
BE/APh161: Physical Biology of the Cell
Homework 2

Due Date: Wednesday, January 18, 2017

“Doubt is the father of creation.” - Galileo Galilei

1. Number of mRNA in a cell.

In this problem, we are going to work our way through an estimate of the
number of mRNA molecules found in a bacterium and in a yeast cell. The
idea of the estimate is to try to figure out over the entire set of genes in
the organism, how many total copies of mRNA will be found in the cell. To
do the estimate, we will first consider the case of a bacterium and then for
yeast, we will make the assumption that things play out the same way and
simply scale up our bacterial estimate. Our starting point is the number of
proteins in a cell, which for a bacterium we take to be 3× 106. This means
that in order to make a new cell, this many proteins have to be synthesized in
the 1000-3000 s of the cell cycle (depending upon growth conditions). If the
ribosome translates at a rate of 20 aa/s, figure out a range of values for how
many proteins can be synthesized from each mRNA per minute. The range
comes from how tightly packed the ribosomes are. What is the highest rate
at which translation could occur (hint: think about the size of the ribosome
and how tightly packed they can be)? Now use this to estimate the total
number of mRNAs that are needed to supply the protein needed during a
cell cycle. Provide estimates for both bacteria and budding yeast.

2. Diffusion

We have been interested in making estimates of the time scale associated
with a number of biological processes. One of the most ubiquitous processes
is diffusion, which is our “go to” null hypothesis for how molecules get around
in cells.

In class I noted that the time scale for diffusing a distance L is given by
t = L2/D, where D is the diffusion constant. In this problem, we will for-
mally derive this result. Note that parts (a) and (b) are effectively problem
13.2 of PBoC. Also, reading much of chap. 13 of PBoC will be very helpful
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for doing this problem.

(a) Our goal is to find the diffusive profile for some molecular species as
a function of time. If we are given an initial concentration, we can use
the diffusion equation to determine the concentration distribution at a later
time. To that end, consider the one-dimensional diffusion equation in free
space given by

∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2
. (1)

In particular, consider that the initial concentration distribution is given by
c(x, 0) = δ(x), where δ(x) is the Dirac delta function and basically means
that there is a spike at the origin. In particular, you will show that

G(x, t) =
1√

4πDt
e−

x2

4Dt , (2)

where we introduce the Green function G(x, t) to signify that this is the
concentration profile for the special case in which the initial concentration is
the spike at the origin as represented by the delta function.

To obtain the solution, we will Fourier transform the diffusion equation
in the spatial variable x according to the Fourier transform convention

f̃(k) =
1

2π

∫ ∞
−∞

f(x)e−ikxdx, (3)

and
f(x) =

∫ ∞
−∞

f̃(k)eikxdk. (4)

Using these definitions, Fourier transform both sides of the diffusion equation
to arrive at the ordinary differential equation

dc̃(k, t)

dt
= −Dk2c̃(k, t). (5)

Note that to do this Fourier transform of the right side, you will need to
use integration by parts twice. Solve the differential equation that emerges
from your Fourier transform to obtain c̃(k, t) and make sure to use the initial
condition c(x, 0) = δ(x) to find c̃(k, 0). Then invert the Fourier transform on
c̃(k, t) to find c(x, t). NOTE: You will need to use completion of the square
to carry out the inversion. Make sure you explain all of your steps. We are
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big on having you not only do the analysis correctly, but also to explain what
you are doing and why you are doing it. Also, explain why I said this is the
solution for “free space”. Why would this solution fail to describe diffusion
in a finite box?

Figure 1: Comparison between passive diffusion and active transport in neu-
rons. (a) Schematic of a neuron. (b) An effector molecule is activated and
then diffuses along the axon to the cell body. (c) Receptor is incorporated
into a vesicle and then actively transported by a dynein molecule along a
microtubule.

(b) Using the solution we obtained above, find 〈x〉 and 〈x2〉. In general, we
have that

〈xn〉 =

∫∞
−∞ x

nc(x, t)dx∫∞
−∞ c(x, t)dx

. (6)

Explain what you find for both the first and second moments of the distribu-
tion as a function of time and explain how it relates to the estimated diffusion
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time t = L2/D which we use to find the time scale for diffusion over a length
L. Using the Einstein-Stokes relation given by

D =
kBT

6πηa
, (7)

where η is the viscosity which for water is ηwater = 10−3 Pa s and a is the
radius of the diffusing particle, estimate the diffusion constant for a protein
in water and make a log-log plot of diffusion time vs distance (with distances
ranging from 1 nm to 1 µm) and comment on its biological significance. Also,
make a plot of the solution for the point source as a function of time by show-
ing c(x, t) at various times t using the same diffusion constant.

(c) In their book “Cell Signaling”, Lim, Mayer and Pawson give the classic
story about diffusion in neurons and how diffusion will take prohibitively long
times. See Figure 1 for their depiction of the comparison between passive
diffusion and active transport. Using what we have learned about diffusion,
work out the time for diffusion of a protein over the 10 cm length of a neu-
ron. Compare this to the time for a molecule to be transported actively by
a motor. Do you agree with their assessment that active transport is efficient?

3. Cell cycle in E. coli.

During our first week of class, we spent a lot of time talking about time scales
of various processes in biology. In fact, I like to think of the cell cycle time as
the standard stopwatch of biology. That is, cells are the individual “quanta”
of biology and the time scale for one cell to make another reflects perhaps
the most important process undertaken by cells. A particularly beautiful and
fun class of experiments on cellular dynamics are those in which time-lapse
imaging is carried out on a microscope resulting in series of images like those
shown in Figure 2. Your task is to analyze one of these movies in order to
measure the cell division time for E. coli. There will be a help session offered
by the TAs that will explain how to load the files and segment them to find
the number of cells as a function of time. Make sure you show how to connect
to the growth equation

dN

dt
= kN. (8)

Specifically, how is k related to the division time?
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4. Post-Translational Modifications and “natures escape from ge-
netic imprisonment”

In a very interesting article (“Post-translational modification: natures es-
cape from genetic imprisonment and the basis for dynamic information en-
coding”), Prof. Jeremy Gunawardena discusses how we should think about
post-translational modifications as a way of expanding the natural repertoire
of the 20-letter amino acid alphabet. Similarly, Prof. Christopher Walsh
(also at Harvard) wrote a whole book entitled “Posttranslational Modifica-
tions of Proteins: Expanding Nature’s Inventory”, again making the point
that by adding chemical groups to proteins we can significantly change their
properties.

(a) Provide at least one mechanistic idea about how adding a chemical group
to a protein can alter its structure or function. Your answer should be offered
in less than a paragraph, but should be concrete in its assertions about how
these modifications change the protein. Why does Gunawardena refer to this
process of post-translational modification as “escape from genetic imprison-
ment”?

(b) As a toy model of the combinatorial complexity offered by post-translational
modifications, let’s imagine that a protein has N residues that are able to be
phosphorylated (NOTE: please comment on which residues these are - the an-
swer is different for bacteria and eukaryotes). How many distinct states of the
protein are there as a result of these different phosphorylated states? Make
an approximate estimate of the mass associated with a phosphate group and
what fraction of the total mass this group represents. Similarly, give some
indication of the charge associated with a phosphate group. What ideas do
you have about how we can go about measuring these different states of
phosphorylation?

(c) In this part of the problem, we make a very crude estimate of the number
of sites on a protein that are subject to phosphorylation. To do so, imagine
that the protein is a sphere with N residues. How does the radius of that
sphere depend upon the number of residues in the protein? Given that es-
timate, what is the number of residues that are on the surface? Given that
number, what fraction of those are phosphorylatable? Remember, these are
crude estimates. Work out these results for a concrete case of a typical pro-
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tein with roughly 400 amino acids.

(d) Let’s close out these estimates by thinking about a bacterial cell. If
all 3 × 106 proteins in such a cell can be phosphorylated with the number
of different phosphorylation states that you estimated above, how many dis-
tinct cells could we make with all of these different states of phosphorylation.
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Figure 2: Cell cycle of E. coli. Phase microscopy and fluorescence microscopy
images of growing E. coli cells.
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