
BE/APh161: Physical Biology of the Cell
Homework 4

Due Date: Wednesday, February 1, 2017

“You can’t depend on your eyes when your imagination is out of focus.” -
Mark Twain

1. Statistical Physics of Ligand-receptor binding

Here we will consider three different ways of working out the probability
of ligand-receptor binding based upon ideas already discussed in class. In
particular, this problem gives you a chance to practice with the “statistical
mechanics protocol” developed in lecture.

(a) Consider the ligand-receptor binding reaction characterized by the kinetic
scheme

L + R ⇀↽ LR. (1)

This reaction is described by a dissociation constant given by the law of mass
action as

Kd =
[L][R]

[LR]
. (2)

Given that pbound is given by

pbound =
[LR]

[R] + [LR]
, (3)

write an expression for pbound that just depends upon [L] and Kd. The result
is the so-called Langmuir binding isotherm, also sometimes known as a Hill
function with Hill coefficient = 1. Make a plot of pbound as a function of [L]
and give a simple interpretation of Kd.

(b) This part of the problem is the main goal of our work, namely, to use
the method of states and weights to work out the probability of different
microstates. Consider the states shown in figure 1 and explain the choices
made for energies, multiplicities and weights and then use these weights to
compute the probability that the receptor is bound. Then, reconcile your
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Figure 1: States and weights for receptor-ligand binding.

expression from part (a) with this result by using the fact that v is the vol-
ume per lattice site in the lattice model. Find an explicit expression for Kd

in terms of the microscopic parameters.

(c) We are interested in the quantities pbound([L], t) and punbound([L], t). I
claim that we can write the equation for punbound([L], t) as

dpunbound([L], t)

dt
= −kon[L]punbound + koffpbound. (4)

Explain why this makes sense. Using the constraint that pbound([L], t) +
punbound([L], t) = 1 (why is that true?), eliminate pbound from the differential
equation and obtain an equation strictly involving punbound. Find the analytic
solution to that problem and determine the long time limit for pbound and
demonstrate that it can be written in the same form considered in class,
namely,

pbound([L]) =
[L]/Kd

1 + [L]/Kd

. (5)

Given this result, how does Kd depend upon kon and koff?

(d) In light of the problem we did last week on the diffusion-limited on rate,
now make a log-log plot of koff as a function of KD.
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2. Waiting time distributions.

The binding problem that we worked out above can be thought of as giving
rise to a time series that looks like a so-called telegraph signal, going back
and forth between 0 and 1. Because the time of switching between bound
and unbound is very fast compared to the time spent in those two states, the
occupancy of the receptor is either 0 or 1.

(a) In light of this, it is interesting to explore the distribution of waiting times
that we spend in the unoccupied or occupied state. To that end, we can use
the interpretation of rates as follows. Consider that the receptor is currently
occupied and we start a stopwatch to measure how long until a ligand hops
off of it. In each instant ∆t, as shown in Figure 2, there is a probability
p+ = koff∆t of hopping off of the receptor. The goal of our calculation is to
work out the probability that the ligand will fall off after a time T = n∆t,
where n is the number of time steps we have to wait until the ligand falls
off. To do so, we imitate the figure by noting that to fall off at time T this
means that the ligand will have to have not fallen off during all the previous
steps. Since we have discretized time into slices of length ∆t, show how to
write the probability as a product of n independent probabilities. Use the
insight that

limn→∞(1− x/n)n = e−x (6)

to show that the probability that the ligand falls off between time T and
T + ∆t is given by

p(T )∆t = koffe
−koffT∆t. (7)

Show that this probability distribution is properly normalized and then com-
pute the average waiting time

〈t〉 =
∫ ∞
0

tp(t)dt. (8)

(b) Later in the term when we talk about molecular motors, we will be in-
terested in molecules that transition between more than two states, but have
exponential waiting times in each of those states. Consider the case of a
molecular motor that has two steps, each with a waiting time distribution
that is exponential like you worked out in the first part of the problem. Using
that, work out an expression for the waiting time distribution for the compos-
ite process made up of those two steps. That is, once again find p(T ) given
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Figure 2: Computing the waiting time distribution. (A) The possible micro-
scopic trajectories that can occur during a time step ∆t. (B) Schematic of
the states during all the time steps leading up to the ligand falling off of the
receptor.

that both t1 and t2 are exponentially distributed, where t1 is the waiting
time for the first step and t2 is the waiting time for the second step. The key
point in formulating your thinking is that you must respect the constraint
that t1 + t2 = T .

3. Transcriptional Activation.

Consider the process of activation of transcription. We are going to think
about a bacterial promoter. The states and weights for this promoter are
shown in Figure 19.9 of PBOC2. Explain the states and weights for each
state and also comment on the rate of transcription that you expect from
each of those states. Work out the fold-change and plot it as a function of
the number of activators, essentially reproducing Figures 19.12 and 19.29A.
Make sure you explain what all the parameter choices you made were and
give some justification, even if it is something as simple as “a few H bonds
gives an energy of ≈ 5 kBT”.
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