
BE/APh161: Physical Biology of the Cell
Homework 5

Due Date: Wednesday, Feb. 8, 2017

“One of the principal objects of theoretical research in any department
of knowledge is to find the point of view from which the subject appears in
its greatest simplicity.” - Josiah Willard Gibbs

1. MWC Ion Channel: One Equation that Rules Them All

In class, we introduced the idea of allosteric proteins as those that have a
regulatory binding site that cause the protein to switch between inactive and
active states. We worked out the theory of such allosteric proteins in the
specific case of transcription factors such as the Lac repressor. However, the
allostery idea has much broader reach. In this problem, we will take the
same ideas developed in class and apply them to the so-called ligand-gated
ion channels. These channels are relevant in contexts ranging from our neu-
romuscular junctions to the photoreceptors in our eyes to olfactory neurons.
Figure 1 shows two classic examples of these channels.

(a) Write a paragraph that summarizes the function of the two ion channels
shown in Figure 1. The point here is just to make sure you have a little un-
derstanding of their physiological function before we start working out their
statistical mechanical properties.

(b) Make a diagram with your version of the statistical mechanics protocol
showing the states and weights for the nAChR ion channel. Make sure you
explain all of your notation for the parameters that appear here.

(c) Write an equation for the probability that the channel is open popen(c),
where c is the concentration of acetylcholine. How does this equation com-
pare to the equation we wrote for the activity of the Lac repressor as a
function of inducer concentration?

(c) Work out the leakiness, dynamic range and the EC50. Leakiness refers
to the probability that the channel is open in the absence of ligand and can
be thought of as pmin, the minimum probability the channel is open. Dy-
namic range refers to the difference between pmax and pmin, where pmax is
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Figure 1: Key examples of ligand-gated ion channels. (A) Nicotinic acetyl-
choline receptor, revealing it’s heteropentameric structure with two binding
sites for acetylcholine. (B) cGMP-gated ion channel. These channels have
four cGMP binding sites.
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the probability of being open at saturating concentrations of ligand. Find
explicit expressions for both pmin and pmax and then use their difference to
obtain the dynamic range. EC50 is the concentration of ligand at which the
channel is halfway between pmin and pmax.

(d) Figure 2 shows data for the wild-type nAChR ion channel from the lab-
oratory of our own Prof. Henry Lester. With your TAs, use digitizeit to
extract the data and then make a fit using the MWC model you worked out
earlier in the problem. This is Figure 1B of the paper by Labarca et al.
included with the homework. Note that unfortunately, they chose to plot
“normalized current” rather than popen(c). As a result, your fit will have to
be to the normalized current given as

normalized current =
popen(c)− pmin

pmax − pmin

. (1)

I am excited for you to learn how to use Digitizeit because it is liberating:
with it, you can take figures from anyone’s papers and grab their experi-
mental data and export it into a spreadsheet so that you can unleash your
theoretical analysis on it.

2. The Standard Candle: Counting Proteins with Partitioning
Statistics.

(a) Begin by reading the paper by Rosenfeld et al. entitled “Gene Regula-
tion at the Single-Cell Level” (posted on the website with the homework)
and write a one paragraph commentary on the paper with special reference
to how they used the binomial partitioning as a way to count repressor pro-
teins. What is the experiment they did and what were they trying to learn?

In the rest of the problem we work out for ourselves the ideas about binomial
partitioning introduced in the Rosenfeld et al. paper in order to consider the
concentration of mRNA or proteins as a function of time in dividing cells.
In particular, the point of this problem is to work out the concentration of
mRNA or protein given that we start with a single parental cell that has N
copies of this mRNA or protein (in the experiments of Rosenfeld et al. this
is a fluorescently-labeled transcription factor). In the Rosenfeld experiment,
at some point while the culture is growing, the production of the protein
is stopped by providing a chemical in the medium and then the number of
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Figure 2: Ion channel currents as a function of ligand concentration.
(Adapted from Labarca et al., Nature, 1995).

copies per cell is reduced as a result of dilution as the cells divide.
Interestingly, this problem opens the door to one of the most important
themes in physics, namely, that of fluctuations. In particular, as the cells di-
vide from one generation to the next, each daughter does not really get N/2
copies of the protein since the dilution effect is a stochastic process. Rather
the partitioning of the N proteins into daughter cells during division follows
the binomial distribution. Analyzing these fluctuations can actually lead to
a quantification of the number of copies of a protein in a cell.

(b) If we think of the N copies of the protein as being divided between the
two daughters with N1 going to daughter 1 and N − N1 going to daughter
2, write the probability distribution p(N1, N). Next, work out the expected
fluctuations in the partitioning process after each division by noting that the

fluctuations can be written as
√
< (N1 −N2)2 >, where N1 and N2 are the

number of proteins that end up in daughter cells 1 and 2, respectively. Show

that
√
< (N1 −N2)2 > =

√
N . When I do this calculation, I find it conve-

nient to write N2 = N − N1. Basically, this reduces the problem to having
to calculate 〈N1〉 and 〈N2

1 〉 since once you have those two quantities you can
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evaluate
√
< (N1 −N2)2 >.

(c) Next, look at the Rosenfeld paper and explain how measuring fluorescence
variations can be used to calibrate the exact number of copies of the fluores-
cent protein in a cell. Specifically, assume that the fluorescence intensity in
each cell can be written as I = αN , where α is an as-yet unknown calibration
factor and N the number of proteins in the cell. Explain what this equation
means and why you think it is justified. Derive an expression relating I1, I2
and Itot using the result of part (b). Make a plot of

√
< (I1 − I2)2 > versus

Itot and explain how to get the calibration factor α from this plot.

(d) Now we are going to repeat the Rosenfeld experiment numerically in
order to fit the calibration factor. Consider a fluorescent protein such that
the calibration factor between the intensity and the number of fluorophores
is 50, that is I = 50N . Generate intensity data by choosing N1 + N2 =
10, 50, 100, 1000 and 5000 and for each case, “partition” the proteins from
the mother cell to the two daughters 100 times (i.e. as if you are looking at
100 mother cells divide for each choice of the protein copy number). Then,

make a plot of the resulting
√
< (I1 − I2)2 > vs Itot just as we did analyti-

cally in the previous problem. What I mean is that you need to make a plot
of all of your simulation results. Then, do a fit to your “data” and see how
well you recover the calibration factor that you actually put in by hand. Plot
the fit on the same graph as all of the “data”.
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