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Microtubule dynamics: Caps, catastrophes, and coupled hydrolysis
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An effective theory is formulated for the dynamics of the guanosine triphosglEate) cap believed to
stabilize growing microtubules. The theory provides a “coarse-grained” description of the cap’s dynamics.
“Microscopic” details, such as the microtubule lattice structure and the fate of its individual tubulin dimers,
are ignored. In this cap model, GTP hydrolysis is assumed to be stochastic and uncoupled to microtubule
growth. Different rates of hydrolysis are assumed for GTP in the cap’s interior and for GTP at its boundary
with hydrolyzed parts of the microtubule. Expectation values and probability distributions relating to available
experimental data are derived. Caps are found to be short and the total rate of hydrolysis at a microtubule end
is found to bedynamicallycoupled to growth. The so-callechtastrophe ratds a simple function of the
microtubule growth rate and fits experimental data. A constant nonzero catastrophe rate, identical for both
microtubule ends, is predicted at large growth rates. d@hkmy timefor dilution-induced catastrophes is
stochastic with a simple distribution that fits the experimental one and, like the experimental one, does not
depend on the rate of microtubule growth before dilution. B¥P contenf microtubules is found and its
rate of hydrolysis is determined under the circumstances created in an experiment designed to measure this
GTP content. It is concluded that this experiment’s failure to register any GTP content is consistent with the
model. A recent experimental result for the size of the minimal cap that can stabilize a microtubule is shown
to agree with the result predicted by the cap model, after its parameters have been extracted from previous
experimental results. Thus the effective theory and cap model presented here provide a unified description of
several apparently contradictory experimental data. Experimental results for the catastrophe rate at different
concentrations of magnesium ions and of microtubule associated proteins are discussed in terms of the model.
Feasible experiments are suggested that can provide decisive tests of the model and determine its three
parameters with higher precisiof81063-651X96)09810-§

PACS numbgs): 87.10:+e, 05.40+j, 87.22.Bt, 82.35+t

I. INTRODUCTION explain the coexistence of the growing and the shrinking
states, it cannot explain the dynamics of the transitions be-
Microtubules(MTs) are long and extremely rigid, tubular tween these states. An interesting possibility, suggested by
polymers. They assemble from tubulin, a protein found inMitchison and Kirschnef1,2], is that transitions occur as a
eukaryotic cells, which “crystallizes” to form a helical lat- consequence of competition between assembly and GTP hy-
tice (see Fig. 1 Microtubules form an important part of the drolysis. A growing microtubule assembles by the addition
cellular scaffold and provide a network of “rails” for active of GTP tubulin, which is later converted to guanosine
intracellular transport. They also play a crucial role duringdiphosphate(GDP) tubulin. In Mitchison and Kirschner's
cell division, forming a dynamic structure that spatially sepa-scenario, a growing microtubule has a stabilizoag of GTP
rates duplicated chromosomes. Twelve years ago, Mitchisotubulin [2,3]. If hydrolysis overtakes the addition of new
and Kirschner discovered that the polymerization of MTsGTP tubulin, the cap is gone and the MT’s end undergoes a
from tubulin is a very unusual process: a MT can repeatedlychange to the shrinking state, a so-calledtastrophe.
and apparently randomly, switch between persistent states dhough it is known that GTP hydrolysis precedes disassem-
assembly and disassembly ircanstantconcentration of tu-  bly, it may not be the rate-limiting process in the change to a
bulin [1,2]. This behavior is observeith vivo as well asin disassembly-favoring state, however. Conformational
vitro (see Fig. 2 and is referred to adynamic instability changes of tubulin or structural changes of the MT are other
This switching between growing and shrinking states atandidates; seft—6] for reviews.
one concentration is unusual for a polymer. It is achieved by Despite the large amount of experimental and theoretical
an increase in the chemical potential of the monomers aftework devoted to the cap model, it is still the subject of con-
assembly. The energy required to do this is provided by hytroversy[4,5,11,12. At the center of the debate are seem-
drolysis of a guanosine triphosph&t@TP) nucleotide bound ingly contradictory results about catastrophes, GTP contents,
to assembling monomers. While thermodynamics thus caand the cap size coming from three types of experiments.
(i) When MTs are grown in pure GTP-tubulin solutions at
various constant concentrations, the frequency of catastro-
“Present and permanent address: Department of Optics and Flujgthes is one everfew minutesand decreases with increasing
Dynamics, Risg National Laboratory, DK-4000 Roskilde, Den-concentratior[13,14]; see Fig. 4 below. This suggests that
mark. the stabilizing cap is longer, hence less apt to be lost, at
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FIG. 2. Length as a function of time for a single microtubule.
Data are fron{10].

thereby resolving these apparent contradictions. The wide
temporal range of behavior of the first three experiments
enumerated—from seconds to minutes—is explained in
terms of tubulin assembly and transformation, processes that
occur over time scales shorter than tenths of seconds. In
formulating this model, we were inspired by the many pre-
vious attempts; segt] for a review.

All mathematical derivations in the article itself are heu-
ristic, with the emphasis on the modeling of mechanisms.
But all heuristic results are backed by rigorous analysis given
in the Appendixes.

Specifically, the article is organized as follows. Section Il
motivates our use of an effective theory and explains what it
is, for the benefit of readers to whom the concept is unfamil-
iar. Section Il introduces the theory, or model. Section IV
presents a heuristic analysis of the model. It is an attempt to
understand as much as possible from the assumed dynamics

FIG. 1. Microtubule shown as five-start helical lattice of het- of the mode|, emp|oying a minimum of calculations. Sec-
erodimers, the so-called lattice. Dimers are shown as vertical tions \V=XI discuss specific types of experiments, essentially
pairs of dark and light spheres, which represent monomessasfd e type per section. In each section the experiments are
B tubulin, and are _arranged end to end ir_1 13 so-called protofilabrieﬂy explained with the issues they address, we give the
ments[7]. Other lattice structures are possip&9]. aspects of the model that are relevant for its comparison with

larger concentrations. But no cap model has been able tfie experiments in question, and discuss the comparison. We
relate concentration with frequency of catastrophe in a manS€€ @ careful discussion of model and individual experiments
ner quantitatively resembling the observed relationship.  in the light of each other as the only proper way to test the
(ii) In dilution experimentshe concentration of tubulin is Model and to isolate new experimental questions. Section
abruptly reduced to zero, resulting in catastrophes within<ll contains the discussion. Section XIll lists suggested ex-
secondsindependent of the initial concentratifts,16; see ~ Periments. Section XIV contains our conclusions.
Fig. 5 below. This suggests that the cap is short and inde- Appendix A collects our notation, which is introduced
pendent of the concentration at which it is formed. wherever needed throughout the article. Six additional ap-
(|||) In experiments attemp“ng to measure the GTP Conpendixes contain the mathematical anaIySiS of the model and
tents of microtubules grown in a manner to assure maximalfs adaption to specific experimental situations. These appen-
GTP contents, no GTP can be found after the 15—20 s dedéiXes provide the mathematical underpinning of the article,
time of the experimenit17]. which no heuristic analysis can provide. The model pre-
Successful models should also be able to explain a ranggented in this article was described briefly, with an equally
of other observations: that the distribution of catastrophdrief comparison with some experiments,[&1].
times is nearly exponentigl8], that a small cap assembled
from a nonhydroly_zable G_TP analog can stabilize a_microtu- II. MICROTUBULE STRUCTURE AND MOTIVATION
bule[19], that cutting a microtubule usually results in a ca- FOR AN “EFFECTIVE” THEORY
tastrophg 20], and others.
In this article we show how these experiments are de- The general structure of a microtubule is shown in Fig. 1.
scribed naturally by the same simple stochastic cap models is a tube formed from dimers arranged in a helical pattern.
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Each dimer consists of two closely related polypeptides, lll. AN EFFECTIVE THEORY
called @ and B tubulin. In solution, these are bound very Since our goal is an effective theory, we only need the

F"ghtly toge”ther, gnd this tubulin d|r.ner.plays the_role of the o jest description of what goes on at the microscopic level.
monomer” of microtubule polymerization. We will use the 4 e gpecific, we are not concerned with the tubular shape
two terms, dimer and monomer, interchangably. The dimerg¢ microtubules. Nor are we concerned with the dimer form
are arranged along the microtubule in a head-to-tail pattermy ihe tubulin, as the dimers effectively function as mono-
forming a “protofilament.” Microtubules in living cells usu- mers in the polymerization process. We do, however, take
ally have 13 protofilaments, but ones assemitedtro may  into account aonsequencef the heterodimer form of tubu-
have a range of protofilament numbers. lin: it gives a definite overalpolarity to the microtubule,
The literature contains several rather detailed cap modelsiith the consequence that its two ends differ, as illustrated in
see[4,5] for reviews. A priori, the detailed accounting of Fig. 1. In terms of structure, one end terminates itubulin,
these models for the fate of individual tubulin dimers maywhile the other terminates if8 tubulin. In terms of dynam-
seem both necessary and advantageous. In practice, howevies, one endconventionally called the plus endolymerizes
the experimental data available are insufficient to determinéaster than the othdralled the minus endlt is not yet clear
many free parameters. The available data do not provide diwhether the plus end is the-terminating orB-terminating
rect information about the “microscopic” processes de-end. In the present section we formulate the model for one
scribed by these models. The data were taken with light miend without specifying which, since we describe both ends
croscopes that are resolution limited to seeing changes d¢fith the same model, with only some of the rate constants
several hundred monomers. The microtubule itself is seefliffering.
only as a change in optical density where it is located. The
data also are not sufficiently precise to allow us to deduce the A. Microscopic description

proper values of microscopic parameters from their “macro-  Consider monomers that polymerize at one end with a

scopic” consequences. rate constank, for addition, each contributingx to the
We choose an alternative approach to modeling by aimingength of the polymer. Thus the polymer end will grow with

for an effectivetheory containing as few details as possible.average velocity

By an effective theory we mean a theory that is not formu-

lated in terms of fundamental variables and phenomena, but vg=KgdX. @

in terms of fewer variables on a coarser scale. Ideally,

an- . . . .
. ) . he monomers in question are tubulin heterodimers, known
effective theory and its parameters are then derivable fro d

M & be 8 nm long, and we can assume a microtubule has 13

fundamental, microscopic theory aitd parameters. rotofilaments. So we know that each monomer added to it
Several data sets are available from experiments investsoniriputes with 8 nm/13= 0.6 nm to its length, i.e., we

gating different manifestations of the cap. None of the existy o\ that

ing models have been able to explain more than selected

aspects of the data. So the data can discriminate against mod- 6x=0.6 nm. (2

els. On the other hand, it is clear from the data that a model

should contain only a few free parameters if they are to be In @ normal polymerization processes, the on fiafds

unambiguously determined by the fit. More parameters willusually accompanied by an off rate and the growth velocity

result in ambiguities in their determination. vg, wh@_h is observed in experiments, is the net.eﬁect of the
Thus we know that we should not be concerned with thef@mpetition bgtween these two rates. However,.m the case of

details of the microtubule lattice. With its 13 protofilamentsmlcrOtUbUIGS it has been demonstrated experimentally that

and its five-start helical structure for the lattice of tubulin the off rate is zerg13). Co_nsequeptly, the value &, can be
calculated from Eq(1), since 6x is known andv4 can be

dimers, we would have to introduce a multitude of param- L . )
P bserved. This is important becausgis more than just an

eters to describe the various cap configurations in such : . ) : X .
) ) - alternative representation of the information contained in
microscopic description, as some models [d@,22. We : "
vg. It parametrizes a random process, the additio@oto

know, of course, that it is at this microscopic sceed even the length of the microtubule. Theverageoutcome of this
;maller scalgsthat the re_Ievant. Processes take pIa_ce. Theyrocess is described as continuous growth with constant ve-
idea of a GTP cap model is that it is GTP molecules ligandeq, .y, vg. But superposed on this, there is the difference
to individual tubulin dimers that are hydrolyzed, therebypanveen the actual and the average outcomeyrdmased
changing a given dimer from being part of the cap to nNogndom process that we witiot ignore [23—25.
longer being that. But this does not oblige us to carry out our \we think of the monomers as tubulin-t that will hydrolyze
modeling at this microscopic length scale. That is why weto tubulin-d since that is the general scenario of GTP cap
aim for an effective theory. models. But, strictly speaking, this does not matter for our
The length scale that we here refer to as microscopic igffective theory. What matters {§) that polymer ends grow
the molecular scale of tubulin heterodimers, the monomerby addition of monomers that are anestate,(ii) that these
of the polymer that is a microtubule. It is 5-10 nm. The monomers, once added, can and will change different
effective theory is formulated on a coarser length scale, unstate, and (iii) that the first state keeps a growing
able to resolve the three-dimensional structure of a microtumicrotubule-end growing, whiléiv) the second state causes
bule, which consequently is seen as a one-dimensional ola “catastrophe” if it extends to the end of the microtubule.
ject. The difference between the two states needs not be the dif-
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ference between GTP and GDP. It can, for example, be

5541

purely configurationdl5]. In the remainder of this article we Cap ‘ .
will continue to use the terms tubulin-t, tubulin-d, and hy- - é/t‘sare added
drolysis as convenient terms for the two states and the pas- - p— from solution
sage from one to the other. But it should be remembered that t-= d hydrolysis
we have not committed the effective theory to the literal  induced by neighboring d
meaning of these labels. )

We assume that hydrolysis is a stochastic phenomenon, Later time
occurring with rate constark, where a tubulin-t monomer

. . Cap
neighbors a tubulin-d monomer and rate conskgntwhere P
it does not; see Fig. 3. Thus a section of the polymer end that S N —

consists entirely of tubulin-t will hydrolyze from its borders T

with tubulin-d with average velocity spontaneous t > d

v =KX, &) hydrolysis
where the value of, may dependthroughky) on whether
the border moves towards the plus or the minus end becau%c:f\I
Qf th? inherent polarity of the m'crOFUbUIe' Below; we dis- rate k. Sections of tubulin-t hydrolyze to tubulin-d at a r&g
tinguish between those two cases with the notatiph and  from ends and ratd, from interior. Sections of tubulin-t inside
vﬁf). In general, this hydrolysis moving in a specific direc- polymer disappear by hydrolysis, while the end section, “the cap,”
tion is referred to avectorial hydrolysis. grows with velocityv =vy—v,=(kg—k,) 8x and is broken into a
In the interior of a section of polymer that consists of shorter cap plus another section of tubulin-t at natek;/éx per
tubulin-t, new borders are formed with a rate unit length per unit time. The cap grows with velocitythat is the
difference between the velocity, with which the microtubule
grows and the velocity, with which the “hydrolysis front”

moves.
per unit length per unit time. This rate is the same at both

microtubule ends, since it describes a process that is naetibule encounters such a leftover patch of tubulin-t, then this
oriented relatively to the microtubule’s polarity. One might patch doesiot cause so-called rescue, i.e., it does not con-
refer to it asscalar hydrolysis. stitute a new cap that brings the microtubule end back in the

We do not know the values of the rate constagfsand  growing state. On the contrary, we assume that the microtu-
ki, . They are model parameters that must be determined blyule depolymerizes uninhibited by the patch. We imagine
fitting the model’s results to experimental data. Sidseis  that the tubulin-d oligomers known to “curl” off depolymer-
known,v,, andr are an alternative pair of model parameters,izing microtubules gain sufficient energy by their change to
entirely equivalent td;, andk;, as long as we keep in mind this configuration that they, when bordering a patch of
thatky, like ky, also parametrizes a random process, in thigubulin-t, are able to sever the lateral bonds between
case the removal afx from the length of a tubulin-t section protofilaments made of tubulin-t. Thus the model presented
of the microtubule. The velocity,, describes the average here does not provide a mechanism for rescues, which pre-
outcome of this process, but we will also account for thesumably are due to an entirely separate phenomecon-
fluctuations around this average in order to obtain catastrosider the results of26—-28).
phes in growing microtubules.

Now consider a section of the polymer that consists en-
tirely of tubulin-t and is located at the end of the polymer. It
will be referred to as the cap. On the average, this cap growg,
with velocity

FIG. 3. Polymer consisting of tubulin-t and tubulin-d monomers
ength 8x, growing by the addition of tubulin-t monomers with

r=kj/ ox 4

B. Getting rid of the microscopic description

Neither the rate' nor the velocities, vy, andvy, carry
y information about the microscopic length scéle nor
about the rateper monomer kK, k,, andk;,. So as long as
we use only the quantities v, vy, andvy, in our descrip-
tion, we can ignore the existence of a microscopic scale.
but hydrolysis of its interior breaks it into a shorter cap andMathematically formulated, we can take the limik—0
another section of tubulin-t at a rat&, wherex is the in-  while keepingr, v, v4, andvy, at fixed values; they are of
stantaneous length of the cap. The length of the resultingrder zero indx.
shorter cap is any fraction of with equal probability since We will, however, retainone consequence of the exist-
the process of interior hydrolysis that cuts the cap down irence of the microscopic scale in our effective theory: While
size occurs with equal probability anywhere along its lengththe lengthx of a capon the averagegrows with velocityv
When the cap is cut into two pieces in this way, thebetween events of internal hydrolysiiictuationsaround
“piece” of tubulin-t that is not the new, shorter cap is hy- this average are inevitable, but only of order onediy as
drolyzed fromboth its ends(see Fig. 3, as well as in its EQ. (6) shows. So these fluctuations, which we retain in the
interior, while no new tubulin-t is added to it. So it disap- description, are a signature of the microscopic phenomena
pears relatively fast, while new such patches of tubulin-t areunderlying our effective description. One may view this de-
left behind by the ever moving cap. We assume that if ascription as a systematic approximation, resulting from an
catastrophe occurs and the end of the depolymerizing micreexpansion inéx up to two leading orders.

v=vg=h, (5)
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As already indicated, the source of these fluctuations io the total rate of GTP hydrolysis at the microtubule end in
the random nature of the events that the cap lemgth a  question; see Fig. 3. So a plus or minus end equipped with a
given time interval is extended by the amoust by the tubulin-t cap andn(*) additional patches of tubulin-t will
addition of a tubulin-t dimer to the microtubule or reducedhydrolyze GTP at the rate
by éx by the hydrolysis of a dimer at the trailing edge of the

cap. By a straightforward calculation one finds that vhe- U(h,ie)ffzvf)_l_ nwy, . (8)
ance of this cap length distribution grows in time with a ) ) . )
constant rate For a microtubule end elongating at a given rage , the
numbern(™) of tubulin-t patches trailing the cap is a fluctu-
2D =(kq+ Kp,) 6X%= (vgtup)dX, (6) ating integer. New patches are created by the stochastic pro-

cess of internal hydrolysis. Because they are created with

i.e., the cap length evolves in time as the coordinatf a  Stochastic lengths, they also disappear at stochastic times,
particle diffusing in one dimension with diffusion constant even as they shrink with constant veloaity” +v{~ . How-
D given in Eq.(6). ever, we know theveragevalue ofn(*) in a state of steady

This completes the description of our model. Bringing it growth. Since tubulin-t is added to a microtubule end at the
all together, a cap of lengtk grows steadily with velocity rateugi), it must, on the average, also hydrolyze at that rate
v, but also experiences two different stochastic processes: & the steady state, so
diffusionlike time evolution, parametrized by the diffusion
constantD, is superposed on the steady growth. With prob- (vﬁ,,ie)ﬁ)=v(gi), 9
ability rx per unit time the lengthx of the cap will be re- o
duced to any fraction of its length with equal probability. from which it follows that

When we add to this description that a vanishing cap, the () (=)
; Ug ~Un
event that a cap’s length happens to decrease to zero, rep- ()= 9 _ (10)
resents a catastrophe, then we have fully described our Wh
model.

Thus we see that, although we have assumed that hydrolysis
is a simple stochastic process, characterized by rates that are
IV. HEURISTIC ANALYSIS OF THE MODEL uncoupled from the rates of microtubule growth, we never-

This section attempts to develop some understanding di€€ss end up with a total rate of hydrolysis at each micro-
how our model works through a heuristic analysis of it. A tubule end that islynamically coupledo its growth rate. All
rigorous analysis of the model is given in this article’s ap-that is required to have this phenomenont® kinds of

pendixes and the results of this analysis are discussed in ttficoupled hydrolysis: the internal scalar hydrolysis occur-
following sections, where we see that the heuristic estimatednd at a rate proportional to the amount of GTP present and
derived in this section are quite accurate. the vectorial hydrolysis occurring at each interface created

by the scalar hydrolysis. As we shall see, this also results in

a short cap and a finite catastrophe rate at all growth rates.
A. Dynamically coupled hydrolysis

We notice that according to our model, the GTP in a B. Cap size
growing microtubule is located not only in the cap, but also

in other “patches” of tubulin-t surrounded by tubulin-d; see values of the three parametarsD, andr. Intuitively, we

Fig. 3. The GTP in these pat<_:hes was recently a part of thf‘hight expect there to be three regimes of behavior. One is a
cap, but was separated from it by its internal scalar hydrolylarge-positive—veIocityregime, in which the cap grows

sis. Once separated from the cap, such patches of tubulin=t : . ;
suffer vectorial hydrolysis from both ends and internal scalarqtumkIy In length and only the cutting prevents the cap from

hydrolysis as well. Internal hydrolysis breaks patches int becoming large. In this regime, the "diffusion” of the cap
more patches, all of which hydrolyze from both ends an ength is less important for its length than its average growth

: . .—and its cutting. Another regime is ti@rge-negative-velocity
internally as well. The result is a total rate of GTP hydmes'Sregime, in which the cap shrinks on average and only the

per microtubule end, Whi.Ch can be subs_tantially larger thari’luctuations allow the cap to exist at all, but it remains so
the rate of GTP hydrolysis t‘.”‘k'”g pl+a;ce in the cap alone. short and short lived that cutting is unimportant. Finally, we
We assume the hydrolysis rateﬁ—. andr are indepen- oy nect asmall-velocityregime, in which diffusion and cut-
dent of the growth rates§™ of a microtubule’s plus and  ting are most important because the average growth is small.
minus ends, i.e., we assummcoupled hydrolysisSo at It is interesting to understand the behavior of the model in
large growth rate&;gi)>vﬁi), microtubule ends would gl three of these regimes, as they all turn out to be relevant
grow caps at ratesgi)—vﬁ,i) were there no internal hy- for the interpretation of experiments. It also turns out that we
drolysis. With a nonvanishing rate of internal hydrolysis, can calculate a great deal using only dimensional analysis,
however, a GTP cap of lengthsuffers internal hydrolysis at since each of the three regimes is characterized by the domi-
raterx, as does any other patch of tubulin-t of lengtiVith nance of two of the three parameters. As a first example, we
every event of internal hydrolysis two new “fronts” of calculate the cap size in the large-velocity regime.
“vectorial” hydrolysis are opened up, thereby adding Basically, any cap grows with average veloaityBut its
length x is kept within bounds by its abrupt reduction by
wh=v}"+ o} (7)  interior hydrolysis to any fraction ok with rate rx. With

We expect qualitatively different dynamics for different



54 MICROTUBULE DYNAMICS: CAPS, CATASTROPHES, ... 5543

At denoting the average time between such reductions of the (large positive velocity— y>1, (16)
cap length, we have the estimate

r{x)At~1, (1D (small velocity « — 1< y<1, (17)
where(x) is the average cap length. (large negative velocity— y< —1. (18

Between reductions, caps grow with velocity hence

with the lengthv At, on the average. This is also the length

removed when a cap is reduced from its largest length to, on C. Catastrophe rate

the average, half that length, from which it grows again. S0 e cap size, however important conceptually, is not di-

its largest length we estimate bw A&t, its shortest_ to half rectly observable for GTP cap$Stabilized caps are dis-

that, and consequently its average length we estimate as ,ssed below.The catastrophe rate is, so it is useful to have
(X)~3/2 At (12) a simple way of es_timating_ the catastroph(_e rate. The im.por—

' tant step is to realize that it is the fluctuations parametrized

by D that cause catastrophes whens positive, since the

cap grows on the average, and there is no chance that the cap

will be cut to exactly zero length. But because caps effec-

tively are bounded in length because of internal hydrolysis

and because the growth of caps really is a biased random

) ) walk, any cap will vanish sooner or later. So we have a
This equation shows that the cap length grows only slowly,onzero catastrophe rate in this model.

with the microtubule growth ratey, which enters through We assume the cap starts with a size of orger. For

Eqg. (5. _ _ v>0 the catastrophe rate then is the average time required
The averages we here have listed freely with the.phraspOr the cap to fluctuate in size by this amoymp, which is
“on the average” are not rigorous averages, but estimates,, the order oD/(x2)~D/(x)2.

They are better than order-of-magnitude estimates, but they |, the casey<0. the cap shrinks on the average and this

are not exact in general. _ alone, without fluctuations, will cause a catastrophe in a time
Note that the estimate given in E(L.3) is the only com- |v]/(x). Therefore

bination of v and r that we can create that has units of

Eliminating At, we find for the average cap length

3v

length, so we could have guessed this form of the result from ( D Dr
the beginning, apart from its numerical prefactor, since we _(x>2:7 when y>1
have excluded from the argument as being irrelevant at b

large velocitiesy. We can use this observation to calculate

fear={ —=(D?r)¥® when —1<y<1

the cap size in the other two regimes: oblyandr will enter (x)

in the small-velocity regime and only andD will enter in o]  v2

the large-negative-velocity regime, for the reasons given @:3 when y<—1.
\

above. Dimensional analysis thus tells us that the average

(19

cap size is given by
The catastrophe rate is smallest when 1 and largest when

[ (v\Y* - L y<-1.
T in the large-positive-velocity regime

D. Delay time for dilution-induced catastrophes

D 1/3
~ — in the small-velocity regime A . .
(0~ ( r ) yreg In dilution experiments caps are grown at veloaitynd

D then have their growth retarded or arrested by dilution of the
— in the large-negative-velocity regime. surrounding tubulin solution to a low or vanishing concen-
tration, which we characterize by its resultifgossibly
(14 negative growth velocityv’ for the cap. We estimate the
average delay between dilution and ensuing catastraphe.
corresponds toy’ and the value ofy’ determines which
parameters dominate. For sufficiently strong dilution,
ey’<—l and the cap is consequently cut until its length is
short enough that its negative growth velocity causes it to
disappear before the next cutting event, i.e., it is cut to a

lengthx given by
1 X fv'
— e~ X~ \[—. (20
where the factor of 2 is for convenience latgris a measure rx o] r
of the importance ob relative to the other constants and
allows us to make precise our definition of the regimes. InTherefore the delay time for a dilution induced catastrophe is
particular, approximately 1{|v’|r.

\ |U|

The cap size grows as increases, so the cap is smallest in
the large-negative-velocity regime and largest in the large
positive-velocity regime.

If we take the ratio of two of these length scales, we hav
a dimensionless quantity. We define this quantity as

U
Y= (D% (15
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E. Amount of GTP in a microtubule amount of GTP present initially, hence we cannot even give
an upper bound on the time it takes for it to hydrolyze, say,
by assuming it is all located in one big cap. So we finish this
gection on heuristic analysis with a clear-cut case of its fail-

While we do not specify the chemical or structural nature
of the cap in our model, one possibility is that it is defined by
the tubulin-t subunits. If so, we can use the model to estimat
the amount of GTP present in a microtubule. In experiment$!'®:
designed to measure this quantity, microtubules are grown
from tubulin-t in which the GTP is radioactively labeled. The V. CATASTROPHE RATE
GTP content of the microtubules grown this way is measured
by filtering them from the surrounding tubulin solution,
washing the filters, and then measuring the level of radioac- The frequency at which microtubules change from their
tivity. Thus some time passes, and consequently GTP hygrowing to their shrinking state, the catastrophe rate, is best
drolysis, between the time when the microtubules have theimeasured experimentally by observing the dynamics of indi-
growth arrested and the time when the GTP content is meaddual microtubule§29,30,14,13 We focus here on the lat-
sured. We estimate the amount of GTP left in a microtubuleest resultg13]. The catastrophe rate is found as the ratio
as a function of time after dilution. between the total number of catastrophes observed in an ex-

The tubulin-t in a microtubule exists as a cap on each endygeriment and the total time spent in the growing state by the
shrinking from their trailing edges with Ve|ocitiegh+) and microtubules observed. In this experiment microtubules are

of which shrinks from its edges with velocityﬁf) on one ishes entirely, whereupon a new microtubule grows from the

side andv ) on the other. Furthermore, each cap and patct €9 . . . . .
is broken into smaller caps and patches at raer unit This is a crucial observation because it makes it possible

lenath. It is possible and convenient to treat the two cans ato establish the necessary connection between theory and ex-
gth. P s . p Seriment. This is a nontrivial matter: Because the model is
one patch with the caps’ summed length, because this “ef-

fective” patch shrinks with the same velocity, as do the formulated as g_partial differe_ntial equation,_ initial data_ and
other patches h boun_dary condltlons_are requwed to Qetermlne the part_lcular

Let n(t) dénote the total number of patches at tite SO|LI.tIOI’] Fo this equatlon,_whlch Qescrlbgs a given experimen-
: . = tal situation. We meet this requirement in the following way.
including that made from the caps, and lgtp denote the

. ; . i) As j h h i
total length of tubulin-t left at timé. These numbers differ () As just observed, we may assume that each cap is

. . initially created with zero length, because it is created on a
for different mlcrotubqles, but we lei(t) and_l cre(t) denote microtubule starting its seeded growth from zero length. This
the averagevalue at timet, the average being taken over a

. . means that the ensemble of caps found on microtubules
large number of microtubules, i.e., an ensemble averag%rown this way is described by E(C18).
Thenn(t) is a real nu_mber, varying continuously withThe (iil) The microtubules that are observed in the experiment
total amount of tubulin decreases at the rate have caps that are as old as the microtubules themselves,
since the experiment was carried out under conditions where
= —wn(t) (21)  rescues do not occur. So the individual cap has aggregated
and lost again by hydrolysis as much tubulin-t as there is
tubulin in its microtubule. This means that the camid by
its own standards, by which we mean that the probability
dn(t) distribution for its length has the asymptotic form given in
TR rlgre(t) — (loss term. (22 Eq. (D1), with the result that the catastrophe rate is given by
Egs.(D3) and (D5),

The loss term describes the rate at which patches disappear

A. Connecting theory and experiment

dlgrp
dt

and the number of patches changes as

by shrinking to zero length. It depends on the distribution fea=Drlv= M (24)
n(xt) of patch lengths—it is w,,n(0}t), to be specific and 2(vg—up)

hence cannot be expressed in terms of the two variables

andlgrp. So the simple equations we just gave do not close. B. Characteristic features of theoretical result

Dimensional analysis is also insufficient to save the day,

though the time scale obviously is set by The catastrophe rate given in E@4) has a nonzero limit

rox/2 forvg/vy—c0 and becomes large fory,—uvy,. This is
to=(rw;,) 12 (23) in agreement with experimental results, which show that
f.at SEEMS tO be constant for higher tubulin concentrations,
because the GTP will hydrolyze significantly faster if it ini- While f 4 increases rapidly if 4 is decreased to small values;
tially is distributed over many relatively short patches rathersee[13], Fig. 7, which is reproduced in Fig. 4.
than a few relatively large ones. Equation(24) gives an infinite value fof .o for vg=uvy,

The patch length distribution needed for initial condition corresponding te =0. This, however, is an artifact originat-
here is determined in Appendix F for a microtubule growinging in Eq. (24) being an approximation valid only foy
with constant velocity and having done so long enough for darge. Forv~0, vy is not large, hence the approximation is
steady-state to have been achieved. It is found to be rathéot valid. In dynamical terms, the approximation assumes
complicatedn(0) we know, of course, for this steady-state the cap sustained by its growth withalone, and this is not
growth from Eg.(10). But we do not even know the total true for small values ob, as explained heuristically above.
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crotubule, it obviously is also the same for both ends.

S SARES! RRRARARERARRRRRRRS As a matter of fact, the two velocitied ™ andv{ ™) must
o8 L N differ for the model to reproduce experimental results cor-
. ] rectly: For a given tubulin-t concentration, the growth rate
o6 3 v{7) for the minus end is slower than the growth rafg’
E T ] for the plus end by approximately a facton&e[14], Fig.
H§0'4 C 7 4). If the hydrolysis rateyy, were the same at both ends, our
C ] model would predict a higher catastrophe rate for the minus
0= E end than for the plus end because of the minus end’s slower
0:...|...|...|...|... growth rate. But the minus end seems to have the same or
0 02 04 06 08 1 12 smaller catastrophe rate as the plus end at a given tubulin-t
v, {um/min) concentration(see[14], Fig. 7). So our model leads us to

conclude thav{ ) is approximately twice as small ag,"
FIG. 4. Catastrophe ratk; versus growth rate . Dots with  This conclusion should be taken with the precaution that the
error bars represent experimental res{dt3]. The horizontal error  error bars on the experimental results[i4], Fig. 7 are

bars represent the standard error in the me@EM) vy for the  |arge. But the arguments just presented illustrate well a gen-
sample, the vertical error bars the SEM for the catastrophe rate. Thg g point.

full curve represents the theoretical expression from(B§) with

: . L We expectv™, v{7), r, and, obviouslySx to be inde-
teuor= 0.1 uwm. A plot of the approximate theoretical expression in d f th h l; i P o r’] del
Eqg. (D3) cannot be distinguished from the full curve, showing how pendent of the tubulin concentration, so the model must ac-

well Eq. (D8) is approximated by it. The dashed curve reloresentscount for the experimentally obs_erved difference between ca-
the theoretical expression from E(@4) approximating Eq(D3). tastrophe rates at plus and minus ends solely through the
Note that this graph is a hyperbola. All three theoretical expression€xperimentally observed difference in growth rabé? and
were fitted to the experimental results, usif)g=0.60 nm, and re- v(g’) because only through these rates does the model depend
sulted in v{")=0.25+0.05 um/min and r=222+84um 'min  on the tubulin concentration. This demand on the model pro-
1 for the optimal fit of Eq.(24). The other two fits gave the same vides an acid test of it, so it would be interesting to have data
result up to insignificant differences. to test it against.

Notice that even as we distinguish between plus- and
Diffusion also contributes to a finite cap length and is theminus-end values fory andvy,, the asymptotic values for
dominant effect for small values af. How precisely this the catastrophe ratel{;) and f(;) for v{”'>v{") are the
happens is described by the full expression given in Appensamefor plus and minus ends since they are given entirely in
dix D. For the present, we have understood that 4) is  terms oféx andr in Eq.(19). This very distinct prediction of
valid only wheny is not small, i.e., whem is not too close  our model is consistent with experimental results; &8,
to v,,. The value forvy, is determined in the following sub- Fig. 7 and[31], Fig. 5. These results are not that precise,

section. however, and the validity of this prediction is another experi-
mental acid test of the model. To the extent the model sur-
C. Comparing the theory to experimental results vives the test, such an experiment is a very direct way to
for the catastrophe rate measure the parameter
We have fitted the expression for the catastrophe rate in
Eq. (24) to the experimental results for the catastrophe rate V1. DILUTION EXPERIMENTS
for plus endsf()(v{"), given in[13], Fig. 7, and shown in In dilution experiments, microtubules are first grown in a

Fig. 4, by treatingy\,"”) andr as fitting parameters. The re- high concentration of tubulin, giving a high assembly rate
sulting fit is seen in Fig. 4, and we see that there is satisfae, and then submitted to rapid and massive dilution to in-
tory agreement between theory and experiment, when weuce catastrophes and disassentify,16. Dilution experi-
remember that the experimental error bars do not denote raments were motivated by thextended capnodel resulting
dom Gaussian errors, but only are the best we could come upom so-calleduncoupled vectorial hydrolysisyhich essen-
with for error bars: The data that were averaged to get théally is the model one obtains by setting=0 in the model
data points shown contained some scatter and we treated thigesented here. In that model hydrolysis only occurs from
scatter as if it were due to truly random Gaussian errors. Alsghe trailing edge of the cap, at the ragg, which is not
shown in Fig. 4 are fits based on the full expression in Eqcoupled to the growth ratey . Consequently, long caps, and
(C18). correspondingly long delay times upon dilution, were ex-
With the superscript- on v{") we have indicated, as pected for high growth rates. No such connection between
above, that it is possible that the value for this hydrolysis ratgredilution growth rates and ensuing catastrophe rates has
may depend on whether it describes a hydrolysis front propabeen found. Quite to the contrary, the catastrophe rate upon
gating towards a plus end, as here, or towards a minus endilution is essentially independent of the growth rai®].
because of the polarity of microtubules. On the other handThis observation was an important guide in formulating our
we assume that thiaterior part of caps on plus and minus model. In the present section we demonstrate that the model
ends are identical. Thus the parameateshould be the same explains what is seen in dilution experiments. We concen-
for plus and minus ends. Aéx denotes the contribution trate on the latest work with the most detailed ddté].
from the length of a tubulin dimer to the length of the mi-  In Appendix E the model is solved with boundary condi-
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TABLE I. Parameter values of the model found by fitting to the experimental data as follows: first line, fit to experimental catastrophe
rate for the plus end13] with 6x kept fixed at its experimental value Am/1680 = 0.60 nm; second line, fit to the experimental
waiting-time distribution for dilution induced catastrophes at the plus[&6Hwith &x kept fixed at its experimental value; third line, same
as for the minus end; fourth line, combined fit to the experimental catastrophe rate for plus ends and the experimental waiting-time
distributions for both ends, withix fixed at its experimental value; fifth line, same, except ihais also treated as a fitting parameter.

Figure ox (nm)  r (em tmin™Y) (P (umimin) o) (um/min) rol? (min~?2)  rof) (min7?) ty ()

4 0.60 222-84 0.25£0.05 =56+ 24

5 0.60 122-12

5 0.60 101+10

6 0.60 320-20 0.24-0.01 0.25-0.01 =76+6 =79+6 =4.8+0.2
0.24+ .03 51476 0.26:0.02 0.210.01 =133+22 =108+17 =3.9+0.2

tions appropriate for dilution experiments. It is argued that as typically a good approximation because the growth rate
description even simpler than our full model suffices whenprior to dilution v typically is large compared te,, and
microtubules are grown so fast before dilution that catastrohence so i& =v4—vy,, while dilution results in a small or
phes can be ignored and when dilution is to a concentratiomanishing concentration, resulting jn’|~v,, and therefore
so small that after dilution caps disappear mainly by cuttingy>|v’|. Equation(25) therefore predicts a waiting-time dis-
with rate r and shrinking with velocityy '~ —uvy,. In that  tribution that is essentially independent of the growth rate
case, fluctuations parametrized By can be ignored, i.e., prior to dilution. To the extent a dependence is predicted, the
D=0 can be assumed. This simplifies our master equatiowaiting time increases only slightly with the predilution
(CD), resulting in simple solutions that are simple to find. growth ratev, except at small rates~v,,; see Fig. 5. The
The relevant results are that the average delay time fodelay time itself is a random number distributed as
dilution-induced catastrophes is

t t?
21y’ v\ 112 o \12 pcal(t)=L2ex;{—Tr—2). (26)
) ( ; ) 5 2y Aty

—2rv

t =
cat v

These theoretical results are in full agreement with the
wherev andv’ are the cap-growth velocities before and experimental results presented [ih6], Figs. 3 and 4 and
after dilution, respectively. The last approximate expressiomeproduced here in Fig. 5. In generating the theoretical

curves, we assume that dilution stops all additional growth.
This is probably correct under the conditions of the experi-

50 [T e 50 T ment[32].
ok E wb o ° E It would be interesting if the nonlinear dependence we
: 3 E . ] predict with Eq.(25),

30 F

20 F

tcm(vg>=\/ oy o) (27)

10 B¢ 2r(vh—vg)(vg—uvg)’

Delay before catastrophe (s)

I
could be fitted to the experimental data with statistically sig-
nificant values for, vy, andvé . From the appearance of the
data, we judge this not to be the case. The combination of
parametersuv’, on the other hand, is well determined from
the essentially constant value @ for large values ob, .

Because the experimental delay-time distributions in the
upper row in Fig. 5 to a good approximation is independent
L olbndbdenaand  of the predilution growth ratefgi) , the merger of these data,

Delay before catastrophe (s) shown in the lower part of Fig. 5, should also be described
by the distribution of delay times given in our E®6), as

FIG. 5. Delays before the catastrophe following dilution. Data!Ong as one takes into account that the origin on the time axis

are taken from Ref.16]. Left, plus end; right, minus end: top, delay in Fig. 5 denotes the starting pomt for a d|Iut|on_ that takes
as a function of initial growth velocity. Each point represents aS€Veral seconds to reach completion. We have f'tte:fj our ex-
single measurement on a MT. Curves are theoretical ngaii) ~ Pression in Eq(26) to the data in Fig. 5, leaving the “true

and standard deviatiofdashedi of the delay, from Eqgs(25) and  dilution time as a free parameter to be fitted, but using the
(26). Bottom, histograms showing the experimental distribution ofS&me dilution time for the data for plus and minus ends,
delays before catastrophe. The curves are fits of the theoretical di§ince the experiments were done with the same apparatus.
tribution given in Eq.(26) and result in parameter values given in Our fits are shown in Fig. 5.

Table I. Dilution was initiated at=0 and required some time From the values fot., giving the optimal fits shown in
(6.1 s when used as a free parameter in olifdit completion. Figs. 5¢) and 8d) and by assuming'=—uv,, we find

ey 25

E 20 |
= 15 F

= 10 £

Number of events

= S
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ro{"=122+12min"? and rv{)=101+10min"2. But R
since the two experiments giving the data in Figs. 4 and 5 +
were done under somewhat different conditidesy., there 0.8

were differences in the buffers that may affect the dynamics ~
[33-35), we cannot expect the values ioandvﬁf) that we =
determined in Sec. V to agree with the value found here for E
the productrv{™, and indeed they differ; see Table I. 3
It would obviously be of great value to have experimental
results taken under the same conditions for both the catastro- .
phe rate, as in Fig. 4, for the delay time upon dilution, as in Y T ”P_k s
Fig. 5, and preferably for both microtubule ends. If the tubu- 02 04 06 08 1 12
lin concentration after dilution can be known with reasonable v, (um/min)
certainty in the dilution experiment, such data would greatly
overdetermine the three parameters "), andv{ ) of the
model and consequently provide another stringent test of it.
In conclusion, we have seen that the rather detailed data
obtained by video microscopy in dilution-induced disassem-
bly experiments all can be understood within our model. In 3
particular, we have demonstrated that the delay in the onsets
of disassembly is a stochastic quantity whose average and
distribution is quite well determined when the experimental
data are interpreted in terms of our model. So the “puzzling
large variability” [5] in the individual delay times that have
been measured has a natural explanation within our model
and the delay timeanbe determined from the data; it is not
just a fixed number, but a random number with a known
distribution. We have also explained quantitatively how the
delay in the onset of disassembly depends on predilution T VT T T
concentrations and found that it does not, to a very good Delay before catastrophe (s)
approximation. We have seen that the mechanism of cap
hydrolysis that is responsible for the delays’ near indepen- FIG. 6. Simultaneous fit of the theory to data for the catastrophe
dence of predilution concentration is the very same mechaate and data for the waiting-time distribution for dilution-induced
nism that keeps the cap short irrespective of the concentraatastrophes, using one pair of parameteandv ") . Their fitted
tion it is grown at, namely, interior hydrolysis at a constantvalues are given in Table I. Top frame, catastrophe rate for the plus
rater per unit length of cap. end of the microtubule; experimental data fr¢8]. Bottom four
In view of the good agreement between theory and exframes, waiting-time distributions as in Fig[36].
periment in Fig. 5 it would be interesting to have more ex-

perimental data for better statistics, especially for a range ofye gifferent result obtained for the three parameters

small predilution growth rates where the model predicts e})w, anduﬁf); see Table I.

nontrivial dependence in the waiting-time distribution and a Since the combined fit overdetermines the three param-
more complicated distribution. The quickest possible dilution P
ters, we can make a strong test of the robustness of the

is desirable in such experiments to obtain a sharper definitio s d L f1h . | data: W, h
of the point in time where dilution effectively takes place. ("€0y'S description of the experimental data: We can use the

Alternatively, a controlled and calibrated dilution will do as €XCess of information available to fit also the valuesafto

well, since we can calculate the theory’s prediction for anyth€ data to see if its known value 0.60 nm, can be extracted
known tubulin concentration as a function of time, using theffom the data. We emphasize that this is a strong test because
full theory presented in the Appendixes. the data were taken with light microscopes with a resolution

of several hundred nanometers, while the value daris
known to be only a fraction of a nanometer. But with suffi-
ciently many and sufficiently precise data pointscarect
theory must, of course, be able to “predict” its own under-
lying microscopic length scale from a fit to the data. Con-
In this section we ignore the fact that the conditions differversely, if the data are insufficient or the theory’s description
between the two experiments giving the data shown in Figsof the data is shaky, the result of turning loose a parameter
4 and 5 and do a combined fit of the parameters three pssuch aséx may result in a better fit, for sure, but with a
rameters to both data sets. Figure 6 shows the result as futhysically absurd result fofx.
curves, with dashed curves indicating the fits found in previ- Fitting this way, we findsx=0.24 nm. All in all, we find
ous sections by separate fits. We see that the difference is nitis value fordx close enough to the true one to give good
radical, but nevertheless significant. This reemphasizes theupport for the model. It is also yet another argument for the
desirability of having both types of experimental data takendesirability of having data all taken under identical condi-
under the same conditions. The difference is also reflected itions.

[ I BRI B B

o
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50 T 80 T

40 F E 40F o E
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VII. COMBINED ANALYSIS
OF THE CATASTROPHE RATE
AND DILUTION EXPERIMENT
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VIIl. GTP HYDROLYSIS RATE EXPERIMENTS B. Relevant quantities

A. Issues Two aspects of the mode of hydrolysis described by our
The suggestion that there is a GTP cap at the end of %ggtesl grr]eﬂ? ef lr()iarl]ret[[(i:élslagflgt_?_g:ity:‘jorglis?slscusmon of experi-

polymerizing microtubule originated in a study of the kinet- (i) How fast is the steady state pattern of GTP hydrolysis

ics of GTP hydrolysig3]. The suggestion that the loss of this 5cquired upon the initiation of growth? Is an initial lag in

cap is the cause of catastrofl2g inspired additional studies hydrolysis detectable?

of the kinetics of GTP hydrolysis in assembling microtubules ~ (ji) How fast does the GTP at the end of a growing mi-

[37-43,17. The conflicting results of these studies inspiredcrotubule disappear by hydrolysis, if growth is arrested? Will

several different models for the GTP cap44—  a method looking for this GTP in microtubules be able to

47,41,43,48,22,49 The first study’'s suggestion ofin-  detect it, given the dead time of the method between the

coupled stochastic hydrolysj8] was replaced byncoupled  arrest of growth and the measurement of GTP?

vectorial hydrolysiscoupled(or forced hydrolysis with sto- In order to answer these questions we must describe quan-

chastic dissociationand the relatethteral cap see[5,4] for titatively how the patches of GTP fare in our model.

reviews. In the present section we derive what our model can

tell us about the kinetics of GTP hydrolysis. Thus we take a C. Case of microtubules growing at a constant rate

E)nuc::etier;lzs\/iglrriag);)grri?:s:tslt?nVv{\j/“hl:ghbé'I?I;(prlsldnrlglg)]/s@i)rlgys In this sub;ectlop we consider the _GTE content of micro-

a central role, but manifests itself only indirectly through thetUbUIeS growing with constant velocity, i.e., in a constant
' O o concentration of tubulin. In actual experiments the tubulin

catastrophe rate and the waiting-time distribution—and we

. \ o ; : concentration is depleted by the growth of microtubules
compare this model’s predictions for hydrolysis expenmentiu 43,4Q. This does not affect our evaluation of the initial
with the experimental resultsyithout fitting any parameters N

or making any other adjustments. We emphasize that c)ulag time in hydrolysis given here if the characteristic time for

. . : (ﬁepletion is much longer than the lag time. It does make a
Lna%degliﬂfivgostf;xgyiffoezm?; g'fog_}%mt'jglljHr?tl:;i:fgﬂ;%ﬁfference if the two characteristic times are comparable, as
model predicts the rate of GTP hydrolysis. We demonstrat& the case ii17,43,4Q, because the GTP content is reduced

that the model predicts GTP hydrolysis to follow assembl %y the reduction in the growth rate cased by depletion. The

: : . Yeffect can be described along the lines used in this subsec-
closely, in agreement with the most recent experimental re;

L . ._tion; this is done in appendix G. The expressions given there
sults[38,39,43, because the initial lag period for hydrolysis i i
lasts only a few seconds. We also demonstrate that the mod§5e unwieldy, we warn the reader. One purpose of that Ap

explains the most recent and careful experiment attemptin endix is to show this, so the reader will settle for less in the
to measure the GTP contents of microtubuieg. resent subsection. Another purpose of Appendix G is to

A kev experimental issue concerns whether GTP hvdrol give those unwieldy expressions for the record, since they do
sis folloyws Fr)nicrotubule growth closely or lags behing it a¥describe what happens in the relevant experiments. Here we
high growth rates. If the rate of GTP hydrolysis in a micro- merely observe that the initial lag time for hydrolysis derived

i . . here for microtubules growing at constant rate isugper
tubule is independent of its rate of growth, hydrolysis may . : .
lag far behind the addition of GTP in a rapidly growing boundon the lag time for microtubules growing at the same

microtubule, especially if hydrolysis occurs only at the trail- rate initially, but then at decreasing rate. This bound comes
ing edge of a cap, the caseufcoupled vectorial hydrolysis about because the lagging hydrolysis has only to catch up to

But alsouncoupled stochastic hydrolysstould result in mi- %éomﬁiralr%tﬁ;f GTP incorporation in the microtubule than
crotubules containing a high proportion of GTP initially in Consider nbw a microtubule end that grows with constant
the case of rapid growth. Consequently, it should be possible  ~ . . 9 :

. ! . ; velocityv . At a distancd from the end of the microtubule,
to detect the presence of GTP in rapidly growing m|crotu—h drol Sng has been going on for a tirhfe .. Consequentl
bules as a lag in the amount of GTP hydrolyzed relatively to ydroly : going 9 quenty,
the amount of polymer assembled. with the notation and results of Appendix F, at distahce

Whether or not hydrolysis lags behind assembly is a conirom the end of the microtubule we expect to find a total

troversial issue; sefb,4] for reviews. The two most recent Il:()erllgthdg((t;//vdg) of tubul|n]t£er_u|7|t Iengthhof mlcrotq-
studies use radioactively double labeled GTP and rapid fili u e’h |sftr| _ute gvler a total of(t=1/vg) patches per unit
tration techniques, but come to opposite conclusion§4 & ength of microtubule. .

a significant lag in the release of phosphorus is reported. The From this '.t follows thathe amount of tubulin-t preseat_
technique used in this experiment has a dead time of only gimet "?‘t a microtubule e_nd grown from zero length at time
This speed was acquired at a cost: filters were not washetf " with constant velocity is, on the average,

and the raw data had to be corrected by large factors for

vt
contamination of the filtered microtubules with unpolymer- IGTP(t):f ? dix(l/vg)
ized tubulin-t. In[17] it is reported that no accumulation of 0
microtubule-bound GTP could be detected with a similar =l grpl0) D (t/(\2t,)), 29)

technique in which filters were washed and the dead time

was 15-20. In the following subsections we first derive our ) i

model's predictions for hydrolysis rates and GTP contentdVhere® is the error function and

and then discuss the experimental results in the light of our

predictions. lgre(%©) = V720 4ty . (29)
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From the properties of the error function it follows that the H(t)=whr(t)=vg{1—exd — (t/ty)?/2]}. (39
amount of tubulin-t present at a microtubule end approaches
its limit value from below, exponentially fast, and with a In this expression the hydrolysis rate is given in lengths of
characteristic timey, that is independent of the growth rate. microtubule per unit time. We see that there is an initial lag
The only dependence on the growth rate i$dps(). in the hydrolysis rate relatively to its asymptotic valug.

The total amount of tubulin-t at a microtubule end may beGTP-liganded tubulin is associated into the microtubule at a
compared with the amount in the cap at that end. For thigonstant raterg, but GTP is hydrolyzed at a rate that ini-

ratio we find tially is zero and growing only at’. We also note that the
rate of hydrolysis approaches its asymptotic rate monotoni-
lare()/{(X)=vg/vp. (300  cally and exponentially fast, with characteristic time Its

. . _ . . . initial lag is just what is needed to build up the cap and its
This ratio typically grows only slowly withy 4 since typically  ajling patches of tubulin-t to their steady-state sizes during
Ug=Uh- _ _ _ constant growth.

The number of tubulin-t patchet a microtubule end is, We note that this initial lag time is independent of the
on the average, growth ratev, and the same for plus ends and minus ends.

) Thus, for microtubules growing from both ends, the hydroly-
,,(t):f din(l/vg) sis rate per microtubule is obtained by replacingin Eq.
0 (34) by véﬂ-l-vé_), i.e., with the growth rate of the micro-
_ _ _ 2 tubule. The same substitution applied to E{8) and (33)
v(e )= exil = (Utn) /2], @D gives respectively the amount of GTP present in a microtu-
where bule growing from both its end and the number of patches of
a given length that this GTP is distributed over.
v()=vg/Wy. (32 We conclude that the time required for GTP hydrolysis to
reach the fractiory of its steady-state ratey is
This last result is just the steady-state condition for hydroly-
sis, derived heuristically above with more precision; com- t(y)=v—2In(1-y)t;,. (39
parev(e) with the number of patches in E¢LO). The dif-
ference between EqeL0) and(32) arises in the derivation of For example, using the parameter values given in the fourth
the latter equation, because it does not take into account tHe of Table |, t,=4.8s, so t(95%)=12s and
cap’s hydrolysis. Consequently, EG.0) is the more correct t(99%)=15 s. Thus our model “predicts” for hydrolysis ex-
one. Using the values in Table I, E¢32) overestimates periments that hydrolysis follows microtubule assembly
<n> by approximately half a patch for each end. As the num-within a few seconds. This agrees with the more recent ex-
ber of patches is large in the hydrolysis experiments we shafperimental result§38,39,43 as well as with early results
discuss below, we ignore this difference. [50,51].

We note that, according to Eq&9) and (32), the total Now suppose we abruptly arrest the growth of a microtu-
amount of tubulin-t at a microtubule end growing with con- bule end that has been growing with constant veloojy
stant velocityv is proportional tov, in the steady state and while GTP hydrolysis continues with unchanged ratemd
so is the number of patches it is distributed over. The lengthv, . Since tubulin-t is not replenished through growth, we
of the part of the microtubule containing these patches is alsgray ask how much time it takes for the tubulin-t at the end
proportional tovy, as we can see from the form of to disappear by hydrolysis. The correct way to answer this
x(t=1/vg): vy occurs only in the combinatiollv in x. guestion consists in solving the master equatfef) with the

The number of patches of lengthat a microtubule end distribution given in Eq.(33) as the initial condition. This
growing with constant velocity, has the following average task is too difficult to be worth the effort. Ampper bouncbn

density with respect ta in the steady state: the time suffices for our purpose. In order to establish this
bound, we note that if the total amount of tubulin-t present
I cte(%°) were not already distributed in patches, but instead

at timet after growth was arrested would h€t), given in
Eq.(F16), i.e., EQ.(35) describes also an upper bound on the
above, may be derived also from E3). In conclusion, we have seen that the total amount of
Now we can address the questions formulated in Sedubulin-t present in a microtubule end growing from zero
end depends on time as the rate of hydrolysis per paich steady-state value, even smaller amounts of tubulin-t will be
timesthe number of patches present found a given time after the arrest than would be found after

2
1+ %) et

v(X,)= Jo dl’n(x,l’/vg)=vgfo dt'n(x,t’) were present as one continuous stretch of tubulin-t, then it
would takemore time to make it disappear by hydrolysis
than it actually does and the relative amount of tubulin-t left
Ugth aw g
== = 1-d| —| | —2¢;,
Xf; 2 J2
(33)  time required for GTP hydrolysis eliminate the fractiprof
the GTP present at the time growth from the steady state was
where ¢ is defined in Eq.(F7). v(») andlgre(e°), found arrested.
VIIIB for the case of microtubules grown from zero length length with constant velocity is a monotonically increasing
at constanttubulin-t concentration and hence witlonstant  function of time. Hence, if growth is arrested before the
growth ratevy. The rate of GTP hydrolysiat a microtubule tubulin-t at a growing microtubule end has reached its
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arrest from the steady state. We have found an upper boungithin our model. That said, it is close enough to the value
on the amount of tubulin-t found a given time after arrest40 reported iff19] to be consistent.
from the steady state, expressed in E2p) with t,=4.8s, The size of atypical cap, on the other hand, is well de-
and resulting in at least 99% of the GTP being hydrolyzedined, but depends a little on the velocity of microtubule
15 s after arrest. This is consistent with recent requl  growthvg. Usingvy=0.75 um as a typical value in Fig.
that fail to detect any GTP remaining after 15-20 s. 4 and Eq.(E3) with the parameter values determined from
that figure, we find x) =995x.
In another recent experiment, the geometrical structure of
IX. EXPERIMENTS VISUALIZING THE GTP CAP tips of growing microtubules were studied with cryoelectron
AND MICROTUBULE END STRUCTURE micrography and in many cases found to consist of curving
sheets of various lengths, some of them long, and apparently
In a recent elegant experiment a slowly hydrolyzable GTRcontaining less than-7 protofilamentg52]. It is in the na-
analog and rhodamine labeled tubulin were used to makture of the coarse-grained modeling done in the present ar-
caps at ends of microtubules directly observdhig]. These ticle that nothing can be said about such detailed geometrical
caps are essentially static, their sizes depending only on treructures. We note, however, that if the sheets observed con-
time the microtubules were allowed to po|ymerize in tubulin Stitu.te the actual cap, then.the sizes -Observed for these sheets
liganded with the slowly hydrolyzable GTP analog and onfall in the range of cap sizes predicted by our model for
the concentration of that tubulin. The experiment serves t¢aPidly growing microtubules.
illustrate that a cap of tubulin that cannot convert to
tubulin-d does stabilize a microtubule made from tubulin-d.
Thus the experiment makes it plausible that a short GTP cap It has been known for a long time that magnesium pro-
will also stabilize such a microtubule. From the cap sizesmotes microtubule assemb[¥63—-56. More recent results
observed in this experiment, a minimal size for a cap thashow that disassembly is promoted as Wélf,26,58. The
will stabilize a microtubule is estimated roughly to contain most recent study measured catastrophe and rescue rates in
40 tubulin dimers. addition to growth and shrinking rates, varying both the
It is in the nature of the model presented in this article thatmagnesium ion concentration and the tubulin concentration
there is no way to define a minimal cap size that will stabi-[31]. This makes it interesting to compare our model with the
lize a growing microtubule. Whatever the growth rate, andresults reported ifi31], especially because our model states
hence the average cap size, there is a nonzero catastropigt the catastrophe rate depends directly on the growth rate,
rate because of the fluctuations in the cap size and hence @&d only indirectly, through the growth rate, on the tubulin

absolute stability. We may, however, extract a cap size fronfoncentration. Since the growth rate and the tubulin concen-
our model that is relevant for comparison in a discussion ofration are proportional, we need to vary something else in

minimal cap sizes. We know that a microtubule must growl(.)lzder tort]est thishpropertyhof our mﬁdel' Phrefer_ablyr:/ve Wt;)ul!d
' : - ike to change the growth rate without changing the tubulin
]::Zsptetgtgi?sttges Cdahpe r%drrr?clﬁefh;rr?rg ;}3;{32,'[?0% efjl_%z fdoirmtgr?concentration and vice versa. This is where the magnesium

ol : i th lative i . fl'on concentratiofMg] becomes a convenient parameter to
sionless parameter parametrizes the relative importance o vary, since the growth rate, increases wittjMg] at fixed

the various processes contributing to the cap's dynamics; libulin concentration. While convenient, the magnesium ion

large-y values catastrophes are rare and t_he microtubu_le i(?oncentration is no ideal parameter to vary, because, as we
stable”; at small-y values fluctuations dominate. Choosing g, see, the growth rate is not the only parameter in our

y=1 as the separator of stabilized microtubules from UNinodel that must depend dMg].

stgble Ones IS as good as any other choice we can come up [31], the effect of magnesium ion concentration on the
with. This identity corresponds to a value feg thatis only gy namics of individual microtubules was investigated with
a fraction larger tharvy,. Specifically, we can solve the \ijeq enhanced microscopy for tubulin concentrations vary-
equationy=1 forv4 and find to a good approximation that ing from 8 to 24 uM. Increasing[Mg] from 0.25 to 6 mM
resulted in a1.5-2-fold increase in the growth rate,”) of

both ends, while the shortening rate'S”) increased by fac-

] o tors 3 and 4-5 for plus and minus ends, respectively. These
where the last term on the right-hand side is small for thgesyits are averages, however, as individual microtubules
parameter values given in Table I. The value 1 fowas  demonstrated individual rates of shortening even during a
found sufficiently large to make the largeapproximation  single phase. Over the concentration range expldieid]

for the catastrophe rate a good approximation. So we assumggnificantly affected only the minus end’s catastrophe and

the same to be true for the cap size and use the expressipfsc e rateéggt) and £)  the higher[Mg] causing more

. . . . . resc?
given in Eq.(E3) for it. This results in catastrophes and fewer rescues. The catastrophe rate of the

lus endsf'") did not depend significantly on the magne-
(X)=m(vplrox?)Y3ox for y=1. (37) Fs)ium ion concentration, P ° ’ °

The catastrophe rates reported[81] are given without
Using the parameter values obtained from the fit in Fig. 4errors, but must have significant errors judging from the rela-

and given in Table I, we find that the “minimal” cap con- tive distribution of data points if31], Fig. 5. Since error
tains(x)/ 6x=26 tubulin-t dimers. bars are not given, we cannot make a detailed quantitative
It cannot be overemphasized that this is a very rough essomparison between our model and those data. We note,
timate for a number that has no natural definition or meanindgowever, that for the largest tubulin-t concentrations shown

X. EFFECT OF MAGNESIUM ION CONCENTRATION

vglon=1+2(r 6x%vp) '3, (36)
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in [31], Fig. 5 catastrophe rates for plus and minus ends ariicreased from zero tosaM, the growth ratev{") is in-
equal and independent of magnesium concentration. Accorgiyeased by a factor 3. If this increasevib” were the only
ing to our model, catastrophe rates for plus and minus endsrect of 7, a plot of the catastrophe rate against the growth

should be equal at large tubulin-t concentrations as they;ie should look the same no matter what combination of
cause large growth rates; see Etp). So all that we need is %

e ) ) ubulint and 7 concentrations is responsible for any given
that r is independent of the magnesium concentration an

then our model reproduces Fig. 5 [i81] at large tubulin rowth rate. Such a plot is given {13], F.|g. 7(B), which .
. , . shows that the catastrophe rate at a given growth rate is
concentration c. From that figure we estimate

£C)(co0) = 0.001-0.002 5%, or 0.06—-0.12 min', in ful reduced by at least a factor 4 by the increase chncentra-

agreement with the value 0.08 mih found in Sec. V. This tion from zero to kM.

. : . Comparing the asymptotic value éf, at large growth
agreement is especially satisfactory because the range of . : . X &
growth rateSUé” used in the fit in Sec. V is 0.2-1 rate given in Eq(19) with [13], Fig. 7(B), we see that 1

wm/min, while the values o andy™) corresponding to uM 7 must have reduced the interior hydrolysis ratg of the
, 5 9 S 1.
the largest tubulin- concentrations in Fig. 5 if31] are 4 C‘_"‘pr significantly. In[1.3] an uppe+r) bound of 0.002’s is
sm/min and Zem/min, respectively. given for the asymptonc valu_e dt,/ at large growth rates.
In Fig. 5 in[31], f{) barely depends on the magnesium Thus, if our model is to describe the effectfthe presence
concentration and(’c)a at [Mg] = 6 mM seems equal to of 1uM 7 reducesr by at least a factor 7 compared to the
+) o cat : value ofr we determined in Sec. V. The catastrophe rates
fear - Since we have already seen thais independent of . for | bull . ) .
[Mg], the[Mg] independence df(*t) implies thatvﬁf) grows given for ower(t+u) ulint concentrations if13], Fig. 7(B)
, o g X :
with [Mg] like v{") does, i.e., the ratio{)/v (") is indepen- indicate that vy, = Is reduced from 0.2um/min to

) ' =) ; ~0.1lum/min by the presence ofidM 7, whiler is reduced
dent of[Mg]. The identity off.,’ at[Mg] = 6 mM with gy by a factor 4. All things considered, the difference be-

f& impliesvﬁf)/vé_)=vﬁf)/vg” for any tubulint concen-  tween factors 4 and 7 is hardly significant.
tration at[Mg] = 6 mM. _ _ The abrupt decrease 6§ to zero with increased con-

The apparent independence of tubdlireoncentration  centration reported ifiL3], Fig. 7(C) can be understood from
demonstrated by, at[Mg] = 0.25 mM in[31], Fig. 5,iS  our expression in Eq(19): Increasing ther concentration
easily reproduced by our model: it only requires thatsimyltaneously reduces and vﬁﬁ) and increases ', all
v, <o) for the growth rates){” corresponding to the three changes serving to reduce the catastrophe rate. Similar
tubulin-t concentrations 8-1&M in [31], Fig. 5, i.e., for  considerations can be applied to the effects of XMAP215
v{"”) = 0.7-4um/min according td31], Fig. 1. We found in  [59,60 and XMAP230[61].

Sec. IV thaw{ ) is about a factor 2 smaller thar") , which

was found to be equal to 0.2m/min at ImM[Mg] in Sec.

V. So we expecbff) to be less than 0.um/min, in full XIl. DISTRIBUTION OF CATASTROPHE TIMES

agreement with the condition,)<v{~=0.7 xm/min. In
conclusion, our model seems quite able to reproduce the d?ét
pendence off;;) on both the tubulirt-
magnesium concentration.

Our model predicts more than just the average catstrophe
. e: It also predicts the distribution of catastrophe times.
concentration and While the exact distribution is somewhat complicated, in the
experimentally relevant casg>1 the model predict§see
Eq. (D2)] that the distribution should be very nearly expo-
XI. EEFECT OF MAPS nential. This prediction has been tested by recent experi-
ments[18]. These authors find that the distribution for the
Microtubule associated proteifiMAPS), such asr [13], minus end is indistinguishable from an exponential, while
XMAP215 [59,60,, and XMAP230[61], provide, like mag- the plus end is nonexponential with a confidence of 97%.
nesium ions, a means for changing the growth rate withouThere are fewer short-time events than one would expect
changing the tubulin concentration. This gives us an opporfrom an exponential distribution.
tunity to compare catastrophe rates obtained at the same These data suggest that there are measurable limits to the
growth rate, but with different concentrations of tubulémd  accuracy of the model presented here. Given the number of
7). It is, of course, not obvious that we should be able tosimplifications in the model, we do not find this surprising.
learn anything about our model from experiments done in thdhe fact that their data are so nearly exponenaie[19]
presence of MAPs. After all, the model was designed to deFig. 2), can be taken as further support of the basic principles
scribe the cap dynamics of a pure-tubulin microtubule.of the model. Deviations may represent corrections to our
MAPs are proteins attaching themselves to microtubules;oarse-grained picture. Or the data set analyzdd 3% may
thereby changing their dynamics. Only if these changes caactually be exponentially distributed: The result of the statis-
be described by a change of parameter values in our modétal test only states that grobablyis not.
will the model be able to describe the effect of MAPs. Other result§62] in Xenopus laeviegg extracts show
A gquantitative study of the effect of on growth, catas- that the distribution of catastrophe times in extracts is non-
trophe, and shrinking rates of plus ends was reportéd3h  exponential. These extracts, however, contain many of the
Our model gives the catastrophe rate as a function of theomponents of living cells and one knows that the microtu-
growth rate. So the measurements reportefdL8} for those  bule dynamics can be extensively modifig¥]. Therefore,
two rates provide us with a possibility to test the model.  these experiments do not directly tell us about the mecha-
Figure 5 in[13] shows that as the concentration ofis  nism of dynamic instability in purified tubulin.
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XIll. UV CUTTING EXPERIMENTS 2. Protofilament cap

Any cap model predicts that if the cap is lost, a microtu- Recent result§52] indicate that growing microtubules
bule has a catastrophe. An experimg2®)] to directly test POSSess a sheet of protofilaments that are not bound together
this hypothesis yielded an interesting result. The author§to a tube. This suggests a possible model in which a catas-
used an UV microbeam to cut off the end of growing micro-trophe occurs when the sheet vanishes. The unbound
tubules. The exposed plus end alwa$$ out of 16 times ~ Protofilaments become longer as the microtubule grows, but
suffered a catastrophe, as one would expect from a cajf€y may bind to each other by two mechanistszipper-
model. However, the exposed minus end alwédg out of N, in which the tube state is propagated forward, &ind
29 time$ continued elongating. If these results are not arti-SPontaneous bindingn which protofilaments bind to each
factual, then they show that the dynamics of the minus en@ther somewhere in the middle of the sheet.
are fundamentally different from those of the plus end and it
may not be possible to model them in a combined fashion as 3. MAP-free cap

done here. , , , In this model, catastrophes are caused by a catastrophe-

There are several caveats to the interpretation of this ®Xhducing MAP reaching the tip of a growing microtubule.
periment. First of all, the results are sensitive to the bufferrnese MAPs crawl forward along on the microtubule to-
conditions: If the magnesium concentration is raised, then g,5,ds the tip, which recedes from them as the microtubule
significant number of minus-end catastrophes are observﬁrows_ New MAPs may bind anywhere along the length of
[63]. It is possible that the microtubules are photodamage¢he microtubule. The MAP-free region at the growing tip of
by the UV microbeam and that this damage determines thg microtubule may be shortened by two mechanisms, either
outcomg of the experiment. One also does not know V\{hethqhe forward progress of an already-bound MAP or by the
the continued growth of the minus end should be attrlbutquinding of a new MAP somewhere within the MAP-free re-
to the lack of a catastrophe or to the occurrence of a resCugion_ |t is of interest to note that motor proteins that increase
[5], a discussion made difficult by our ignorance about thgpe catastrophe rate have recently been discovi4d

mechanism of rescue. Nevertheless, these experiments point These examples that help illustrate that the basic ingredi-
to the possibility that there are important differences betweeRis of the model are the following:

thfe two ends. We hope that further experiments will pursue (i) Growing microtubules possess a cap, the disappear-
this issue. ance of which leads to a catastrophe djid the cap is
lengthened by the growth of the microtubule and shortened
by two mechanismsfront propagation and spontaneous
XIV. DISCUSSION events Spontaneous events become more likely as the cap
becomes longer. Any microscopic model that leads to these

_ _ phenomena can be described in terms of a model similar to
It was assumed in the formulation of the model, at thethe one we propose.

stage where we got rid of the microscopic description, that
kn<<k,. Now that the model parameters have been deter-
mined by fitting the model to experimental results, this cri-
terion must be satisfied, or the model is not self-consistent. We propose that when the loss of the cap causes disas-
We find, using parameter values from the first line in Table I,sembly from the end of the MT and disassembly reaches a
that left-behind patch of tubulin-t, it continues right through it.
, 5 , This implies the existence of additional elements of the dy-
Kp/Kh=r 6x“/vp=3x10"%, (38 namics, e.g., GTP hydrolysis is propagated in front of the
disassembling tip. The reversal of disassembly to assembly,
calledrescue,thus requires something more than a leftover
which shows thak;, indeed is much smaller thdg, . patch of tubulin-t, according to our model.
Previous model$§12,11] have considered rescues and ca-
tastrophes to be two aspects of the same phenomenon. How-
B. Microscopic interpretations of the model ever, we feel that there is little evidence to suggest that this is
We have presented this model in terms ohydrolysis fthe case. Indeed, the fact that the rescue rate may be “ad-
cap It is important to realize that the model is in fact far Justed” independently of the catastrophe rate under some
more general than this and can be used to describe a numpe@nditions[26—28 could be taken as evidence that the two

of microscopic models. Some examples are the following. Phenomena arise from different mechanisms. Otherbave
also suggested this possibility.

1. Conformational or lattice shift cap One could build a model for rescues as well. We have
refrained from doing this for a simple reason: Much less data
has been collected on rescues than on catastrophes. We hope
that future experiments will address this aspect.

A. Self-consistency of the model

C. Rescues

Tubulin units assemble in one conformational state or lat
tice configuration, but latefafter hydrolysisP shift to a sec-
ond conformation. This shift can occur in two ways: in-
duced shift in which the conformational change in one
region is catalyzed because a neighboring region is in the
second conformational state, afit) spontaneous shijftin We expect that video microscopy will continue to provide
which a region spontaneously changes state. the data that most constrain models of dynamic instability. It

D. Issues for future experiments
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would be very useful to have the catastrophe rate and diluerientations possible for a hydrolysis froat=v,—uvy, is the
tion experiments repeated under identical conditions. Recemelocity with which the cap grows. It is also the velocity
gains in understanding the effect of buffer conditidB8—  with which it grows before dilution, in dilution experiments,
35] may offer new experimental possibilities. By measuringwhile v’ is its growth velocity after dilutionD is the diffu-
growth velocity, catastrophe rate, and lifetime upon dilutionsion constant parametrizing the unbiased random walk per-
for a variety of tubulin concentrations, the major parametergormed byx—wvt in time intervals between cutting by inter-
of our model(growth velocity and off rat¢23-25, vy, and  nal hydrolysis. Its value is given in E¢6). k;, is the rate of
r) would beoverdeterminedthus providing a rigorous test hydrolysis for hetero-dimers in the interior of the cap or a
of the model. GTP patchr =k /dx is the rate per unit length cap or patch
The combination of video microscopy wifitessure jJump  that interior hydrolysis opens up two new hydrolysis fronts.
experiment$65,66 has not been exploited. It should be fea- wy=0v{"+0v{) is the velocity with which a GTP patch
sible to construct a pressure cell that permits continuoUgpyinks. y is a dimensionless parameter characterizing the

viewing of individual microtubule$6_7]. _Pressure off_ers an gynamics of the cap, defined in EG5). fy is the catastro-
extremely attractive alternative to dilution because it can bey,,o ratet,, is the average waiting time for dilution-induced

adjusted rapidly and with high precision. Our model makes atastrophes, defined in E@5). p(t) is the waiting-time
specific prediction: The stabilizing cap should equilibrate Oyistribution for dilution induced catastrophelgp is the

the new pressure in an a"erage titgg, 9“’9” by Eq.(2_5). amount of GTP at a microtubule end, measured in lengths of
For times shorter thame,, a "memory” of the previous icropule.y is the amount of GTP per unit length of mi-
state persists; the speed with which pressure can be CoRioyhyle at a given time for a homogeneous microtubule

trolled should make this time scale easily accessible. and at a given position for an inhomogeneous ora,t) is
Finally, the heterogeneity that one sees in the growth Vethe average number of GTP patches of lengtiper unit

locities of a population of MT$68] is still not completely length microtubule at time. t, = (rw;,)~ Y2 is the character-
understood. It may be profitable to try to correlate the Vari'istic time for hydrolysis processes, defined in HG3).
ability in growth velocity with the occurrence of catastro- xn=(wy,/r) Y2 is the characteristic Ien’gth of GTP patches in
phes. For example, do MTs that grow more rapidly have Iesﬁ;droI;sis defined in EqF6)

frequent catastrophes? Or is an individual MT more likely to ' o

have a catastrophe during periods when its growth is particu-

larly slow (or fas)? These experiments should not require APPENDIX B: MASTER EQUATION
any new apparatus or procedures. The evolution in time of an ensemble of microtubule caps
evolving according to the dynamics described in Sec. Il is
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APPENDIX A: NOTATION P(x,t)= fwdx’p(x’,t) (B3)
X

This appendix collects our notation, which was introduced
gradually throughout the article wherever needed for the firspt microtubules with caps of length longer than
time. Notation not used more than once in the article is not  p(qy) is the total number of microtubules with caps at
included.t denotes timex is the length of the GTP cap. {imet. It satisfies the equation
6x=0.6nm is the amount by which the length of a microtu-
bule and its GTP cap is incremented by the addition of one P(O)=j(0t)=vp(0})—Da,p(0t), (B4)
heterodimer to itdx is also the amount by which the cap and
trailing patches of GTP shorten by hydrolysis of one hetwhich shows how the number of capped microtubules
erodimer K is the rate heterodimers are added to a growingvolves in time: it decreases at the rddel,p(0t) with
microtubule endv =Kk, 6x is the average velocity of growth which caps are lost by diffusion to vanishing length and, for
resulting from the rate,. v{") andv{~ are the notations >0, increases at the ratep(0yt), if by some mechanism
used when we wish to distinguish between the two endsive supply the ensemble with new, growing microtubules
velocities of growth.k;, is the rate of hydrolysis for het- with caps of zero length. Fas <0, the termvp(0t) de-
erodimers at the trailing edge of the cap or at the edge ofcribes loss of caps by convection to vanishing length. Be-
GTP patchesv,=k,6x is the velocity with which these causep(x,t)=0 for x<0, the diffusive loss of caps will be
edges, or hydrolysis fronts, propagaté’’ andv{ ) are the infinite if p(0™,t)>0, thereby forcing the system to obey the
notations used when we wish to distinguish the two differentooundary conditiorp(0™,t)=0 whenever it is left to itself.
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In that situation, thecatastrophe rate §:, the rate per
capped microtubule at which caps are lost, is

10 T L L s s

foa=D3,p(01)/P(0}). (B5)

We see that Eq939) and (40) contain a total of three
parameters, D, andr. These are the fundamental param-
eters of our model, which is an effective theory with only
D/v relating to the microscopic scale.

The description given here in terms of a master equation
is not the only one possible. One can, alternatively, describe
the time evolution of the cap by a Langevin equation with a
velocity v and two noise terms, one for the fluctuations in
velocity and another for the cutting by internal hydrolysis. P 1 Y T P O I B
But for the purposes of the present article we find the master -10 -5 5 10
equation more convenient.

AP'(€)/Ai(8)
(o)

|
[
L s L

/

~ o

FIG. 7. Graph of Ai(£)/Ai( £). With this graph one may solve

APPENDIX C: RIGOROUS ANALYSIS OF MODEL— .
Eq. (C13 graphically.

GENERAL RESULTS

Equations(B1) and (B2) comprise an integro-differential 0775(5,7):((95_5_ Y2)P(x,1). (C10
equation forp(x,t). Differentiating it once with respect to
x makes it a third-order partial differential equation for  The general solution to this linear equation is
p(x,t). Fortunately, we do not have to deal with these equa-
tions. Instead we integrate E(B1) with respect tox from ~ )
X to infinity and find P(§,T)=f dac(a)exp—anAi(é+y*—a),
. ) (C12)
AP(X,t)=j(X,t)=(—vdy+Da;—rx)P(x,t), (CI)
. _ where Ai(¢) is the first Airy function, satisfying Airy’s dif-
where we have assumg(o,t)=0 for all t. This boundary ferential equatiorisee[69], Chap. 10
condition is satisfied as long ggx,t) decreases faster than

x~2 at infinity. The opposite case makes the average cap d2

length infinite, a state that is impossible to arrive at with the -
. ! : dé¢

dynamics of this model, as long as caps are created with

finite length. . . N
. . . The second Airy function BY) is eliminated from the gen-
The three dimension-full parametess D, andr in Eq. eral solution by its exponential growth at infinity.

(C1) can be combined to form three other independent pa- "ucc ot boundary conditions at=0 put different con-

rameters, of dimension length, time, and none, correspondiné;( : s . :
; . , : . raints on the coefficient functiot(«) in Eq. (C11). Sup-
to the dimensions of EqC1)’'s two dependent variables: pose we leave the ensemble of caps to itselftfe0. Then

g)Ai(g)zo. (C12

Xo=(D/r)¥3 (C2) p(0t)=0 for all t>0 and consequentlg(«a) is nonzero
only for the discrete set of values,, k=0,1,2,.. ., satis-
to=(Dr?)~ (cy  fying
—Ai '(72_ @)
v v
= - —_—— = C13
Y= 2DZFIRT 2%, 1ty €4 Ai(y*— ay) (€13
The inverse relations to Eq&C2) and (C3) are illustrative ~ This equation definea, as implicit functions ofy as illus-
and useful, trated in Fig. 7. We have determined several of these func-
tions numerically. The graphs of the first 18 functions are
D=x3/t, (C5  shown in Fig. 8. For any value of,
r=(Xoto) "% C6 3 \%B
(Xoto) €8 a~y?+|5mk|  for ke, (C14
Introducing new, dimensionless variables
— For any positive value ofy?, the set of functions
£=X/Xo, €7 Ai[¢é+ 9= a(y)], k=0,1,2,..., form a basis for real
r=t/t, (C8) functions on the real positivé-axis. This basis is orthogonal

in the scalar product
P(&,m)=exd —vX/(2D)]P(x,t) (C9)

in Eq. (C1), it reads <f,9>EJO déf()a(é) (C15
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FIG. 8. Graphs oty (y) fork=0,1,2 ... ,counting up from the
bottom. Note the gap betweery(y) and a,(7y), k=1,2,..., for
vy=1. It is the reason why the term witk=0 quickly dominates
the sum ovek in Egs.(C18 and(C19 as 7 increases from zero.

and one can show that thé&th function has norm

JVa Ai( ¥?— a,). With this knowledge, we can find the time
evolution for a particularly interesting initial situation, the

one in which all cap lengths are zero at tie 0. This
condition is described by setting

p(x,0)c— &' (x) (C19
or, equivalently,
P(x,0)cc 8(X). (C17
This initial condition results in
- Ai(E+ ¥~ )
P(X,t)ockgo exr( — a/k7'+ ’yf)m, (C18)

where¢ and 7 are related tox andt by Egs.(C7) and(C8).
From Egs.(C18) and(B3) it follows that

©

p(x,t>o<xalk§0 exp — aym+ ¥é)

o — A’ (£+ ¥ ap) — YAI(E+ ¥ — ap)
a A (Y~ ay)

(C19

Phrased differently, EqC19 gives the propagator for caps

starting out with zero length. Sind®(0t) is the total num-

ber of caps in the ensemble, we see that this number is

infinite at timet=0 according to Eq(C17), but finite at any

later time according to Eq.C18). Because caps disappear

from the ensemble by diffusion through=0 and we start

the caps out with a vanishing value, we must have an
infinite number of caps in the ensemble initially for a finite

number of caps to survive to any later time.

This infinity is an artifact of our continuum description.
As we will not have to deal with early times, we will not
encounter it. It is not different from what one finds for ordi-
nary diffusion on the real positive axis with a source and a
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sink at the origin. The reason it is not different is that at very
short length scales, such as in the immediate neighborhood
of the origin, the diffusion term dominates over the other
terms in our master equation.

APPENDIX D: CATASTROPHE RATE

As argued in Sec. V, caps on tledservedmicrotubules
have existed for a sufficiently long time for the ensemble of
them to be statistically distributed as the asymptotic distribu-
tion obtained from Eq(C18 for 7—, i.e., as

P(x,t)cexp(— agr+ y&)Ai(E+ 72—010). (D1)

Since

P(0t)xexp — ag7) (D2
is the total number of caps in such an ensemble, the catas-
trophe rate obviously is

fcat: (27)) /to . (DS)
Here o is a function ofy. Its graph is shown as the lowest
curve in Fig. 8. Notice that this lowest curve for positive
values of y is well below the other curves shown. This
means that neglecting terms wikh>0 in Eq. (C18), as we
do with Egs.(D1)—(D3), is a good approximation even for
moderate values of.

Furthermore, the first term in the asymptotic expansion of
a(y) in terms of 1# gives a very good approximation al-
ready for y>1, because the second term in the expansion
has coefficient zero

1t @) ! D4
a0—2—7+ ? . (D4)
Using this and Eqs(C3) and (C4), we obtain
1
fcat:Dr/U+O 7), (DS)

from which we see that the heuristic result given in Ex)

for large values ofy actually is correct as an approximation
and is a very good one: compare the full and dashed curves
in Fig. 4. Figure 4 shows a fit based on the full expression in
Eq. (C18 including terms withk>0. Because of these terms
with k>0, the instantaneous catastrophe rate

dP(0}t)

is time dependent, being larger initially than its asymptotic
value, which is approached monotonically. We calculated the
average time that a microtubule is observed in its growing
state as

(D6)

dP(0}t)
dt

<t>: P(Oitcutoﬁ)_lf dt(t—teyeor)
Leutoff

[

—P(Otouor) " f dt P(OY). O

Leutoff
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Here t o IS the time it takes microtubules to grow long i
enough to be observed, i.€xytof= Xcutoft/ Vg , WNEIEXeytof IS (x)= o (E3)
the minimal length that a microtubule needs to have to be
observed. We have useq, ;= 0.1um as this is the typical
resolution of the light microscopes used to take the data. Comparing this result with our estimate in H3.3), we see
For any nonzero value fdg,., Eq.(D7) is the observed that the latter is very good: it has the form we expected from
average lifetime of microtubules, related to the observed cadimensional analysis and only misses the numerical prefactor
tastrophe rate by by a factor/7/\/3=1.02. Considering the method of esti-
mation, this precision is the result of luck.
fcar= 1K1T). (D8) Though we have neglected the diffusive term responsible
o o ) for catastrophes by assumiiy=0 in deriving the distribu-
The limit teo—0 is tricky. The exact expression for the tjon (E2), we can still find the catastrophe rate that results
observed catastrophe rate given in E8) is the one our  from this distribution when catastrophes are permitted by
model tells us to use in the limit df,,+— 0. This catastro-  having D nonzero. Strictly treated, these catastrophes will
phe rate is infinite, because with the particular choice oOfaffect the form of the distribution, but that is a higher-order
initial condition leading to Eq.(C18), (t) vanishes with gffect in D that can be ignored to a good approximation

teuort IN Eq. (D7). This is so because an infinity of microtu- whenD is small. The catastrophe rate is
bules vanish in the first instant after they are created with

zero length att=0, while only a finite number survive a d Dr

finite time, as discussed in the last two paragraphs of Appen- fou=D an =, (E4)
dix C. As also explained there, this infinity is an artifact of dx =0 VY

our continuum description of the cap and is an acceptable

artifact since it only shows up in situations that are not enyyhich is just what one gets from inserting E§4) into Eq.
countered when we relate to experimental data, while thens) 5o now we also understand that approximate result as
continuum description greatly facilitates our modeling task. 4 leading-order perturbative result.
Exact or approximated, the functioiEl) is our initial
APPENDIX E: DILUTION EXPERIMENTS data for the cap length distribution when we model dilution
Iexperiments. Suppose that the tubulin concentratioat

Our model is a partial differential equation, and initia hich microtubul is diluted abruptly t
data and boundary conditions characterizing dilution experiW ICh microtubules are grown 1S diluted abruptly 1o concen-

) , . " ; X .
ments are required in order to describe such experimen%éatlonc at timet=0. Th.en,. W't.h primes denotlng.values
with the model. We meet this requirement in the following "' t>0, the cap length distribution evolves according to
way. When microtubules are grown at high tubulin concen-
tration, catastrophes are very rare, so the caps on such mi-

oo

crotubules are as old as the microtubules themselves. When P(X,t):kZO cl( v,y exp—ayt' +y' &)
these microtubules are grown from seeds, i.e., from zero -
length, each cap has aggregated and lost again by hydrolysis Ai(¢'+y'2—a)
as much tubulin-t as there is tubulin in the microtubule. So X, (E5)
the ensemble of caps in an ensemble of such microtubules is \/a—ﬁAi(Y’z_ ay)
extremely well equilibrated statistically, i.e., distributed ac-
cording to the asymptotic form given in EGP1). When the  \yhere
growth ratev is so large that’>1, y>0, the right-hand
side of Eq.(D1) is well approximated by the first term in its o e
expansion iny 2, ey 7,):J’wd§,Al(§ Ty )
Al(E+ 72~ o) k 0 NG ey
P(x,0)=exp 'yf)m , Ai(&'xp/Xo+ ¥>— ag)
52 Xexd(yXO/XO_ 7,)§,] Ai('}/z_ao)
- -2
—ex;{ - E +O(y 9). (ED (E6)

Alternatively, we may arrive at the last expression in Eq.js the scalar produdiEq. (C15)] between our diagonalizing
(E1) by neglecting the diffusive term in our master equationpasijs vectors fot>0 and our initial condition at=0.

(C1), that is, by settingD=0 in it. Then the steady-state  The distribution in time of catastrophes following dilution
solution to the master equation is easily found to be the lask the instantaneous rate at which caps disappear from the

expression on the right-hand side of E&1). Either way, ensemble of caps we had at the time of dilutierO:
this approximation results in the steady-state distribution

rx rx2
X)=—expg — 5—
p(X)=— o o -
For the average lifetime of caps following dilution we then
with mean value have

Peaf )= — 3;P(0,1)/ P(0,0). (E?

: (E2
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o their forms in realistic situations in Sec. VIIIC and in Ap-
tcat:f dttpea(t) pendix G.
0 We consider an infinitely long microtubule that at time
* * t=0 consists entirely of tubulin-t. After that time it suffers
=t{ >, a{(glzck('y,y’)/ >y Yoy, y"). internal hydrolysis at rate per unit length, and hydrolysis
k=0 k=0 from the ends of the patches thus created, each patch shrink-
(E® ing with velocity w,=v{"+v{). Let n(x,t) denote the
average number of patches of lengthio be found per unit
For only slight dilution,y’ =y and the exact expressions |ength of microtubule at time=0; since this is an average, it

in Egs. (ES) and (E8) are well approximated by the first, or s a real number. The total number of patches per unit length
the first few, terms in the sum ové&r For the more interest- of microtubule then is

ing case of massive dilutiony’~0 or y'<0 and many

terms are required in the sums in EqE5) and (E8) to o

obtain a reasonable approximation. Also, little is gained by n(t)EJ'0 dxn(x,t). (FD
using the approximation of EGE1) in Eq. (E6). However,

for v’ <0 cap “grovvt_h" is negative a_1r_1d causes cap |05_3 bySimnaﬂy, the total length of tubulin-t per unit length of mi-
the convective term in EC1) in addition to the loss by its  ~rotubule is

diffusive term. In this case we can neglect the diffusive term

to a good approximation fofy| large, as it only causes a o

slight smearing of the cap-lifetime distribution obtained X(t)EJ dxxn(x,t) (F2)
without it. SettingD =0 in Eq.(C1), we can solve it exactly 0

for t>0 by using the method of characteristic lines and findat timet and should equal 1 at tinte=0. The average length

P(x,t)=exp(—rxt+irv't)P(x—v't,0).  (E9 of patches at time is
We could improve on this approximate result by treating it as (¥)e=x(O/n(t). (F3
a leading-order approximation in a perturbation theory in
D, but do not need to for our purposes here.
So now we know the cap length distribution at all times
after dilution to a concentration that renders sufficiently

The densityn(x,t) evolves in time according to the mas-
ter equation

negative, atn(x,t)=whaxn(x,t)—rxn(x,t)+2rf dx’'n(x’,t).
X
[x—v't ) (F4)
Al +‘y —
P(x,t)=exp(— rxt+ro’t2) )fo 5 On the right-hand s_ide of this integro-differential equation,
Ai(y" = ap) the first term describes the change of patch length by hy-
i iwe =0+ Th
—extd (1= /o) (1o 22— rxt) — rx2/(2 drolysis from both ends at velocitw,=v"’+vy, /. The
H(1=vfv)(ro ) (2v)] second term describes the loss of patches of lergthused
+0(y 2. (E10 by their internal hydrolysis at ratex. The third term de-

scribes the creation of patches of lengtlirom patches of
Notice the normalizatio®(0,0)=1. P(0y) is the fraction of  any lengthx’>x by internal hydrolysis at rate per unit
microtubules that have not yet experienced catastrophe &ngth. The factor 2 in front of this term is there because one
time t after dilution and is just a Gaussian distribution to event of internal hydrolysis in a patch of lengthcan create
leading order irry*Z. So, then, is the distribution in time of g patch of lengthx in two ways: by separating the lengkh
catastrophes either from one end or from the other end.
The master equatiofF4) contains two parameter and

L t? w;, with dimensions[len ime] 1 [
— _ o h gth X time]™* and [length/timg,
Peal )=~ #P(O1) 2t§atexﬁ< 4t§a,) o (1D respectively. These parameters may be replaced by two other
parameters
where the average lifetime upon dilution is
th=(rwy) "2 (F5)
—2rp’ o'\~ 1/2 T 1/2
| (1‘ 7) 2(7) (12 and
in the approximation used here. Xp=(Wp /1) (F6)

of dimensions(time) and (length, respectively. The latter
parameters define the time and length scales of the process of
hydrolysis.t, was introduced already in Eq3). Using the

The variables needed to describe the kinetics of GTP hyvalues forr andv (") given in Table I, we find,=5 sec and
drolysis are well illustrated by a much simplified situation. x,=29 nm. When time and length are measured in units of
From their functional forms in this situation we easily obtain these parameters,

APPENDIX F: GTP HYDROLYSIS RATES—
CASE OF HOMOGENEOUS MICROTUBULE
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E=xIxp, (F7)  tion just given. So the shrinking process does not affect the
distribution of patch lengths. Only theumberof patches is
T=t/t;,, (F8)  affected: compare Eqg¢F14) and (F15 with the same ex-
pressions fomw,=0.
n(¢,7)=x2n(x,t) (F9)
. APPENDIX G: GTP HYDROLYSIS RATES—
(where_§ andr sh_ould not be confused vy|th those of same CASE OF MICROTUBULES GROWING
name in Appendix ¢ the master equatiofF4) becomes AT DECREASING RATE

dimensionless and contains no free parameters,

In Sec. VIIIC we considered the case of GTP hydrolysis
of caps grown with constant microtubule growth ratg If
insteadv 4 decreasess the microtubules grow, because the

(F100  concentration of tubulin-t in solution is depleted by their

} ] growth, the situation is more complicated. Depletion of
From the master equation follow equations for the totalyypylin-t takes place in the hydrolysis experiments reported

length of tubulin-t, x(t), and the total number of patches iy [17], [43], and[40]. So for the benefit of the reader want-

&Tﬁ(f,T)Zﬁgﬁ(f,T)—§ﬁ(§,f)+2Lwd§"ﬁ(§’,7)-

n(t) per unit length of microtubule ing more than the upper bound given in Sec. VIIIC, we
d present our model’s predictions in this appendix.
d_X(t): —wpn(t) (F11) If the characteristic time for depletion is much longer than
t

the characteristic time for hydrolysig, we have a quasista-

tionary growth rate as regards hydrolysis and the hydrolysis

rate and the amount of tubulin-t present at microtubule ends
d will follow the instantaneous growth rate; the results in Sec.
—n(t)=—wpn(0,t) +rx(t). (F12  VIIIC apply when the instantaneous growth rate is substi-
dt tuted for the constant groat rate assumed there.

and

The interpretation of these coupled equations is obvious, bLtt This is not the situation in the experiments described in

they do not close becausg0t) occurs. Only the master 17] and[43]. In those experiments tubulindepletion oc-
equation closes. It has the sollution curred at rates comparable tp. This appendix describes

that situation.
(& 7)=rPexp(— ré— 72/2) (F13 When stabilized microtubules grow with a velocity,
that is proportional to the tubulin-t concentration
or, returning to variableg, t, andn(x,t),
Vg=v4C, (G1
n(x,t)=(rt)%exp — rtx—rwput?/2) (F14
and deplete the latter by their growth, the absence of catas-
and, consequently, trophes makes them all grow to the same ledg#) and in
the same way
n(t)=rtexp(—rwpt?/2), (F15
- A UMTUt) — _a—tity
X(D=exp(—rwyt?/2). (F16 '(O=I(=)(1—enm)=l(=){1-e"). (3

. . . . where we have introduced the characteristic time
The form of the solutiom(x,t) in Eq. (F14) is easily

understood. Internal hydrolysis of the infinite microtubule is 1
a Poisson process causing an exponential distribution of tq= » - (G3)
patch lengthx. This Poisson process is superposed with the MTUg

shrmkmg.at \_/elqcnywh of the pat_qhes It cregtes. Bl,Jt an for depletion of the tubulin-t concentration by a constant
exponential distribution on the positive half axis remains iN-.oncentration of microtubules, ;. The assumption that the

variant under a shift of the origin of the axis. So the Shrlnk'concentration of microtubules is constant during their growth
INg process does not ch{:mge the charac_ter.of the resullt Of. t'?;1‘?Jplies in the experiment described tV] because microtu-
Poisson process. Were it not for the shrinking and vanishin

¢ h he Poi d h ted | ules are grown from seeds; 4d8], Fig. 1. When microtu-
0 pa_ltc es, the 0ISSON Process wou ave resu te N Bules are nucleated in the bulk of the tubulin-t solution, the
density rt of points of internal hydrolysis, hence in

~ h ] h. with | h randomness of the nucleation process gives rise to a distri-
n(t)=rt patches per unit length, with average lengt bution of finite width for the lengths of microtubules at any

(x)=1/rt) given time, comparg43], Fig. 4E). In this case Eq(G2)
' applies only to the distributions average length and only after
from which nucleation has been effectively stopped by depletion of
tubulin-t.
n(x,t)=(rt)%exp —rtx) At time t, the age since assembly f the part of the

microtubule located a distan¢é behind its growing tip sat-
follows because patches shrink and vanish, their numbesfies the equation

does not just grow at. But the patches present at any time
t are, nevertheless, distributedxraccording to the distribu- [(t—t")=I(t)—1". (G4
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Using this with Eqs.(G2) and (F16), we find for the total
amount of GTP present at tinte

In the experiments described ja7] and[43], the GTP
content of microtubules is not measured directly. The total
amount of microtubuld(t) is measured both turbidimetri-
cally and by radioactive labeling and the total amount of
GDP produced is measured by radioactive labeling of the
phosphate ion released in the hydrolysis of GTP to GDP.
Since the microtubules polymerized in those experiments are
stabilized against depolymerization, the GDP produced is all
located in microtubules and

lepr(t) =1(t) —Igre(t)

=1()| 1—-{ 1+ \/Et—'"e“h“cﬂz’2
2t

y t th) @( t th )
S —_—— — —— —
g th td \/Eth \/Etd

It
o= arxan

t !
:l(oc)eft/tdtdflf dt/e’[ /th(tr)
0

t
=|(o0) \/E_he(th /td)2/2e—t/td
21ty

y r(t th)®< t ty )+¢( ty,
S _—— — p—
Mty 1) ™| V2, V2 V2ty

m (tp /tg) 2124 —tIt th
~ (o0 ——elth/lg d -
I( )\[the et 1+ d | (G5)
t

where the last expression gives the asymptotic behavior at +® —h) ]emd) (G6)
late timest. \/Etd

The GTP content of a microtubule described by this result
has a maximum at a time that can be determined from the ~1(0) 1_{ ]_—i—t—h\/Ee(th/td)zlz
expression given. But as shown in Sec. VIIIC, bounds can tg V2
easily be established, which suffice to understand the key
experimental result, the zero result[it7], and we give Eq. ty _

; L X|1+®| —| | te Y (G7)

(G5) only to show it can be found within our approach, to \/Etd '

put it on record for anybody wanting a description taking
depletion into account, and to illustrate the complexity ofwhere the last expression gives the asymptotic behavior at
such a description. late timest.
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