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Stochastic Dynamics of Microtubules: A Model for Caps and Catastrophes
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We introduce and solve a phenomenological model for the so-called catastrophes, the abrupt
transitions from the growing to the shrinking state of microtubules. The model may explain existing
experimental results and resolve some long-standing apparent contradictions. In particular, the model
reproduces observed catastrophe rates and waiting times for catastrophes upon sudden dilution. It may
also explain why recent experiments fail to measure the GTP content in growing microtubules and
provides a mechanism for so-called coupled hydrolysis.

PACS numbers: 87.10.+e, 05.40.+j, 82.35.+t, 87.22.Bt

Microtubules (MTs) are long and extremely rigid poly-
mers assembled from tubulin—a protein found in eukary-
otic cells. They form an important part of the cellular
scaffold and provide a network of “rails” for active intra-
cellular transport. They also play a crucial role during cell
division, forming a dynamic structure which spatially sep-
arates duplicated chromosomes. Ten years ago, Mitchison
and Kirschner discovered that the polymerization of MTs
from tubulin is a very unusual process: A MT can repeat-
edly, and apparently randomly, switch between persistent
states of assembly and disassembly (see Fig. 1, inset) in a
constant concentration of tubulin [1,2]. This behavior is
observed in vivo as well as in vitro and is referred to as
dynamic instability.

This switching between growing and shrinking states at
one concentration is unusual for a polymer. It is achieved
by an increase in the chemical potential of the monomers
after assembly. The energy required to do this is pro-
vided by hydrolysis of a GTP nucleotide bound to as-
sembling monomers. While thermodynamics thus can
explain the coexistence of the growing and the shrink-
ing states, it cannot explain the dynamics of the tran-
sitions between these states. An interesting possibility,
suggested by Mitchison and Kirschner [1,2], is that tran-
sitions occur as a consequence of competition between
assembly and GTP hydrolysis. A growing microtubule
assembles by the addition of GTP tubulin, which is later
converted to GDP tubulin. In Mitchison and Kirschner’s
scenario, a growing microtubule has a stabilizing cap of
GTP tubulin [2,3]. If hydrolysis overtakes the addition
of new GTP tubulin, the cap is gone, and the MT’s end
undergoes a change to the shrinking state—a so-called
catastrophe. Though it is known that GTP hydrolysis pre-
cedes disassembly, it may not be the rate-limiting process
in the change to a disassembly favoring state, however.
Conformational changes of tubulin or structural changes
of the MT are other candidates; see [4,5] for recent
reviews.

Despite the large amount of experimental and theoreti-
cal work devoted to the cap model, it is still the subject
of controversy [4,6—8]. At the center of the debate are
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seemingly contradictory results about catastrophes coming
from two types of experiments:

(1) When MTs are grown in pure GTP-tubulin solu-
tions at various constant concentrations, the frequency of
catastrophes is one every few minutes and decreases with
increasing concentration [9,10]. This suggests that the
stabilizing cap is longer, hence less apt to be lost, at larger
concentrations. But no cap model has been able to relate
concentration with frequency of catastrophe in a manner
quantitatively resembling the observed relationship.

(2) In dilution experiments the concentration of tubu-
lin is abruptly reduced to zero, resulting in catastrophes
within seconds, independent of the initial concentration
[11,12]. This suggests that the cap is short and indepen-
dent of the concentration at which it is formed.

In this Letter, we show how a simple stochastic
cap model may resolve these apparent contradictions.
Their wide temporal range of behavior—from seconds to
minutes—is explained in terms of tubulin assembly and
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FIG. 1. Catastrophe rate, fc., versus growth velocity, v,.
Dots with error bars: experimental results [9]. The horizon-
tal error bars represent the standard error in the mean (SEM)
v, for the sample, the vertical bars the SEM for the catastrophe
rate. Full and dashed curves: first (ao/ty) and second (Dr/v)
expression for the catastrophe rates in Eq. (5) fitted to experi-
mental results. Inset: length as a function of time for a single
microtubule. Data are taken from Ref. [20].
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transformation, processes which occur over time scales
shorter than tenths of seconds. In formulating this model,
we were inspired by the many previous attempts; see [7]
for a review. Our model, however, neglects molecular
details, contains only a few parameters to be fitted, and
is sufficiently simple to allow its solution to be obtained
analytically in most cases of interest. Its predictions agree
well with the experimental results cited above.

A simple stochastic model. —Our model can be consid-
ered an effective theory for phenomena on length scales
resolved with optical microscopy used in the studies of
MT dynamics (typically ~0.5 pm). It is designed to in-
clude as little as possible from the “microscopic” length
scale set by the tubulin monomers (=8 nm). Therefore,
we neglect the tubular shape of microtubules, the structure
of the growing ends, the molecular details of the assembly
process, and the nature of the transition that prepares
the tubulin monomers for disassembly after they have
been included in a MT. We assume only that there are
monomers which polymerize in one state, A, with the po-
tential to change to another state, B. Monomers assemble
at the growing tip at a rate k,, and each adds a length
éx to the MT. Thus the polymer will grow with average
velocity v, = kg8x. We also assume that the transforma-
tion from state A to state B is stochastic, occurring with
rate x4p, when an A monomer neighbors a B monomer
(an induced transformation), and rate x4 when it does
not (a spontaneous transformation); see Fig. 2. An exist-
ing interface between an A section and a B section of the
polymer moves thus with average velocity vap = k46,
while new interfaces are created in the interior of an A
section with rate (per unit length) r = «z/8x. Finally,
fluctuations on the microscopic scale dx are modeled with
an effective “diffusion constant” D as follows.

The A section located at the end of the polymer is the
cap in our model: its disappearance results in a catastrophe

Cap .

L ]
:::—J As are added
— from solution

A~ B transformation
induced by neighboring B

Later time

Spontaneous
A-= B transformation

FIG.2. A MT consisting of A (black) and B (white)
monomers of length &x, growing by addition of A monomers
with rate «,. Sections of A are transformed to B at rate
xap/monomer from their ends (induced) and rate «},/monomer
from their interior (spontaneous). Spontaneous transformations
produce B regions of zero length which spread by induced
transformations; some spreading has already occurred by the
time of the second view.

of the MT. We focus our attention on the evolution of
this cap. Its length x increases at an average velocity
v = v, — vap, With fluctuations determined by D =
%(Kg + Kpp)x2 = %(vg + vap)éx. Occasionally, the cap
is shortened to any fraction of its length by a spontaneous
transformation in its interior.

Our model is summarized in the master equation for the
distribution of cap lengths, p(x, 1),

3;p = —vi,p + Daip - rxp + rf dy p(y,t). (1)

On the right-hand side of this equation, the first term
describes the average growth of the cap’s length between
its abrupt shortening by spontaneous transformations in its
interior. The second term describes the fluctuations, i.e.,
the random walk superposed on this average growth. The
third term is the rate at which caps of length x are abruptly
shortened. Finally, the last term is the rate at which caps
longer than x are shortened to length x. We impose
an absorbing boundary condition at x = 0, p(0,7) = 0,
since a catastrophe occurs when the cap shrinks to zero
length. The initial condition for Eq. (1) depends on the
experiment under study.

This model resolves the apparent contradictions in
the experimental results. At tubulin concentrations for
which v, > v,p, the cap grows with velocity v > 0
between spontaneous transformations, abruptly reducing
its size. Catastrophes are relatively infrequent, because
they occur only when such a spontaneous transformation
happens to occur close to the tip of the cap, and the
short cap resulting from this happens to disappear by the
fluctuations (parametrized by D).

By contrast, in a dilution experiment v, =~ 0, hence
v = —vup < 0. In this case the first term in Eq. (1) co-
operates with the spontaneous transformations to quickly
shrink the cap to zero size. This shrinking takes place
roughly in two stages. Initially, spontaneous transfor-
mations dominate the shortening; eventually, the cap
becomes short enough that it disappears because of the
induced transformations. The fact that spontaneous trans-
formations dominate the early stages of shortening results
in the time required for the cap to disappear being nearly
independent of the initial cap size.

To make contact between model and experimental
results, we consider the constants v, r, and D appearing in
Eq. (1). They are functions of v, vsg, &, and r. v, can
be found directly by measuring the growth velocity of the
MT. &x is known, equal to 0.6 nm [13]. The remaining
constants, r and wvup, are specific to our model and not
directly observable in current experiments. MTs are polar
objects, and their two ends, conventionally called plus
and minus, behave differently. We expect vap to be
different at the two ends, while the rate r of spontaneous
transformations should be the same at both ends. Thus we
need only three parameters, u,:,; , Uag, and r, to describe
the dynamics of the two ends of a MT.
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Equation (1) can be solved analytically, see below.
We compare its predictions with recent experiments.
Figure 1 shows the catastrophe rate as a function of
growth velocity for the plus end of MTs [9]. Figure 3
compares with the results of dilution experiments for
both ends, taken from Ref. [12]. From the top half
of this figure, we see that the waiting time before
catastrophe is indeed nearly independent of the initial
growth velocity. This allows one to group the data
and show the distribution of waiting times as done
in the bottom portion of this figure. The theoretical
curves in Figs. 1 and 3 were fitted simultaneously to
the experimental data using v,(:,}), vf&;), and r as fitting
parameters, giving v,(;;) =0.21 = 0.01 ummin~!, v;;) =
0.22 + 0.01 wmmin~!, and r = 360 = 20 xm min~".
With these values, the cap of a growing microtubule
contains roughly 40/v/vsp monomers, as long as
ve = 0.3 m min !

The level of agreement between theory and experiment
shown in Figs. 1 and 3 is surprising, given the simplicity
of the theory. It is encouraging that one can model
the collective behavior of a complex system of proteins
quantitatively, and that with a model so simple it can be
solved analytically.

Delay before catastrophe (s)

Number of events

10 20
Delay before catastrophe (s)

FIG. 3. Delays before catastrophe following dilution.
Data taken from Ref. [12]). (a) and (c): plus end; (b) and
(d): minus end. (a) and (b): delay as a function of initial
growth velocity. Each point represents a single measurement
on a MT. Curves are theoretical mean (solid) and standard
deviation (dashed) of the delay, from Egs. (6) and (7). (c)
and (d): histograms showing the experimental distribution of
delays before catastrophe. The curves are fits of the theoretical
distribution given in Eq. (6). Dilution was initiated at t+ = 0
and required some time (6.1 s when used as a free parameter in
our fit) for completion.
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Solving the model.—We now sketch the solution of
Eq. (1). Equation (1) is equivalent to

8P = (—vd, + D3> — rx)P, )

where P(x,t) = f: dy p(y,t). This can be seen quite eas-
ily by inserting the definition of P(x,) into Eq. (2). We
introduce dimensionless variables & = x/xg, 7 = t/tg,
and y = viy/2x9, where xo = (D/r)'? and 1y =
(Dr*)~1/3.  Defining P(&,7) = exp(—vx/2D)P(x,1),
Eq. (2) takes the form 9,P(£,7) = (97 — & — ¥?) X
P(&,7). Since P by its definition must vanish for £ — <,
its general form is

P&, T) = [dac(a)exp(—aT)Ai(f +y2 = a), 3

where Ai(¢) is the first Airy function [14]. The absorbing
boundary condition, p(0,#) = 0, is equivalent to

-Ai'(y? — a) = yAi(y? — a), (4)

which is solved only by a discrete set of relaxation rates,
ar(y), k =0,1,2,....

When y > 0, there is a gap of order y? between the
slowest relaxation rate, ag, and higher rates. Conse-
quently, P(£,7) quickly approaches its asymptotic form,
so fast that faster modes do not show in experimental data,
we find. Thus, all observed catastrophes are Poisson dis-
tributed in time with rate
L g le * van

Dr
fcal = C1’0(')’)/t0 ~ T = Ir R
v 2 UV, — Uap

()

where the approximation follows from the asymptotic
form of the Airy function in Eq. (4) [14]. Equation (5)
shows that the catastrophe rate has a finite limit, réx/2,
for vgy/vap — , the same for both MT ends. This
prediction is consistent with experimental results for the
minus end given in Fig. 7 of Ref. [11], but a significant
test requires the collection of more data.

In dilution experiments, MTs are first grown in a high
concentration of tubulin, giving a high assembly rate, vy,
then submitted to rapid and massive dilution to induce
catastrophes and disassembly [11,12]. Under both these
conditions, it is a good approximation to treat D as equal
to zero. In this approximation we find the distribution
in time of catastrophes upon sudden dilution, pc..(), by
solving Eq. (2), using for initial condition the steady-state
solution that it has before dilution. We find

1t
_4<t>gat ) ' ©)

where the average delay (r).., before catastrophe is

2r|v;| o\ ~ \"
<t>ca! = = 1+ f = . (7)
T v, 2rlvyl

Here v; < 0 and vy, > 0 are the predilution and postdi-
lution cap growth velocities, respectively. The approxi-
mations employed here may be justified by comparing

Tt
() = —0,P(0,1) = ——ex
Pear(t) P(0,1) 2<t>ga[ p(
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the results given here with results obtained by exact nu-
merical solution of Eq. (1) [15]. Here we just note that
Egs. (6) and (7) agree with experimental results, as shown
in Figs. 1 and 3.

We have presented here a phenomenological model
for catastrophes, without determining the underlying mi-
croscopic picture. Progress in structural studies should
permit connecting the phenomenological and microscopic
descriptions. Most likely, catastrophes will be described
as a superposition of biochemical (e.g., GTP hydroly-
sis, release of products, etc.) and structural changes (e.g.,
conformational changes in tubulin, “closing” of protofila-
ments into tubes [16], etc.).

If we identify A monomers with GTP tubulin, our
model also predicts the outcome of a third type of
experiment, in addition to the two types mentioned in
the introduction. These experiments carefully measure
the GTP content of rapidly grown MTs, but fail to find
any [17,18]. This indicates that the GTP content of
MTs always is small and/or able to hydrolyze before the
measurements are made. According to our model, the cap
is not the only patch of A monomer at a MT end; see
Fig. 2. But the cap is typically the largest patch of A
monomers. Hence, the time (f).,; ~ 8.6 s obtained from
Eq. (7) forvy = —vsp = —0.22 um min ~! overestimates
the average lifetime of A monomers/GTP in a MT. Thus
our model predicts that virtually all GTP is hydrolyzed
in the 20 s dead time after growth is interrupted and
before measurements are done, in full agreement with the
experimental observations [18].

Each patch of A monomers found on the trail of the cap
in Fig. 2 shrinks with velocity v,(f;) + v,(@), independent
of the MT’s velocity of growth v,. But the number
of patches adjusts dynamically to v,, ensuring that the
total rate of conversion of A to B monomers equals the
rate of addition of A monomers at steady growth. If
this conversion is hydrolysis, this adjustment is the much
sought mechanism for so-called “coupled hydrolysis.”

When loss of the cap causes disassembly from the
end of the MT, and disassembly reaches a left-behind
patch of A monomers, it continues right through it, we
propose. This implies the existence of additional elements
of the dynamics, such as the A — B transformation is
propagated in front of the disassembling tip. The reversal
of disassembly to assembly, called rescue, thus requires
something more than a leftover patch of A monomers,
according to our model [19].

This issue of rescues and many other questions have
to be resolved before we fully understand dynamic
instability, even on a phenomenological level. We hope
that the model presented here is a useful step toward a
more physical, quantitative approach in the study of these
fascinating phenomena.
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FIG. 2. A MT consisting of A (black) and B (white)
monomers of length &, growing by addition of A monomers
with rate «,. Sections of A are transformed to B at rate
«ap/monomer from their ends (induced) and rate «/,,/monomer
from their interior (spontaneous). Spontaneous transformations
produce B regions of zero length which spread by induced
transformations; some spreading has already occurred by the
time of the second view.



