simply tells me how many molecules have arrived at
the “perfect absorber” during the time between t = 0 and the time t.

(d) Now, use the result of part (c) to write an equation of the form

dn

dt
= konc0, (3)

and hence write an expression for kon. This is the so-called Smoluchowski
rate.

(e) Find a numerical value for this diffusion limited on rate, kon. Justify the
units it has and provide an actual numerical value by estimating the relevant
parameters that determine kon.

3. Chemotaxis and Receptor Binding

As described in class, bacterial chemotaxis is claimed to be the best studied
signal transduction problem in biology. In this problem, we work through
some of the statements and results in a few of the classic papers I presented
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in class. We develop a feeling for the numbers by examining direct quota-
tions from the experimental papers that have really driven the field recently
as well as a commentary on this work by Dennis Bray. Begin by reading both
of these papers which are attached on the website.

(a) Write a one-paragraph summary of each of the two papers.

In their 2002 paper in PNAS entitled “Receptor sensitivity in bacterial
chemotaxis”, Sourjik and Berg say: “The changes in receptor occupancy en-
countered by bacteria swimming in spatial gradients (e.g., near the mouth
of a capillary tube in the capillary assay) are very small. For example, in
the tracking experiments, cells about 0.6 mm from the tip of a capillary
tube (consider a pipette with a radius of 5.0 µm) containing 1 mM aspar-
tate moved in a gradient of steepness 0.02 µM/µm at a mean concentration
of about 8 µM. A 10-µm run straight up such a gradient would change the
concentration from 8 to 8.2 µM, i.e., by 2.5 %. Assuming Kd values for as-
partate of 7.1 µM and 62 mM (see above), this step gives a fractional change
in receptor occupancy of about 0.003”. RP to class: the two Kd values
correspond to the fact that two of the different chemotactic receptors (Tar
and Tsr) will bind aspartate, but with quite different affinities. For your
estimates, only consider the smaller Kd since the larger one will be irrelevant
at the concentrations of interest here.

(b) Carry out calculations that exploit the numbers given above and
using what you know about the definitions of concentration, the size of
E. coli cells and about the meaning of Kd and simple binding curves (i.e.
pbound = (L/Kd)/(1+(L/Kd)), corresponding to the simplest model in which
there is only a single binding site per receptor and there is no cooperativ-
ity between receptors). First, use the steady-state diffusion equation for a
spherically symmetric source to estimate the concentration at 0.6 mm from
the pipette. The idea is to solve the 3D diffusion equation in spherical co-
ordinates, given that the concentration at the source (i.e. the pipette) is
1 mM and that the concentration in the far field is zero. (NOTE: we work
this out in chap. 13 of PBoC in a different context, but the ideas are all the
same.) Do you agree with them about the concentration being 8 µM at a
distance of 0.6 mm? Next, examine the statement about the consequences
of a 10-µm run and also about the fractional change in occupancy. Do you
agree with their numbers? Do you agree with the qualitative thrust of their
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statements? Now, to be more realistic, consider the MWC treatment of the
pactive(c) curve we discussed in class. Assume that KI

d = 7.1µM and that
KA

d = 100KI
d . Use ε = 5 kBT for the difference between the inactive and

active states. Assume the cluster size is n = 10 and work out the change
in occupancy using this model rather than the simple binding function we
started with at the beginning of the problem. How does this change our
estimate for ∆p/p compared to the simple binding function?

In his commentary on the paper of Sourjik and Berg, Dennis Bray says:
“The mystery can be expressed in a different way. Estimates of the binding
affinity of aspartate to the membrane receptor of wild-type E. coli typically
give a dissociation constant in the range 15 µM. A bacterium responding to a
change in occupancy of 0.1% is therefore sensing concentrations of aspartate
of a few nanomolar. And yet we know from decades of observations that the
same bacterium is also capable of responding to gradients of aspartate that
extend up to 1 mM. Somehow, E. coli is able to sense aspartate over a range
of at least 5 orders of magnitude in concentration by using just one molecular
species of receptor!”

(c) Do the estimate/calculation that supports the claim made by Bray.
In particular, examine a 0.1% change in occupancy and see what that means
about the change in concentration given that the Kd has the value claimed.
Also, if there is a change of concentration of order a few nanomolar, how
many fewer molecules are there in a box of size 1 µm3 due to such a concen-
tration difference at the front and back of a cell?
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