
BE/APh161: Physical Biology of the Cell
Homework 6

Due Date: Wednesday, February 18, 2015

“You can’t depend on your eyes when your imagination is out of focus.”
- Mark Twain

This problem set is in a way a “midterm” review of everything we have done
so far in the course. My aim is to get you to review all the different topics
we have covered and to bring them together as a full toolkit for examining
important and exciting biological problems. The first few problems revisit
the subject of gene regulation. The third problem invites you to reconsider
the Monod-Wyman-Changeux model of allostery for ion channels and the
final problem flexes your muscles in thinking about diffusion. Useful reading
can be found in chaps. 5 and 13 of PBoC2.

1. Transcriptional Activation.

Consider the process of activation of transcription. We are going to think
about a bacterial promoter. The states and weights for this promoter are
shown in Figure 19.9 of PBOC2. Explain the states and weights for each
state and also comment on the rate of transcription that you expect from
each of those states. Work out the fold-change and plot it as a function of
the number of activators, essentially reproducing Figure 19.29A.

2. Induction.

In class we discussed the “induction” process whereby a chemical (such
as IPTG) binds to a transcription factor and changes its state of activity. In
this problem, you are going to work out the details for yourself for a repressor
molecule that has a single binding site for inducer. When inducer is bound,
the repressor can no longer bind DNA at all. Your goal is to compute the
fold-change in gene expression as

fold-change =
pbound(P, inducer)

pbound(P, inducer = 0)
. (1)
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Specifically, you want to compute the activity as a function of the inducer
concentration. Increasing inducer favors the inactive state of the repressor.
Imagine your parameters such that the active state of repressor binds DNA
with an energy of −15 kBT. Consider that the Kd of the inducer for binding
to the repressor is 100 nM for the active state and 1 nM for the inactive
state. Finally, consider the case in which the active state has an energy
−3kBT lower than the inactive state. (You can mess with these parameters
to see how the system behaves for other values). Make a plot of the fold-
change as a function of inducer concentration using log scale on the x-axis
and comment on they key features of your graph.

3. Toxins and ion channels.

Imagine an ion channel that is gated by the binding of an extracellular
ligand. This ion channel has two binding sites for the ligand.

(a) Write the states and weights for this channel - it can be in either the
closed state with energy εclosed or the open state with energy εopen. The lig-
and binds the closed state with energy εclosedb and the open state with energy
εopenb With the states and weights in hand, work out an expression for the
open probability.

(b) Many toxins alter the ability of ion channels to function. Here we
imagine a toxin that inhibits gating simply by binding to the same site as
the gating ligand. In this part of the problem identify all of the possible
states of the channel and obtain an expression for the open probability as a
function of the concentration of both the gating ligand and the toxin concen-
tration. What is the intuition about how the presence of the toxin inhibitor
alters the probability that the channel will open?

4. Fluorescence Recovery After Photobleaching and Diffusion.

In class I introduced the experimental method known as FRAP (Fluo-
rescence Recovery After Photobleaching). This technique is founded upon
an annoying feature of fluorescent molecules, namely, that if you shine light
on them for too long they stop giving off light. As often happens, people
figured out how to turn this annoyance into something useful. In particular,
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FRAP is often used to learn about the way that different parts of cells are
in diffusive contact.

In this problem, I want you to carry out a full derivation of the concentra-
tion as a function of position and time after photobleaching a cell of radius
25 microns with a “hole” of radius 2 microns. (Looking at the treatment
of the one-dimensional version of this problem in chap. 13 of PBoC will be
helpful. Also, this part of the problem is effectively problem 13.4 of PBoC2.)
For simplicity, ignore the presence of a nucleus, think of the cell as a perfect
circle and imagine the photobleached region as a circle at the center of the
circular cell.

(a) Consider an initial concentration c0 of the fluorescent molecule of
interest which is uniformly distributed throughout the cell. How many
molecules of the fluorescent molecule are there - write an equation that gives
this number?

(b) Before doing any calculations, explain what the final concentration
c∞ will be after infinite time, when the system has returned to equilibrium.
You may assume that once a molecule has been photobleached it is effectively
dead and can be forgotten.

(c) Your goal now is to compute the recovery curve. What this means is
that you need to work out how many fluorescent molecules are in the pho-
tobleached region as a function of time. Make graphs for the case where the
photobleached region is centered about the origin. Make sure when you make
your plots you use reasonable values for the diffusion constant - justify your
choice.

(d) One of the uses of the FRAP technique is to determine the diffusion
constant of various molecules within the cytoplasm of cells. Discuss how that
might work on the basis of the derivation you have given here.

To do this problem you will need the table of zeros of the first derivative
of J0(x) given in the file attached to the homework. Make sure you explain
exactly what you are doing and what your results mean. Also, I want you
to plot the results for the recovery curve for different number of terms kept
in the Bessel series. Use just enough terms in the Bessel series such that
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your answer has 5% accuracy in the region of interest, namely, the FRAPed
region, and tell us how many terms you used.

Here is some stuff that will come in handy when thinking about this
problem. First, you should try to obtain this equation

d2ρ

dz2
+

1

z

dρ

dz
+ ρ = 0. (2)

The only solution to this equation that does not diverge for z → 0 is the
zero order Bessel function J0(z). Next, the boundary conditions at the edge
of the cell will lead to a condition of the form

J ′0(kR) = 0. (3)

Interestingly, the roots of J ′0 are just the roots of J1 because of the identity
J ′0(z) = −J1. The full solution you are looking for will emerge as (make sure
you demonstrate this clearly and convincingly)

c(r, t) = a0 +
∞∑
i=1

aie
−DK2

i tJ0(Kir). (4)

We can determine the coefficients ai using the initial condition c(r, 0). An-
other identity that will prove useful when doing the calculation of the coef-
ficients is:

∫
zJ0(z) dz = zJ1(z).
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