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An effective theory is formulated for the dynamics of the guanosine triphosphate~GTP! cap believed to
stabilize growing microtubules. The theory provides a ‘‘coarse-grained’’ description of the cap’s dynamics.
‘‘Microscopic’’ details, such as the microtubule lattice structure and the fate of its individual tubulin dimers,
are ignored. In this cap model, GTP hydrolysis is assumed to be stochastic and uncoupled to microtubule
growth. Different rates of hydrolysis are assumed for GTP in the cap’s interior and for GTP at its boundary
with hydrolyzed parts of the microtubule. Expectation values and probability distributions relating to available
experimental data are derived. Caps are found to be short and the total rate of hydrolysis at a microtubule end
is found to bedynamicallycoupled to growth. The so-calledcatastrophe rateis a simple function of the
microtubule growth rate and fits experimental data. A constant nonzero catastrophe rate, identical for both
microtubule ends, is predicted at large growth rates. Thedelay time for dilution-induced catastrophes is
stochastic with a simple distribution that fits the experimental one and, like the experimental one, does not
depend on the rate of microtubule growth before dilution. TheGTP contentof microtubules is found and its
rate of hydrolysis is determined under the circumstances created in an experiment designed to measure this
GTP content. It is concluded that this experiment’s failure to register any GTP content is consistent with the
model. A recent experimental result for the size of the minimal cap that can stabilize a microtubule is shown
to agree with the result predicted by the cap model, after its parameters have been extracted from previous
experimental results. Thus the effective theory and cap model presented here provide a unified description of
several apparently contradictory experimental data. Experimental results for the catastrophe rate at different
concentrations of magnesium ions and of microtubule associated proteins are discussed in terms of the model.
Feasible experiments are suggested that can provide decisive tests of the model and determine its three
parameters with higher precision.@S1063-651X~96!09810-8#

PACS number~s!: 87.10.1e, 05.40.1j, 87.22.Bt, 82.35.1t

I. INTRODUCTION

Microtubules~MTs! are long and extremely rigid, tubular
polymers. They assemble from tubulin, a protein found in
eukaryotic cells, which ‘‘crystallizes’’ to form a helical lat-
tice ~see Fig. 1!. Microtubules form an important part of the
cellular scaffold and provide a network of ‘‘rails’’ for active
intracellular transport. They also play a crucial role during
cell division, forming a dynamic structure that spatially sepa-
rates duplicated chromosomes. Twelve years ago, Mitchison
and Kirschner discovered that the polymerization of MTs
from tubulin is a very unusual process: a MT can repeatedly,
and apparently randomly, switch between persistent states of
assembly and disassembly in aconstantconcentration of tu-
bulin @1,2#. This behavior is observedin vivo as well asin
vitro ~see Fig. 2! and is referred to asdynamic instability.

This switching between growing and shrinking states at
one concentration is unusual for a polymer. It is achieved by
an increase in the chemical potential of the monomers after
assembly. The energy required to do this is provided by hy-
drolysis of a guanosine triphosphate~GTP! nucleotide bound
to assembling monomers. While thermodynamics thus can

explain the coexistence of the growing and the shrinking
states, it cannot explain the dynamics of the transitions be-
tween these states. An interesting possibility, suggested by
Mitchison and Kirschner@1,2#, is that transitions occur as a
consequence of competition between assembly and GTP hy-
drolysis. A growing microtubule assembles by the addition
of GTP tubulin, which is later converted to guanosine
diphosphate~GDP! tubulin. In Mitchison and Kirschner’s
scenario, a growing microtubule has a stabilizingcapof GTP
tubulin @2,3#. If hydrolysis overtakes the addition of new
GTP tubulin, the cap is gone and the MT’s end undergoes a
change to the shrinking state, a so-calledcatastrophe.
Though it is known that GTP hydrolysis precedes disassem-
bly, it may not be the rate-limiting process in the change to a
disassembly-favoring state, however. Conformational
changes of tubulin or structural changes of the MT are other
candidates; see@4–6# for reviews.

Despite the large amount of experimental and theoretical
work devoted to the cap model, it is still the subject of con-
troversy @4,5,11,12#. At the center of the debate are seem-
ingly contradictory results about catastrophes, GTP contents,
and the cap size coming from three types of experiments.

~i! When MTs are grown in pure GTP-tubulin solutions at
various constant concentrations, the frequency of catastro-
phes is one everyfew minutesand decreases with increasing
concentration@13,14#; see Fig. 4 below. This suggests that
the stabilizing cap is longer, hence less apt to be lost, at
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larger concentrations. But no cap model has been able to
relate concentration with frequency of catastrophe in a man-
ner quantitatively resembling the observed relationship.

~ii ! In dilution experimentsthe concentration of tubulin is
abruptly reduced to zero, resulting in catastrophes within
seconds, independent of the initial concentration@15,16#; see
Fig. 5 below. This suggests that the cap is short and inde-
pendent of the concentration at which it is formed.

~iii ! In experiments attempting to measure the GTP con-
tents of microtubules grown in a manner to assure maximal
GTP contents, no GTP can be found after the 15–20 s dead
time of the experiment@17#.

Successful models should also be able to explain a range
of other observations: that the distribution of catastrophe
times is nearly exponential@18#, that a small cap assembled
from a nonhydrolyzable GTP analog can stabilize a microtu-
bule @19#, that cutting a microtubule usually results in a ca-
tastrophe@20#, and others.

In this article we show how these experiments are de-
scribed naturally by the same simple stochastic cap model,

thereby resolving these apparent contradictions. The wide
temporal range of behavior of the first three experiments
enumerated—from seconds to minutes—is explained in
terms of tubulin assembly and transformation, processes that
occur over time scales shorter than tenths of seconds. In
formulating this model, we were inspired by the many pre-
vious attempts; see@4# for a review.

All mathematical derivations in the article itself are heu-
ristic, with the emphasis on the modeling of mechanisms.
But all heuristic results are backed by rigorous analysis given
in the Appendixes.

Specifically, the article is organized as follows. Section II
motivates our use of an effective theory and explains what it
is, for the benefit of readers to whom the concept is unfamil-
iar. Section III introduces the theory, or model. Section IV
presents a heuristic analysis of the model. It is an attempt to
understand as much as possible from the assumed dynamics
of the model, employing a minimum of calculations. Sec-
tions V–XI discuss specific types of experiments, essentially
one type per section. In each section the experiments are
briefly explained with the issues they address, we give the
aspects of the model that are relevant for its comparison with
the experiments in question, and discuss the comparison. We
see a careful discussion of model and individual experiments
in the light of each other as the only proper way to test the
model and to isolate new experimental questions. Section
XII contains the discussion. Section XIII lists suggested ex-
periments. Section XIV contains our conclusions.

Appendix A collects our notation, which is introduced
wherever needed throughout the article. Six additional ap-
pendixes contain the mathematical analysis of the model and
its adaption to specific experimental situations. These appen-
dixes provide the mathematical underpinning of the article,
which no heuristic analysis can provide. The model pre-
sented in this article was described briefly, with an equally
brief comparison with some experiments, in@21#.

II. MICROTUBULE STRUCTURE AND MOTIVATION
FOR AN ‘‘EFFECTIVE’’ THEORY

The general structure of a microtubule is shown in Fig. 1.
It is a tube formed from dimers arranged in a helical pattern.

FIG. 1. Microtubule shown as five-start helical lattice of het-
erodimers, the so-calledA lattice. Dimers are shown as vertical
pairs of dark and light spheres, which represent monomers ofa and
b tubulin, and are arranged end to end in 13 so-called protofila-
ments@7#. Other lattice structures are possible@8,9#.

FIG. 2. Length as a function of time for a single microtubule.
Data are from@10#.
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Each dimer consists of two closely related polypeptides,
called a and b tubulin. In solution, these are bound very
tightly together, and this tubulin dimer plays the role of the
‘‘monomer’’ of microtubule polymerization. We will use the
two terms, dimer and monomer, interchangably. The dimers
are arranged along the microtubule in a head-to-tail pattern,
forming a ‘‘protofilament.’’ Microtubules in living cells usu-
ally have 13 protofilaments, but ones assembledin vitro may
have a range of protofilament numbers.

The literature contains several rather detailed cap models;
see @4,5# for reviews.A priori, the detailed accounting of
these models for the fate of individual tubulin dimers may
seem both necessary and advantageous. In practice, however,
the experimental data available are insufficient to determine
many free parameters. The available data do not provide di-
rect information about the ‘‘microscopic’’ processes de-
scribed by these models. The data were taken with light mi-
croscopes that are resolution limited to seeing changes of
several hundred monomers. The microtubule itself is seen
only as a change in optical density where it is located. The
data also are not sufficiently precise to allow us to deduce the
proper values of microscopic parameters from their ‘‘macro-
scopic’’ consequences.

We choose an alternative approach to modeling by aiming
for an effectivetheory containing as few details as possible.
By an effective theory we mean a theory that is not formu-
lated in terms of fundamental variables and phenomena, but
in terms of fewer variables on a coarser scale. Ideally, an
effective theory and its parameters are then derivable from a
fundamental, microscopic theory andits parameters.

Several data sets are available from experiments investi-
gating different manifestations of the cap. None of the exist-
ing models have been able to explain more than selected
aspects of the data. So the data can discriminate against mod-
els. On the other hand, it is clear from the data that a model
should contain only a few free parameters if they are to be
unambiguously determined by the fit. More parameters will
result in ambiguities in their determination.

Thus we know that we should not be concerned with the
details of the microtubule lattice. With its 13 protofilaments
and its five-start helical structure for the lattice of tubulin
dimers, we would have to introduce a multitude of param-
eters to describe the various cap configurations in such a
microscopic description, as some models do@12,22#. We
know, of course, that it is at this microscopic scale~and even
smaller scales! that the relevant processes take place. The
idea of a GTP cap model is that it is GTP molecules liganded
to individual tubulin dimers that are hydrolyzed, thereby
changing a given dimer from being part of the cap to no
longer being that. But this does not oblige us to carry out our
modeling at this microscopic length scale. That is why we
aim for an effective theory.

The length scale that we here refer to as microscopic is
the molecular scale of tubulin heterodimers, the monomers
of the polymer that is a microtubule. It is 5–10 nm. The
effective theory is formulated on a coarser length scale, un-
able to resolve the three-dimensional structure of a microtu-
bule, which consequently is seen as a one-dimensional ob-
ject.

III. AN EFFECTIVE THEORY

Since our goal is an effective theory, we only need the
crudest description of what goes on at the microscopic level.
To be specific, we are not concerned with the tubular shape
of microtubules. Nor are we concerned with the dimer form
of the tubulin, as the dimers effectively function as mono-
mers in the polymerization process. We do, however, take
into account aconsequenceof the heterodimer form of tubu-
lin: it gives a definite overallpolarity to the microtubule,
with the consequence that its two ends differ, as illustrated in
Fig. 1. In terms of structure, one end terminates ina tubulin,
while the other terminates inb tubulin. In terms of dynam-
ics, one end~conventionally called the plus end! polymerizes
faster than the other~called the minus end!. It is not yet clear
whether the plus end is thea-terminating orb-terminating
end. In the present section we formulate the model for one
end without specifying which, since we describe both ends
with the same model, with only some of the rate constants
differing.

A. Microscopic description

Consider monomers that polymerize at one end with a
rate constantkg for addition, each contributingdx to the
length of the polymer. Thus the polymer end will grow with
average velocity

vg5kgdx. ~1!

The monomers in question are tubulin heterodimers, known
to be 8 nm long, and we can assume a microtubule has 13
protofilaments. So we know that each monomer added to it
contributes with 8 nm/135 0.6 nm to its length, i.e., we
know that

dx50.6 nm. ~2!

In a normal polymerization processes, the on ratekg is
usually accompanied by an off rate and the growth velocity
vg , which is observed in experiments, is the net effect of the
competition between these two rates. However, in the case of
microtubules it has been demonstrated experimentally that
the off rate is zero@13#. Consequently, the value ofkg can be
calculated from Eq.~1!, sincedx is known andvg can be
observed. This is important becausekg is more than just an
alternative representation of the information contained in
vg . It parametrizes a random process, the addition ofdx to
the length of the microtubule. Theaverageoutcome of this
process is described as continuous growth with constant ve-
locity vg . But superposed on this, there is the difference
between the actual and the average outcome, anunbiased
random process that we willnot ignore @23–25#.

We think of the monomers as tubulin-t that will hydrolyze
to tubulin-d since that is the general scenario of GTP cap
models. But, strictly speaking, this does not matter for our
effective theory. What matters is~i! that polymer ends grow
by addition of monomers that are inonestate,~ii ! that these
monomers, once added, can and will change to adifferent
state, and ~iii ! that the first state keeps a growing
microtubule-end growing, while~iv! the second state causes
a ‘‘catastrophe’’ if it extends to the end of the microtubule.
The difference between the two states needs not be the dif-
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ference between GTP and GDP. It can, for example, be
purely configurational@5#. In the remainder of this article we
will continue to use the terms tubulin-t, tubulin-d, and hy-
drolysis as convenient terms for the two states and the pas-
sage from one to the other. But it should be remembered that
we have not committed the effective theory to the literal
meaning of these labels.

We assume that hydrolysis is a stochastic phenomenon,
occurring with rate constantkh where a tubulin-t monomer
neighbors a tubulin-d monomer and rate constantkh8 , where
it does not; see Fig. 3. Thus a section of the polymer end that
consists entirely of tubulin-t will hydrolyze from its borders
with tubulin-d with average velocity

vh5khdx, ~3!

where the value ofvh may depend~throughkh) on whether
the border moves towards the plus or the minus end because
of the inherent polarity of the microtubule. Below, we dis-
tinguish between those two cases with the notationvh

(1) and
vh
(2) . In general, this hydrolysis moving in a specific direc-

tion is referred to asvectorialhydrolysis.
In the interior of a section of polymer that consists of

tubulin-t, new borders are formed with a rate

r5kh8/dx ~4!

per unit length per unit time. This rate is the same at both
microtubule ends, since it describes a process that is not
oriented relatively to the microtubule’s polarity. One might
refer to it asscalarhydrolysis.

We do not know the values of the rate constantskh and
kh8 . They are model parameters that must be determined by
fitting the model’s results to experimental data. Sincedx is
known,vh andr are an alternative pair of model parameters,
entirely equivalent tokh andkh8 as long as we keep in mind
thatkh , like kg , also parametrizes a random process, in this
case the removal ofdx from the length of a tubulin-t section
of the microtubule. The velocityvh describes the average
outcome of this process, but we will also account for the
fluctuations around this average in order to obtain catastro-
phes in growing microtubules.

Now consider a section of the polymer that consists en-
tirely of tubulin-t and is located at the end of the polymer. It
will be referred to as the cap. On the average, this cap grows
with velocity

v5vg2vh , ~5!

but hydrolysis of its interior breaks it into a shorter cap and
another section of tubulin-t at a raterx, wherex is the in-
stantaneous length of the cap. The length of the resulting
shorter cap is any fraction ofx with equal probability since
the process of interior hydrolysis that cuts the cap down in
size occurs with equal probability anywhere along its length.

When the cap is cut into two pieces in this way, the
‘‘piece’’ of tubulin-t that is not the new, shorter cap is hy-
drolyzed fromboth its ends~see Fig. 3!, as well as in its
interior, while no new tubulin-t is added to it. So it disap-
pears relatively fast, while new such patches of tubulin-t are
left behind by the ever moving cap. We assume that if a
catastrophe occurs and the end of the depolymerizing micro-

tubule encounters such a leftover patch of tubulin-t, then this
patch doesnot cause so-called rescue, i.e., it does not con-
stitute a new cap that brings the microtubule end back in the
growing state. On the contrary, we assume that the microtu-
bule depolymerizes uninhibited by the patch. We imagine
that the tubulin-d oligomers known to ‘‘curl’’ off depolymer-
izing microtubules gain sufficient energy by their change to
this configuration that they, when bordering a patch of
tubulin-t, are able to sever the lateral bonds between
protofilaments made of tubulin-t. Thus the model presented
here does not provide a mechanism for rescues, which pre-
sumably are due to an entirely separate phenomenon~con-
sider the results of@26–28#!.

B. Getting rid of the microscopic description

Neither the rater nor the velocitiesv, vg , andvh carry
any information about the microscopic length scaledx, nor
about the ratesper monomer kg , kh , andkh8 . So as long as
we use only the quantitiesr , v, vg , andvh in our descrip-
tion, we can ignore the existence of a microscopic scale.
Mathematically formulated, we can take the limitdx→0
while keepingr , v, vg , andvh at fixed values; they are of
order zero indx.

We will, however, retainone consequence of the exist-
ence of the microscopic scale in our effective theory: While
the lengthx of a capon the averagegrows with velocityv
between events of internal hydrolysis,fluctuationsaround
this average are inevitable, but only of order one indx, as
Eq. ~6! shows. So these fluctuations, which we retain in the
description, are a signature of the microscopic phenomena
underlying our effective description. One may view this de-
scription as a systematic approximation, resulting from an
expansion indx up to two leading orders.

FIG. 3. Polymer consisting of tubulin-t and tubulin-d monomers
of lengthdx, growing by the addition of tubulin-t monomers with
rate kg . Sections of tubulin-t hydrolyze to tubulin-d at a ratekh
from ends and ratekh8 from interior. Sections of tubulin-t inside
polymer disappear by hydrolysis, while the end section, ‘‘the cap,’’
grows with velocityv5vg2vh5(kg2kh)dx and is broken into a
shorter cap plus another section of tubulin-t at rater5kh8/dx per
unit length per unit time. The cap grows with velocityv that is the
difference between the velocityvg with which the microtubule
grows and the velocityvh with which the ‘‘hydrolysis front’’
moves.
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As already indicated, the source of these fluctuations is
the random nature of the events that the cap lengthx in a
given time interval is extended by the amountdx by the
addition of a tubulin-t dimer to the microtubule or reduced
by dx by the hydrolysis of a dimer at the trailing edge of the
cap. By a straightforward calculation one finds that thevari-
ance of this cap length distribution grows in time with a
constant rate

2D5~kg1kh!dx
25~vg1vh!dx, ~6!

i.e., the cap length evolves in time as the coordinatex of a
particle diffusing in one dimension with diffusion constant
D given in Eq.~6!.

This completes the description of our model. Bringing it
all together, a cap of lengthx grows steadily with velocity
v, but also experiences two different stochastic processes: A
diffusionlike time evolution, parametrized by the diffusion
constantD, is superposed on the steady growth. With prob-
ability rx per unit time the lengthx of the cap will be re-
duced to any fraction of its length with equal probability.
When we add to this description that a vanishing cap, the
event that a cap’s lengthx happens to decrease to zero, rep-
resents a catastrophe, then we have fully described our
model.

IV. HEURISTIC ANALYSIS OF THE MODEL

This section attempts to develop some understanding of
how our model works through a heuristic analysis of it. A
rigorous analysis of the model is given in this article’s ap-
pendixes and the results of this analysis are discussed in the
following sections, where we see that the heuristic estimates
derived in this section are quite accurate.

A. Dynamically coupled hydrolysis

We notice that according to our model, the GTP in a
growing microtubule is located not only in the cap, but also
in other ‘‘patches’’ of tubulin-t surrounded by tubulin-d; see
Fig. 3. The GTP in these patches was recently a part of the
cap, but was separated from it by its internal scalar hydroly-
sis. Once separated from the cap, such patches of tubulin-t
suffer vectorial hydrolysis from both ends and internal scalar
hydrolysis as well. Internal hydrolysis breaks patches into
more patches, all of which hydrolyze from both ends and
internally as well. The result is a total rate of GTP hydrolysis
per microtubule end, which can be substantially larger than
the rate of GTP hydrolysis taking place in the cap alone.

We assume the hydrolysis ratesvh
(6) and r are indepen-

dent of the growth ratesvg
(6) of a microtubule’s plus and

minus ends, i.e., we assumeuncoupled hydrolysis.So at
large growth ratesvg

(6)@vh
(6) , microtubule ends would

grow caps at ratesvg
(6)2vh

(6) were there no internal hy-
drolysis. With a nonvanishing rate of internal hydrolysis,
however, a GTP cap of lengthx suffers internal hydrolysis at
raterx, as does any other patch of tubulin-t of lengthx. With
every event of internal hydrolysis two new ‘‘fronts’’ of
‘‘vectorial’’ hydrolysis are opened up, thereby adding

wh[vh
~1 !1vh

~2 ! ~7!

to the total rate of GTP hydrolysis at the microtubule end in
question; see Fig. 3. So a plus or minus end equipped with a
tubulin-t cap andn(6) additional patches of tubulin-t will
hydrolyze GTP at the rate

vh,eff
~6 ! [vh

~6 !1n~6 !wh . ~8!

For a microtubule end elongating at a given ratevg
(6) , the

numbern(6) of tubulin-t patches trailing the cap is a fluctu-
ating integer. New patches are created by the stochastic pro-
cess of internal hydrolysis. Because they are created with
stochastic lengths, they also disappear at stochastic times,
even as they shrink with constant velocityvh

(1)1vh
(2) . How-

ever, we know theaveragevalue ofn(6) in a state of steady
growth. Since tubulin-t is added to a microtubule end at the
ratevg

(6) , it must, on the average, also hydrolyze at that rate
in the steady state, so

^vh,eff
~6 ! &5vg

~6 !, ~9!

from which it follows that

^n~6 !&5
vg

~6 !2vh
~6 !

wh
. ~10!

Thus we see that, although we have assumed that hydrolysis
is a simple stochastic process, characterized by rates that are
uncoupled from the rates of microtubule growth, we never-
theless end up with a total rate of hydrolysis at each micro-
tubule end that isdynamically coupledto its growth rate. All
that is required to have this phenomenon istwo kindsof
uncoupled hydrolysis: the internal scalar hydrolysis occur-
ring at a rate proportional to the amount of GTP present and
the vectorial hydrolysis occurring at each interface created
by the scalar hydrolysis. As we shall see, this also results in
a short cap and a finite catastrophe rate at all growth rates.

B. Cap size

We expect qualitatively different dynamics for different
values of the three parametersv, D, and r . Intuitively, we
might expect there to be three regimes of behavior. One is a
large-positive-velocity regime, in which the cap grows
quickly in length and only the cutting prevents the cap from
becoming large. In this regime, the ‘‘diffusion’’ of the cap
length is less important for its length than its average growth
and its cutting. Another regime is thelarge-negative-velocity
regime, in which the cap shrinks on average and only the
fluctuations allow the cap to exist at all, but it remains so
short and short lived that cutting is unimportant. Finally, we
expect asmall-velocityregime, in which diffusion and cut-
ting are most important because the average growth is small.

It is interesting to understand the behavior of the model in
all three of these regimes, as they all turn out to be relevant
for the interpretation of experiments. It also turns out that we
can calculate a great deal using only dimensional analysis,
since each of the three regimes is characterized by the domi-
nance of two of the three parameters. As a first example, we
calculate the cap size in the large-velocity regime.

Basically, any cap grows with average velocityv. But its
length x is kept within bounds by its abrupt reduction by
interior hydrolysis to any fraction ofx with rate rx. With
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Dt denoting the average time between such reductions of the
cap length, we have the estimate

r ^x&Dt'1, ~11!

where^x& is the average cap length.
Between reductions, caps grow with velocityv, hence

with the lengthvDt, on the average. This is also the length
removed when a cap is reduced from its largest length to, on
the average, half that length, from which it grows again. So
its largest length we estimate by 2vDt, its shortest to half
that, and consequently its average length we estimate as

^x&'3/2vDt. ~12!

EliminatingDt, we find for the average cap length

^x&'A3v
2r
. ~13!

This equation shows that the cap length grows only slowly
with the microtubule growth ratevg , which enters through
Eq. ~5!.

The averages we here have listed freely with the phrase
‘‘on the average’’ are not rigorous averages, but estimates.
They are better than order-of-magnitude estimates, but they
are not exact in general.

Note that the estimate given in Eq.~13! is the only com-
bination of v and r that we can create that has units of
length, so we could have guessed this form of the result from
the beginning, apart from its numerical prefactor, since we
have excludedD from the argument as being irrelevant at
large velocitiesv. We can use this observation to calculate
the cap size in the other two regimes: onlyD andr will enter
in the small-velocity regime and onlyv andD will enter in
the large-negative-velocity regime, for the reasons given
above. Dimensional analysis thus tells us that the average
cap size is given by

^x&;5
S vr D

1/2

in the large-positive-velocity regime

SDr D 1/3 in the small-velocity regime

D

uvu
in the large-negative-velocity regime.

~14!

The cap size grows asv increases, so the cap is smallest in
the large-negative-velocity regime and largest in the large-
positive-velocity regime.

If we take the ratio of two of these length scales, we have
a dimensionless quantity. We define this quantity as

g5
v

2~D2r !1/3
, ~15!

where the factor of 2 is for convenience later.g is a measure
of the importance ofv relative to the other constants and
allows us to make precise our definition of the regimes. In
particular,

~ large positive velocity!↔g@1, ~16!

~small velocity!↔21,g,1, ~17!

~ large negative velocity!↔g!21. ~18!

C. Catastrophe rate

The cap size, however important conceptually, is not di-
rectly observable for GTP caps.~Stabilized caps are dis-
cussed below.! The catastrophe rate is, so it is useful to have
a simple way of estimating the catastrophe rate. The impor-
tant step is to realize that it is the fluctuations parametrized
by D that cause catastrophes whenv is positive, since the
cap grows on the average, and there is no chance that the cap
will be cut to exactly zero length. But because caps effec-
tively are bounded in length because of internal hydrolysis
and because the growth of caps really is a biased random
walk, any cap will vanish sooner or later. So we have a
nonzero catastrophe rate in this model.

We assume the cap starts with a size of order^x&. For
v.0 the catastrophe rate then is the average time required
for the cap to fluctuate in size by this amount^x&, which is
on the order ofD/^x2&;D/^x&2.

In the casev,0, the cap shrinks on the average and this
alone, without fluctuations, will cause a catastrophe in a time
uvu/^x&. Therefore,

f cat;5
D

^x&2
5
Dr

v
when g@1

D

^x&2
5~D2r !1/3 when 21,g,1

uvu
^x&

5
v2

D
when g!21.

~19!

The catastrophe rate is smallest wheng@1 and largest when
g!21.

D. Delay time for dilution-induced catastrophes

In dilution experiments caps are grown at velocityv and
then have their growth retarded or arrested by dilution of the
surrounding tubulin solution to a low or vanishing concen-
tration, which we characterize by its resulting~possibly
negative! growth velocityv8 for the cap. We estimate the
average delay between dilution and ensuing catastrophe.v8
corresponds tog8 and the value ofg8 determines which
parameters dominate. For sufficiently strong dilution,
g8,21 and the cap is consequently cut until its length is
short enough that its negative growth velocity causes it to
disappear before the next cutting event, i.e., it is cut to a
lengthx given by

1

rx
;

x

uv8u
⇒x;Av8

r
. ~20!

Therefore the delay time for a dilution induced catastrophe is
approximately 1/Auv8ur .
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E. Amount of GTP in a microtubule

While we do not specify the chemical or structural nature
of the cap in our model, one possibility is that it is defined by
the tubulin-t subunits. If so, we can use the model to estimate
the amount of GTP present in a microtubule. In experiments
designed to measure this quantity, microtubules are grown
from tubulin-t in which the GTP is radioactively labeled. The
GTP content of the microtubules grown this way is measured
by filtering them from the surrounding tubulin solution,
washing the filters, and then measuring the level of radioac-
tivity. Thus some time passes, and consequently GTP hy-
drolysis, between the time when the microtubules have their
growth arrested and the time when the GTP content is mea-
sured. We estimate the amount of GTP left in a microtubule
as a function of timet after dilution.

The tubulin-t in a microtubule exists as a cap on each end,
shrinking from their trailing edges with velocitiesvh

(1) and
vh
(2) , respectively, plus a number of GTP ‘‘patches,’’ each

of which shrinks from its edges with velocityvh
(1) on one

side andvh
(2) on the other. Furthermore, each cap and patch

is broken into smaller caps and patches at rater per unit
length. It is possible and convenient to treat the two caps as
onepatch with the caps’ summed length, because this ‘‘ef-
fective’’ patch shrinks with the same velocitywh as do the
other patches.

Let n(t) denote the total number of patches at timet,
including that made from the caps, and letlGTP denote the
total length of tubulin-t left at timet. These numbers differ
for different microtubules, but we letn(t) andlGTP(t) denote
the averagevalue at timet, the average being taken over a
large number of microtubules, i.e., an ensemble average.
Thenn(t) is a real number, varying continuously witht. The
total amount of tubulin decreases at the rate

dlGTP
dt

52whn~ t ! ~21!

and the number of patches changes as

dn~ t !

dt
5rl GTP~ t !2~ loss term!. ~22!

The loss term describes the rate at which patches disappear
by shrinking to zero length. It depends on the distribution
n(xt) of patch lengthsx—it is whn(0,t), to be specific and
hence cannot be expressed in terms of the two variablesn
andlGTP. So the simple equations we just gave do not close.

Dimensional analysis is also insufficient to save the day,
though the time scale obviously is set by

th[~rwh!
21/2 ~23!

because the GTP will hydrolyze significantly faster if it ini-
tially is distributed over many relatively short patches rather
than a few relatively large ones.

The patch length distribution needed for initial condition
here is determined in Appendix F for a microtubule growing
with constant velocity and having done so long enough for a
steady-state to have been achieved. It is found to be rather
complicated.n(0) we know, of course, for this steady-state
growth from Eq.~10!. But we do not even know the total

amount of GTP present initially, hence we cannot even give
an upper bound on the time it takes for it to hydrolyze, say,
by assuming it is all located in one big cap. So we finish this
section on heuristic analysis with a clear-cut case of its fail-
ure.

V. CATASTROPHE RATE

A. Connecting theory and experiment

The frequency at which microtubules change from their
growing to their shrinking state, the catastrophe rate, is best
measured experimentally by observing the dynamics of indi-
vidual microtubules@29,30,14,13#. We focus here on the lat-
est results@13#. The catastrophe rate is found as the ratio
between the total number of catastrophes observed in an ex-
periment and the total time spent in the growing state by the
microtubules observed. In this experiment microtubules are
grown from seeds and a shrinking microtubule always van-
ishes entirely, whereupon a new microtubule grows from the
seed.

This is a crucial observation because it makes it possible
to establish the necessary connection between theory and ex-
periment. This is a nontrivial matter: Because the model is
formulated as a partial differential equation, initial data and
boundary conditions are required to determine the particular
solution to this equation, which describes a given experimen-
tal situation. We meet this requirement in the following way.

~i! As just observed, we may assume that each cap is
initially created with zero length, because it is created on a
microtubule starting its seeded growth from zero length. This
means that the ensemble of caps found on microtubules
grown this way is described by Eq.~C18!.

~ii ! The microtubules that are observed in the experiment
have caps that are as old as the microtubules themselves,
since the experiment was carried out under conditions where
rescues do not occur. So the individual cap has aggregated
and lost again by hydrolysis as much tubulin-t as there is
tubulin in its microtubule. This means that the cap isold by
its own standards, by which we mean that the probability
distribution for its length has the asymptotic form given in
Eq. ~D1!, with the result that the catastrophe rate is given by
Eqs.~D3! and ~D5!,

f cat5Dr /v5
rdx~vg1vh!
2~vg2vh!

. ~24!

B. Characteristic features of theoretical result

The catastrophe rate given in Eq.~24! has a nonzero limit
rdx/2 for vg /vh→` and becomes large forvg→vh . This is
in agreement with experimental results, which show that
f cat seems to be constant for higher tubulin concentrations,
while f cat increases rapidly ifvg is decreased to small values;
see@13#, Fig. 7, which is reproduced in Fig. 4.

Equation~24! gives an infinite value forf cat for vg5vh ,
corresponding tov50. This, however, is an artifact originat-
ing in Eq. ~24! being an approximation valid only forg
large. Forv'0, g is not large, hence the approximation is
not valid. In dynamical terms, the approximation assumes
the cap sustained by its growth withv alone, and this is not
true for small values ofv, as explained heuristically above.
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Diffusion also contributes to a finite cap length and is the
dominant effect for small values ofv. How precisely this
happens is described by the full expression given in Appen-
dix D. For the present, we have understood that Eq.~24! is
valid only wheng is not small, i.e., whenvg is not too close
to vh . The value forvh is determined in the following sub-
section.

C. Comparing the theory to experimental results
for the catastrophe rate

We have fitted the expression for the catastrophe rate in
Eq. ~24! to the experimental results for the catastrophe rate
for plus endsf cat

(1)(vg
(1)), given in @13#, Fig. 7, and shown in

Fig. 4, by treatingvh
(1) and r as fitting parameters. The re-

sulting fit is seen in Fig. 4, and we see that there is satisfac-
tory agreement between theory and experiment, when we
remember that the experimental error bars do not denote ran-
dom Gaussian errors, but only are the best we could come up
with for error bars: The data that were averaged to get the
data points shown contained some scatter and we treated this
scatter as if it were due to truly random Gaussian errors. Also
shown in Fig. 4 are fits based on the full expression in Eq.
~C18!.

With the superscript1 on vh
(1) we have indicated, as

above, that it is possible that the value for this hydrolysis rate
may depend on whether it describes a hydrolysis front propa-
gating towards a plus end, as here, or towards a minus end,
because of the polarity of microtubules. On the other hand,
we assume that theinterior part of caps on plus and minus
ends are identical. Thus the parameterr should be the same
for plus and minus ends. Asdx denotes the contribution
from the length of a tubulin dimer to the length of the mi-

crotubule, it obviously is also the same for both ends.
As a matter of fact, the two velocitiesvh

(1) andvh
(2) must

differ for the model to reproduce experimental results cor-
rectly: For a given tubulin-t concentration, the growth rate
vg
(2) for the minus end is slower than the growth ratevg

(1)

for the plus end by approximately a factor 2~see@14#, Fig.
4!. If the hydrolysis ratevh were the same at both ends, our
model would predict a higher catastrophe rate for the minus
end than for the plus end because of the minus end’s slower
growth rate. But the minus end seems to have the same or
smaller catastrophe rate as the plus end at a given tubulin-t
concentration~see @14#, Fig. 7!. So our model leads us to
conclude thatvh

(2) is approximately twice as small asvh
(1)

This conclusion should be taken with the precaution that the
error bars on the experimental results in@14#, Fig. 7 are
large. But the arguments just presented illustrate well a gen-
eral point.

We expectvh
(1) , vh

(2) , r , and, obviously,dx to be inde-
pendent of the tubulin concentration, so the model must ac-
count for the experimentally observed difference between ca-
tastrophe rates at plus and minus ends solely through the
experimentally observed difference in growth ratesvg

(1) and
vg
(2) because only through these rates does the model depend

on the tubulin concentration. This demand on the model pro-
vides an acid test of it, so it would be interesting to have data
to test it against.

Notice that even as we distinguish between plus- and
minus-end values forvg and vh , the asymptotic values for
the catastrophe ratesf cat

(1) and f cat
(2) for vg

(6)@vh
(6) are the

samefor plus and minus ends since they are given entirely in
terms ofdx andr in Eq. ~19!. This very distinct prediction of
our model is consistent with experimental results; see@14#,
Fig. 7 and@31#, Fig. 5. These results are not that precise,
however, and the validity of this prediction is another experi-
mental acid test of the model. To the extent the model sur-
vives the test, such an experiment is a very direct way to
measure the parameterr .

VI. DILUTION EXPERIMENTS

In dilution experiments, microtubules are first grown in a
high concentration of tubulin, giving a high assembly rate
vg , and then submitted to rapid and massive dilution to in-
duce catastrophes and disassembly@15,16#. Dilution experi-
ments were motivated by theextended capmodel resulting
from so-calleduncoupled vectorial hydrolysis,which essen-
tially is the model one obtains by settingr50 in the model
presented here. In that model hydrolysis only occurs from
the trailing edge of the cap, at the ratevh, which is not
coupled to the growth ratevg . Consequently, long caps, and
correspondingly long delay times upon dilution, were ex-
pected for high growth rates. No such connection between
predilution growth rates and ensuing catastrophe rates has
been found. Quite to the contrary, the catastrophe rate upon
dilution is essentially independent of the growth rate@16#.
This observation was an important guide in formulating our
model. In the present section we demonstrate that the model
explains what is seen in dilution experiments. We concen-
trate on the latest work with the most detailed data@16#.

In Appendix E the model is solved with boundary condi-

FIG. 4. Catastrophe ratef cat versus growth ratevg . Dots with
error bars represent experimental results@13#. The horizontal error
bars represent the standard error in the mean~SEM! vg for the
sample, the vertical error bars the SEM for the catastrophe rate. The
full curve represents the theoretical expression from Eq.~D8! with
tcutoff50.1 mm. A plot of the approximate theoretical expression in
Eq. ~D3! cannot be distinguished from the full curve, showing how
well Eq. ~D8! is approximated by it. The dashed curve represents
the theoretical expression from Eq.~24! approximating Eq.~D3!.
Note that this graph is a hyperbola. All three theoretical expressions
were fitted to the experimental results, usingdx50.60 nm, and re-
sulted in vh

(1)50.2560.05 mm/min and r5222684mm21min
21 for the optimal fit of Eq.~24!. The other two fits gave the same
result up to insignificant differences.
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tions appropriate for dilution experiments. It is argued that a
description even simpler than our full model suffices when
microtubules are grown so fast before dilution that catastro-
phes can be ignored and when dilution is to a concentration
so small that after dilution caps disappear mainly by cutting
with rate r and shrinking with velocityv8'2vh . In that
case, fluctuations parametrized byD can be ignored, i.e.,
D50 can be assumed. This simplifies our master equation
~C1!, resulting in simple solutions that are simple to find.

The relevant results are that the average delay time for
dilution-induced catastrophes is

tcat5F22rv8

p S 12
v8

v D G21/2

.S p

22rv8D
1/2

, ~25!

where v and v8 are the cap-growth velocities before and
after dilution, respectively. The last approximate expression

is typically a good approximation because the growth rate
prior to dilution vg typically is large compared tovh and
hence so isv5vg2vh , while dilution results in a small or
vanishing concentration, resulting inuv8u;vh and therefore
v@uv8u. Equation~25! therefore predicts a waiting-time dis-
tribution that is essentially independent of the growth rate
prior to dilution. To the extent a dependence is predicted, the
waiting time increases only slightly with the predilution
growth ratev, except at small ratesv;vh ; see Fig. 5. The
delay time itself is a random number distributed as

pcat~ t !5
pt

2tcat
2 expS 2

pt2

4tcat
2D . ~26!

These theoretical results are in full agreement with the
experimental results presented in@16#, Figs. 3 and 4 and
reproduced here in Fig. 5. In generating the theoretical
curves, we assume that dilution stops all additional growth.
This is probably correct under the conditions of the experi-
ment @32#.

It would be interesting if the nonlinear dependence we
predict with Eq.~25!,

tcat~vg!5A p~vg2vh!

2r ~vh2vg8!~vg2vg8!
, ~27!

could be fitted to the experimental data with statistically sig-
nificant values forr , vh , andvg8 . From the appearance of the
data, we judge this not to be the case. The combination of
parametersrv8, on the other hand, is well determined from
the essentially constant value oftcat for large values ofvg .

Because the experimental delay-time distributions in the
upper row in Fig. 5 to a good approximation is independent
of the predilution growth ratevg

(6) , the merger of these data,
shown in the lower part of Fig. 5, should also be described
by the distribution of delay times given in our Eq.~26!, as
long as one takes into account that the origin on the time axis
in Fig. 5 denotes the starting point for a dilution that takes
several seconds to reach completion. We have fitted our ex-
pression in Eq.~26! to the data in Fig. 5, leaving the ‘‘true’’
dilution time as a free parameter to be fitted, but using the
same dilution time for the data for plus and minus ends,
since the experiments were done with the same apparatus.
Our fits are shown in Fig. 5.

From the values fortcat giving the optimal fits shown in
Figs. 5~c! and 5~d! and by assumingv852vh , we find

TABLE I. Parameter values of the model found by fitting to the experimental data as follows: first line, fit to experimental catastrophe
rate for the plus end@13# with dx kept fixed at its experimental value 1mm/16805 0.60 nm; second line, fit to the experimental
waiting-time distribution for dilution induced catastrophes at the plus end@16# with dx kept fixed at its experimental value; third line, same
as for the minus end; fourth line, combined fit to the experimental catastrophe rate for plus ends and the experimental waiting-time
distributions for both ends, withdx fixed at its experimental value; fifth line, same, except thatdx is also treated as a fitting parameter.

Figure dx ~nm! r (mm21 min21) vh
(1) (mm/min! vh

(2) (mm/min! rvh
(1) ~min22) rvh

(2) ~min22) th ~s!

4 0.60 222684 0.2560.05 ⇒56624
5 0.60 122612
5 0.60 101610
6 0.60 320620 0.2460.01 0.2560.01 ⇒7666 ⇒7966 ⇒4.860.2

0.246.03 514676 0.2660.02 0.2160.01 ⇒133622 ⇒108617 ⇒3.960.2

FIG. 5. Delays before the catastrophe following dilution. Data
are taken from Ref.@16#. Left, plus end; right, minus end; top, delay
as a function of initial growth velocity. Each point represents a
single measurement on a MT. Curves are theoretical mean~solid!
and standard deviation~dashed! of the delay, from Eqs.~25! and
~26!. Bottom, histograms showing the experimental distribution of
delays before catastrophe. The curves are fits of the theoretical dis-
tribution given in Eq.~26! and result in parameter values given in
Table I. Dilution was initiated att50 and required some time
(6.1 s when used as a free parameter in our fit! for completion.
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rvh
(1)5122612 min22 and rvh

(2)5101610 min22. But
since the two experiments giving the data in Figs. 4 and 5
were done under somewhat different conditions~e.g., there
were differences in the buffers that may affect the dynamics
@33–35#!, we cannot expect the values forr andvh

(1) that we
determined in Sec. V to agree with the value found here for
the productrvh

(1) , and indeed they differ; see Table I.
It would obviously be of great value to have experimental

results taken under the same conditions for both the catastro-
phe rate, as in Fig. 4, for the delay time upon dilution, as in
Fig. 5, and preferably for both microtubule ends. If the tubu-
lin concentration after dilution can be known with reasonable
certainty in the dilution experiment, such data would greatly
overdetermine the three parametersr , vh

(1) , andvh
(2) of the

model and consequently provide another stringent test of it.
In conclusion, we have seen that the rather detailed data

obtained by video microscopy in dilution-induced disassem-
bly experiments all can be understood within our model. In
particular, we have demonstrated that the delay in the onset
of disassembly is a stochastic quantity whose average and
distribution is quite well determined when the experimental
data are interpreted in terms of our model. So the ‘‘puzzling
large variability’’ @5# in the individual delay times that have
been measured has a natural explanation within our model
and the delay timecanbe determined from the data; it is not
just a fixed number, but a random number with a known
distribution. We have also explained quantitatively how the
delay in the onset of disassembly depends on predilution
concentrations and found that it does not, to a very good
approximation. We have seen that the mechanism of cap
hydrolysis that is responsible for the delays’ near indepen-
dence of predilution concentration is the very same mecha-
nism that keeps the cap short irrespective of the concentra-
tion it is grown at, namely, interior hydrolysis at a constant
rate r per unit length of cap.

In view of the good agreement between theory and ex-
periment in Fig. 5 it would be interesting to have more ex-
perimental data for better statistics, especially for a range of
small predilution growth rates where the model predicts a
nontrivial dependence in the waiting-time distribution and a
more complicated distribution. The quickest possible dilution
is desirable in such experiments to obtain a sharper definition
of the point in time where dilution effectively takes place.
Alternatively, a controlled and calibrated dilution will do as
well, since we can calculate the theory’s prediction for any
known tubulin concentration as a function of time, using the
full theory presented in the Appendixes.

VII. COMBINED ANALYSIS
OF THE CATASTROPHE RATE
AND DILUTION EXPERIMENT

In this section we ignore the fact that the conditions differ
between the two experiments giving the data shown in Figs.
4 and 5 and do a combined fit of the parameters three pa-
rameters to both data sets. Figure 6 shows the result as full
curves, with dashed curves indicating the fits found in previ-
ous sections by separate fits. We see that the difference is not
radical, but nevertheless significant. This reemphasizes the
desirability of having both types of experimental data taken
under the same conditions. The difference is also reflected in

the different result obtained for the three parametersr ,
vh
(1) , andvh

(2) ; see Table I.
Since the combined fit overdetermines the three param-

eters, we can make a strong test of the robustness of the
theory’s description of the experimental data: We can use the
excess of information available to fit also the value ofdx to
the data to see if its known value 0.60 nm, can be extracted
from the data. We emphasize that this is a strong test because
the data were taken with light microscopes with a resolution
of several hundred nanometers, while the value fordx is
known to be only a fraction of a nanometer. But with suffi-
ciently many and sufficiently precise data points, acorrect
theory must, of course, be able to ‘‘predict’’ its own under-
lying microscopic length scale from a fit to the data. Con-
versely, if the data are insufficient or the theory’s description
of the data is shaky, the result of turning loose a parameter
such asdx may result in a better fit, for sure, but with a
physically absurd result fordx.

Fitting this way, we finddx50.24 nm. All in all, we find
this value fordx close enough to the true one to give good
support for the model. It is also yet another argument for the
desirability of having data all taken under identical condi-
tions.

FIG. 6. Simultaneous fit of the theory to data for the catastrophe
rate and data for the waiting-time distribution for dilution-induced
catastrophes, using one pair of parametersr andvh

(1) . Their fitted
values are given in Table I. Top frame, catastrophe rate for the plus
end of the microtubule; experimental data from@13#. Bottom four
frames, waiting-time distributions as in Fig. 5@36#.
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VIII. GTP HYDROLYSIS RATE EXPERIMENTS

A. Issues

The suggestion that there is a GTP cap at the end of a
polymerizing microtubule originated in a study of the kinet-
ics of GTP hydrolysis@3#. The suggestion that the loss of this
cap is the cause of catastrophe@2# inspired additional studies
of the kinetics of GTP hydrolysis in assembling microtubules
@37–43,17#. The conflicting results of these studies inspired
several different models for the GTP cap@44–
47,41,43,48,22,49#. The first study’s suggestion ofun-
coupled stochastic hydrolysis@3# was replaced byuncoupled
vectorial hydrolysis, coupled~or forced! hydrolysis with sto-
chastic dissociation, and the relatedlateral cap; see@5,4# for
reviews. In the present section we derive what our model can
tell us about the kinetics of GTP hydrolysis. Thus we take a
model has already proven its value by explaining microtu-
bule behavior—experiments in which GTP hydrolysis plays
a central role, but manifests itself only indirectly through the
catastrophe rate and the waiting-time distribution—and we
compare this model’s predictions for hydrolysis experiments
with the experimental results,without fitting any parameters
or making any other adjustments. We emphasize that our
model does not actually specify the biochemical nature of the
cap, but if we suppose it to consist of GTP tubulin, then our
model predicts the rate of GTP hydrolysis. We demonstrate
that the model predicts GTP hydrolysis to follow assembly
closely, in agreement with the most recent experimental re-
sults@38,39,42#, because the initial lag period for hydrolysis
lasts only a few seconds. We also demonstrate that the model
explains the most recent and careful experiment attempting
to measure the GTP contents of microtubules@17#.

A key experimental issue concerns whether GTP hydroly-
sis follows microtubule growth closely or lags behind it at
high growth rates. If the rate of GTP hydrolysis in a micro-
tubule is independent of its rate of growth, hydrolysis may
lag far behind the addition of GTP in a rapidly growing
microtubule, especially if hydrolysis occurs only at the trail-
ing edge of a cap, the case ofuncoupled vectorial hydrolysis.
But alsouncoupled stochastic hydrolysisshould result in mi-
crotubules containing a high proportion of GTP initially in
the case of rapid growth. Consequently, it should be possible
to detect the presence of GTP in rapidly growing microtu-
bules as a lag in the amount of GTP hydrolyzed relatively to
the amount of polymer assembled.

Whether or not hydrolysis lags behind assembly is a con-
troversial issue; see@5,4# for reviews. The two most recent
studies use radioactively double labeled GTP and rapid fil-
tration techniques, but come to opposite conclusions. In@43#
a significant lag in the release of phosphorus is reported. The
technique used in this experiment has a dead time of only 2.
This speed was acquired at a cost: filters were not washed
and the raw data had to be corrected by large factors for
contamination of the filtered microtubules with unpolymer-
ized tubulin-t. In@17# it is reported that no accumulation of
microtubule-bound GTP could be detected with a similar
technique in which filters were washed and the dead time
was 15–20. In the following subsections we first derive our
model’s predictions for hydrolysis rates and GTP contents
and then discuss the experimental results in the light of our
predictions.

B. Relevant quantities

Two aspects of the mode of hydrolysis described by our
model are of particular interest for a discussion of experi-
ments on the kinetics of GTP hydrolysis.

~i! How fast is the steady state pattern of GTP hydrolysis
acquired upon the initiation of growth? Is an initial lag in
hydrolysis detectable?

~ii ! How fast does the GTP at the end of a growing mi-
crotubule disappear by hydrolysis, if growth is arrested? Will
a method looking for this GTP in microtubules be able to
detect it, given the dead time of the method between the
arrest of growth and the measurement of GTP?

In order to answer these questions we must describe quan-
titatively how the patches of GTP fare in our model.

C. Case of microtubules growing at a constant rate

In this subsection we consider the GTP content of micro-
tubules growing with constant velocity, i.e., in a constant
concentration of tubulin. In actual experiments the tubulin
concentration is depleted by the growth of microtubules
@17,43,40#. This does not affect our evaluation of the initial
lag time in hydrolysis given here if the characteristic time for
depletion is much longer than the lag time. It does make a
difference if the two characteristic times are comparable, as
is the case in@17,43,40#, because the GTP content is reduced
by the reduction in the growth rate cased by depletion. The
effect can be described along the lines used in this subsec-
tion; this is done in appendix G. The expressions given there
are unwieldy, we warn the reader. One purpose of that Ap-
pendix is to show this, so the reader will settle for less in the
present subsection. Another purpose of Appendix G is to
give those unwieldy expressions for the record, since they do
describe what happens in the relevant experiments. Here we
merely observe that the initial lag time for hydrolysis derived
here for microtubules growing at constant rate is anupper
boundon the lag time for microtubules growing at the same
rate initially, but then at decreasing rate. This bound comes
about because the lagging hydrolysis has only to catch up to
a lower rate of GTP incorporation in the microtubule than
the initial one.

Consider now a microtubule end that grows with constant
velocity vg . At a distancel from the end of the microtubule,
hydrolysis has been going on for a timel /vg . Consequently,
with the notation and results of Appendix F, at distancel
from the end of the microtubule we expect to find a total
length x(t5l /vg) of tubulin-t per unit length of microtu-
bule, distributed over a total ofn(t5 l /vg) patches per unit
length of microtubule.

From this it follows thatthe amount of tubulin-t presentat
time t at a microtubule end grown from zero length at time
zero with constant velocityvg is, on the average,

lGTP~ t !5E
0

vgt
dlx~ l /vg!

5 lGTP~`!F„t/~A2th!…, ~28!

whereF is the error function and

lGTP~`!5Ap/2vgth . ~29!
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From the properties of the error function it follows that the
amount of tubulin-t present at a microtubule end approaches
its limit value from below, exponentially fast, and with a
characteristic timeth that is independent of the growth rate.
The only dependence on the growth rate is inlGTP(`).

The total amount of tubulin-t at a microtubule end may be
compared with the amount in the cap at that end. For this
ratio we find

lGTP~`!/^x&5Avg /vh. ~30!

This ratio typically grows only slowly withvg since typically
vg.vh .

The number of tubulin-t patchesat a microtubule end is,
on the average,

n~ t !5E
0

t

dl n~ l /vg!

5n~`!$12exp@2~ t/th!
2/2#%, ~31!

where

n~`!5vg /wh . ~32!

This last result is just the steady-state condition for hydroly-
sis, derived heuristically above with more precision; com-
paren(`) with the number of patches in Eq.~10!. The dif-
ference between Eqs.~10! and~32! arises in the derivation of
the latter equation, because it does not take into account the
cap’s hydrolysis. Consequently, Eq.~10! is the more correct
one. Using the values in Table I, Eq.~32! overestimates
^n& by approximately half a patch for each end. As the num-
ber of patches is large in the hydrolysis experiments we shall
discuss below, we ignore this difference.

We note that, according to Eqs.~29! and ~32!, the total
amount of tubulin-t at a microtubule end growing with con-
stant velocityvg is proportional tovg in the steady state and
so is the number of patches it is distributed over. The length
of the part of the microtubule containing these patches is also
proportional to vg , as we can see from the form of
x(t5 l /vg): vg occurs only in the combinationl /vg in x.

The number of patches of length xat a microtubule end
growing with constant velocityvg has the following average
density with respect tox in the steady state:

n~x,`!5E
0

`

dl8n~x,l 8/vg!5vgE
0

`

dt8n~x,t8!

5
vgth
xh
2 HAp

2 S 11
j2

2 D ej2/2F12FS j

A2D G22jJ ,
~33!

where j is defined in Eq.~F7!. n(`) and lGTP(`), found
above, may be derived also from Eq.~33!.

Now we can address the questions formulated in Sec.
VIII B for the case of microtubules grown from zero length
at constanttubulin-t concentration and hence withconstant
growth ratevg . The rate of GTP hydrolysisat a microtubule
end depends on time as the rate of hydrolysis per patchwh
timesthe number of patches present

H~ t !5whn~ t !5vg$12exp@2~ t/th!
2/2#%. ~34!

In this expression the hydrolysis rate is given in lengths of
microtubule per unit time. We see that there is an initial lag
in the hydrolysis rate relatively to its asymptotic valuevg .
GTP-liganded tubulin is associated into the microtubule at a
constant ratevg , but GTP is hydrolyzed at a rate that ini-
tially is zero and growing only ast2. We also note that the
rate of hydrolysis approaches its asymptotic rate monotoni-
cally and exponentially fast, with characteristic timeth . Its
initial lag is just what is needed to build up the cap and its
trailing patches of tubulin-t to their steady-state sizes during
constant growth.

We note that this initial lag time is independent of the
growth ratevg and the same for plus ends and minus ends.
Thus, for microtubules growing from both ends, the hydroly-
sis rate per microtubule is obtained by replacingvg in Eq.
~34! by vg

(1)1vg
(2) , i.e., with the growth rate of the micro-

tubule. The same substitution applied to Eqs.~28! and ~33!
gives respectively the amount of GTP present in a microtu-
bule growing from both its end and the number of patches of
a given length that this GTP is distributed over.

We conclude that the time required for GTP hydrolysis to
reach the fractiony of its steady-state ratevg is

t~y!5A22ln~12y!th . ~35!

For example, using the parameter values given in the fourth
line of Table I, th54.8 s, so t(95%)512 s and
t(99%)515 s. Thus our model ‘‘predicts’’ for hydrolysis ex-
periments that hydrolysis follows microtubule assembly
within a few seconds. This agrees with the more recent ex-
perimental results@38,39,42# as well as with early results
@50,51#.

Now suppose we abruptly arrest the growth of a microtu-
bule end that has been growing with constant velocityvg ,
while GTP hydrolysis continues with unchanged ratesr and
wh . Since tubulin-t is not replenished through growth, we
may ask how much time it takes for the tubulin-t at the end
to disappear by hydrolysis. The correct way to answer this
question consists in solving the master equation~F4! with the
distribution given in Eq.~33! as the initial condition. This
task is too difficult to be worth the effort. Anupper boundon
the time suffices for our purpose. In order to establish this
bound, we note that if the total amount of tubulin-t present
lGTP(`) were not already distributed in patches, but instead
were present as one continuous stretch of tubulin-t, then it
would takemore time to make it disappear by hydrolysis
than it actually does and the relative amount of tubulin-t left
at time t after growth was arrested would bex(t), given in
Eq. ~F16!, i.e., Eq.~35! describes also an upper bound on the
time required for GTP hydrolysis eliminate the fractiony of
the GTP present at the time growth from the steady state was
arrested.

In conclusion, we have seen that the total amount of
tubulin-t present in a microtubule end growing from zero
length with constant velocity is a monotonically increasing
function of time. Hence, if growth is arrested before the
tubulin-t at a growing microtubule end has reached its
steady-state value, even smaller amounts of tubulin-t will be
found a given time after the arrest than would be found after
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arrest from the steady state. We have found an upper bound
on the amount of tubulin-t found a given time after arrest
from the steady state, expressed in Eq.~35! with th54.8 s,
and resulting in at least 99% of the GTP being hydrolyzed
15 s after arrest. This is consistent with recent results@17#
that fail to detect any GTP remaining after 15-20 s.

IX. EXPERIMENTS VISUALIZING THE GTP CAP
AND MICROTUBULE END STRUCTURE

In a recent elegant experiment a slowly hydrolyzable GTP
analog and rhodamine labeled tubulin were used to make
caps at ends of microtubules directly observable@19#. These
caps are essentially static, their sizes depending only on the
time the microtubules were allowed to polymerize in tubulin
liganded with the slowly hydrolyzable GTP analog and on
the concentration of that tubulin. The experiment serves to
illustrate that a cap of tubulin that cannot convert to
tubulin-d does stabilize a microtubule made from tubulin-d.
Thus the experiment makes it plausible that a short GTP cap
will also stabilize such a microtubule. From the cap sizes
observed in this experiment, a minimal size for a cap that
will stabilize a microtubule is estimated roughly to contain
40 tubulin dimers.

It is in the nature of the model presented in this article that
there is no way to define a minimal cap size that will stabi-
lize a growing microtubule. Whatever the growth rate, and
hence the average cap size, there is a nonzero catastrophe
rate because of the fluctuations in the cap size and hence no
absolute stability. We may, however, extract a cap size from
our model that is relevant for comparison in a discussion of
minimal cap sizes. We know that a microtubule must grow
faster than the cap hydrolyzes from its trailing edge for the
cap to exist as due to more than a fluctuation. The dimen-
sionless parameterg parametrizes the relative importance of
the various processes contributing to the cap’s dynamics; at
large-g values catastrophes are rare and the microtubule is
‘‘stable’’; at small-g values fluctuations dominate. Choosing
g51 as the separator of stabilized microtubules from un-
stable ones is as good as any other choice we can come up
with. This identity corresponds to a value forvg that is only
a fraction larger thanvh . Specifically, we can solve the
equationg51 for vg and find to a good approximation that

vg /vh5112~rdx2/vh!
1/3, ~36!

where the last term on the right-hand side is small for the
parameter values given in Table I. The value 1 forg was
found sufficiently large to make the large-g approximation
for the catastrophe rate a good approximation. So we assume
the same to be true for the cap size and use the expression
given in Eq.~E3! for it. This results in

^x&5Ap~vh /rdx
2!1/3dx for g51. ~37!

Using the parameter values obtained from the fit in Fig. 4
and given in Table I, we find that the ‘‘minimal’’ cap con-
tains ^x&/dx526 tubulin-t dimers.

It cannot be overemphasized that this is a very rough es-
timate for a number that has no natural definition or meaning

within our model. That said, it is close enough to the value
40 reported in@19# to be consistent.

The size of atypical cap, on the other hand, is well de-
fined, but depends a little on the velocity of microtubule
growth vg . Using vg50.75 mm as a typical value in Fig.
4 and Eq.~E3! with the parameter values determined from
that figure, we find̂ x&599dx.

In another recent experiment, the geometrical structure of
tips of growing microtubules were studied with cryoelectron
micrography and in many cases found to consist of curving
sheets of various lengths, some of them long, and apparently
containing less than;7 protofilaments@52#. It is in the na-
ture of the coarse-grained modeling done in the present ar-
ticle that nothing can be said about such detailed geometrical
structures. We note, however, that if the sheets observed con-
stitute the actual cap, then the sizes observed for these sheets
fall in the range of cap sizes predicted by our model for
rapidly growing microtubules.

X. EFFECT OF MAGNESIUM ION CONCENTRATION

It has been known for a long time that magnesium pro-
motes microtubule assembly@53–56#. More recent results
show that disassembly is promoted as well@57,26,58#. The
most recent study measured catastrophe and rescue rates in
addition to growth and shrinking rates, varying both the
magnesium ion concentration and the tubulin concentration
@31#. This makes it interesting to compare our model with the
results reported in@31#, especially because our model states
that the catastrophe rate depends directly on the growth rate,
and only indirectly, through the growth rate, on the tubulin
concentration. Since the growth rate and the tubulin concen-
tration are proportional, we need to vary something else in
order to test this property of our model. Preferably we would
like to change the growth rate without changing the tubulin
concentration and vice versa. This is where the magnesium
ion concentration@Mg# becomes a convenient parameter to
vary, since the growth ratevg increases with@Mg# at fixed
tubulin concentration. While convenient, the magnesium ion
concentration is no ideal parameter to vary, because, as we
shall see, the growth rate is not the only parameter in our
model that must depend on@Mg#.

In @31#, the effect of magnesium ion concentration on the
dynamics of individual microtubules was investigated with
video-enhanced microscopy for tubulin concentrations vary-
ing from 8 to 24mM. Increasing@Mg# from 0.25 to 6 mM
resulted in a~1.5–2!-fold increase in the growth ratevg

(6) of
both ends, while the shortening ratesv2

(6) increased by fac-
tors 3 and 4–5 for plus and minus ends, respectively. These
results are averages, however, as individual microtubules
demonstrated individual rates of shortening even during a
single phase. Over the concentration range explored,@Mg#
significantly affected only the minus end’s catastrophe and
rescue ratesf cat

(2) and f resc
(2) , the higher@Mg# causing more

catastrophes and fewer rescues. The catastrophe rate of the
plus endsf cat

(1) did not depend significantly on the magne-
sium ion concentration.

The catastrophe rates reported in@31# are given without
errors, but must have significant errors judging from the rela-
tive distribution of data points in@31#, Fig. 5. Since error
bars are not given, we cannot make a detailed quantitative
comparison between our model and those data. We note,
however, that for the largest tubulin-t concentrations shown
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in @31#, Fig. 5 catastrophe rates for plus and minus ends are
equal and independent of magnesium concentration. Accord-
ing to our model, catastrophe rates for plus and minus ends
should be equal at large tubulin-t concentrations as they
cause large growth rates; see Eq.~19!. So all that we need is
that r is independent of the magnesium concentration and
then our model reproduces Fig. 5 in@31# at large tubulin
concentration c. From that figure we estimate
f cat
(6)(c→`)50.001–0.002 s21, or 0.06–0.12 min21, in full
agreement with the value 0.08 min21 found in Sec. V. This
agreement is especially satisfactory because the range of
growth ratesvg

(1) used in the fit in Sec. V is 0.2–1
mm/min, while the values ofvg

(1) andvg
(2) corresponding to

the largest tubulin-t concentrations in Fig. 5 in@31# are 4
mm/min and 2mm/min, respectively.

In Fig. 5 in @31#, f cat
(1) barely depends on the magnesium

concentration andf cat
(2) at @Mg# 5 6 mM seems equal to

f cat
(1) . Since we have already seen thatr is independent of

@Mg#, the@Mg# independence off cat
(1) implies thatvh

(1) grows
with @Mg# like vg

(1) does, i.e., the ratiovh
(1)/vg

(1) is indepen-
dent of @Mg#. The identity of f cat

(2) at @Mg# 5 6 mM with
f cat
(1) impliesvh

(2)/vg
(2)5vh

(1)/vg
(1) for any tubulin-t concen-

tration at@Mg# 5 6 mM.
The apparent independence of tubulin-t concentration

demonstrated byf cat
(2) at @Mg# 5 0.25 mM in @31#, Fig. 5, is

easily reproduced by our model: it only requires that
vh
(2)!vg

(2) for the growth ratesvg
(2) corresponding to the

tubulin-t concentrations 8–16mM in @31#, Fig. 5, i.e., for
vg
(2) 5 0.7–4mm/min according to@31#, Fig. 1. We found in

Sec. IV thatvh
(2) is about a factor 2 smaller thanvh

(1) , which
was found to be equal to 0.2mm/min at 1mM@Mg# in Sec.
V. So we expectvh

(2) to be less than 0.1mm/min, in full
agreement with the conditionvh

(2)!vg
(2)50.7 mm/min. In

conclusion, our model seems quite able to reproduce the de-
pendence off cat

(6) on both the tubulin-t concentration and
magnesium concentration.

XI. EFFECT OF MAPS

Microtubule associated proteins~MAPs!, such ast @13#,
XMAP215 @59,60#, and XMAP230@61#, provide, like mag-
nesium ions, a means for changing the growth rate without
changing the tubulin concentration. This gives us an oppor-
tunity to compare catastrophe rates obtained at the same
growth rate, but with different concentrations of tubulin~and
t). It is, of course, not obvious that we should be able to
learn anything about our model from experiments done in the
presence of MAPs. After all, the model was designed to de-
scribe the cap dynamics of a pure-tubulin microtubule.
MAPs are proteins attaching themselves to microtubules,
thereby changing their dynamics. Only if these changes can
be described by a change of parameter values in our model
will the model be able to describe the effect of MAPs.

A quantitative study of the effect oft on growth, catas-
trophe, and shrinking rates of plus ends was reported in@13#.
Our model gives the catastrophe rate as a function of the
growth rate. So the measurements reported in@13# for those
two rates provide us with a possibility to test the model.

Figure 5 in @13# shows that as the concentration oft is

increased from zero to 1mM, the growth ratevg
(1) is in-

creased by a factor 3. If this increase invg
(1) were the only

effect of t, a plot of the catastrophe rate against the growth
rate should look the same no matter what combination of
tubulin-t and t concentrations is responsible for any given
growth rate. Such a plot is given in@13#, Fig. 7~B!, which
shows that the catastrophe rate at a given growth rate is
reduced by at least a factor 4 by the increase oft concentra-
tion from zero to 1mM.

Comparing the asymptotic value off cat at large growth
rate given in Eq.~19! with @13#, Fig. 7~B!, we see that 1
mM t must have reduced the interior hydrolysis rate of the
cap r significantly. In @13# an upper bound of 0.002 s21 is
given for the asymptotic value off cat

(1) at large growth rates.
Thus, if our model is to describe the effect oft, the presence
of 1mM t reducesr by at least a factor 7 compared to the
value of r we determined in Sec. V. The catastrophe rates
given for lower tubulin-t concentrations in@13#, Fig. 7~B!
indicate that vh

(1) is reduced from 0.2mm/min to
;0.1mm/min by the presence of 1mM t, while r is reduced
only by a factor 4. All things considered, the difference be-
tween factors 4 and 7 is hardly significant.

The abrupt decrease off cat
(1) to zero with increasedt con-

centration reported in@13#, Fig. 7~C! can be understood from
our expression in Eq.~19!: Increasing thet concentration
simultaneously reducesr and vh

(1) and increasesvg
(1) , all

three changes serving to reduce the catastrophe rate. Similar
considerations can be applied to the effects of XMAP215
@59,60# and XMAP230@61#.

XII. DISTRIBUTION OF CATASTROPHE TIMES

Our model predicts more than just the average catstrophe
rate: It also predicts the distribution of catastrophe times.
While the exact distribution is somewhat complicated, in the
experimentally relevant caseg.1 the model predicts@see
Eq. ~D2!# that the distribution should be very nearly expo-
nential. This prediction has been tested by recent experi-
ments@18#. These authors find that the distribution for the
minus end is indistinguishable from an exponential, while
the plus end is nonexponential with a confidence of 97%.
There are fewer short-time events than one would expect
from an exponential distribution.

These data suggest that there are measurable limits to the
accuracy of the model presented here. Given the number of
simplifications in the model, we do not find this surprising.
The fact that their data are so nearly exponential~see@19#
Fig. 2!, can be taken as further support of the basic principles
of the model. Deviations may represent corrections to our
coarse-grained picture. Or the data set analyzed in@19# may
actually be exponentially distributed: The result of the statis-
tical test only states that itprobably is not.

Other results@62# in Xenopus laevisegg extracts show
that the distribution of catastrophe times in extracts is non-
exponential. These extracts, however, contain many of the
components of living cells and one knows that the microtu-
bule dynamics can be extensively modified@27#. Therefore,
these experiments do not directly tell us about the mecha-
nism of dynamic instability in purified tubulin.
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XIII. UV CUTTING EXPERIMENTS

Any cap model predicts that if the cap is lost, a microtu-
bule has a catastrophe. An experiment@20# to directly test
this hypothesis yielded an interesting result. The authors
used an UV microbeam to cut off the end of growing micro-
tubules. The exposed plus end always~16 out of 16 times!
suffered a catastrophe, as one would expect from a cap
model. However, the exposed minus end always~29 out of
29 times! continued elongating. If these results are not arti-
factual, then they show that the dynamics of the minus end
are fundamentally different from those of the plus end and it
may not be possible to model them in a combined fashion as
done here.

There are several caveats to the interpretation of this ex-
periment. First of all, the results are sensitive to the buffer
conditions: If the magnesium concentration is raised, then a
significant number of minus-end catastrophes are observed
@63#. It is possible that the microtubules are photodamaged
by the UV microbeam and that this damage determines the
outcome of the experiment. One also does not know whether
the continued growth of the minus end should be attributed
to the lack of a catastrophe or to the occurrence of a rescue
@5#, a discussion made difficult by our ignorance about the
mechanism of rescue. Nevertheless, these experiments point
to the possibility that there are important differences between
the two ends. We hope that further experiments will pursue
this issue.

XIV. DISCUSSION

A. Self-consistency of the model

It was assumed in the formulation of the model, at the
stage where we got rid of the microscopic description, that
kh8!kh . Now that the model parameters have been deter-
mined by fitting the model to experimental results, this cri-
terion must be satisfied, or the model is not self-consistent.
We find, using parameter values from the first line in Table I,
that

kh8/kh5rdx2/vh5331024, ~38!

which shows thatkh8 indeed is much smaller thankh .

B. Microscopic interpretations of the model

We have presented this model in terms of ahydrolysis
cap. It is important to realize that the model is in fact far
more general than this and can be used to describe a number
of microscopic models. Some examples are the following.

1. Conformational or lattice shift cap

Tubulin units assemble in one conformational state or lat-
tice configuration, but later~after hydrolysis?! shift to a sec-
ond conformation. This shift can occur in two ways:~i! in-
duced shift, in which the conformational change in one
region is catalyzed because a neighboring region is in the
second conformational state, and~ii ! spontaneous shift, in
which a region spontaneously changes state.

2. Protofilament cap

Recent results@52# indicate that growing microtubules
possess a sheet of protofilaments that are not bound together
into a tube. This suggests a possible model in which a catas-
trophe occurs when the sheet vanishes. The unbound
protofilaments become longer as the microtubule grows, but
they may bind to each other by two mechanisms:~i! zipper-
ing, in which the tube state is propagated forward, and~ii !
spontaneous binding, in which protofilaments bind to each
other somewhere in the middle of the sheet.

3. MAP-free cap

In this model, catastrophes are caused by a catastrophe-
inducing MAP reaching the tip of a growing microtubule.
These MAPs crawl forward along on the microtubule to-
wards the tip, which recedes from them as the microtubule
grows. New MAPs may bind anywhere along the length of
the microtubule. The MAP-free region at the growing tip of
a microtubule may be shortened by two mechanisms, either
the forward progress of an already-bound MAP or by the
binding of a new MAP somewhere within the MAP-free re-
gion. It is of interest to note that motor proteins that increase
the catastrophe rate have recently been discovered@64#.

These examples that help illustrate that the basic ingredi-
ents of the model are the following:

~i! Growing microtubules possess a cap, the disappear-
ance of which leads to a catastrophe and~ii ! the cap is
lengthened by the growth of the microtubule and shortened
by two mechanisms:front propagation and spontaneous
events. Spontaneous events become more likely as the cap
becomes longer. Any microscopic model that leads to these
phenomena can be described in terms of a model similar to
the one we propose.

C. Rescues

We propose that when the loss of the cap causes disas-
sembly from the end of the MT and disassembly reaches a
left-behind patch of tubulin-t, it continues right through it.
This implies the existence of additional elements of the dy-
namics, e.g., GTP hydrolysis is propagated in front of the
disassembling tip. The reversal of disassembly to assembly,
called rescue,thus requires something more than a leftover
patch of tubulin-t, according to our model.

Previous models@12,11# have considered rescues and ca-
tastrophes to be two aspects of the same phenomenon. How-
ever, we feel that there is little evidence to suggest that this is
the case. Indeed, the fact that the rescue rate may be ‘‘ad-
justed’’ independently of the catastrophe rate under some
conditions@26–28# could be taken as evidence that the two
phenomena arise from different mechanisms. Others@4# have
also suggested this possibility.

One could build a model for rescues as well. We have
refrained from doing this for a simple reason: Much less data
has been collected on rescues than on catastrophes. We hope
that future experiments will address this aspect.

D. Issues for future experiments

We expect that video microscopy will continue to provide
the data that most constrain models of dynamic instability. It
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would be very useful to have the catastrophe rate and dilu-
tion experiments repeated under identical conditions. Recent
gains in understanding the effect of buffer conditions@33–
35# may offer new experimental possibilities. By measuring
growth velocity, catastrophe rate, and lifetime upon dilution
for a variety of tubulin concentrations, the major parameters
of our model~growth velocity and off rate@23–25#, vh , and
r ) would beoverdetermined, thus providing a rigorous test
of the model.

The combination of video microscopy withpressure jump
experiments@65,66# has not been exploited. It should be fea-
sible to construct a pressure cell that permits continuous
viewing of individual microtubules@67#. Pressure offers an
extremely attractive alternative to dilution because it can be
adjusted rapidly and with high precision. Our model makes a
specific prediction: The stabilizing cap should equilibrate to
the new pressure in an average timetcat, given by Eq.~25!.
For times shorter thantcat, a ‘‘memory’’ of the previous
state persists; the speed with which pressure can be con-
trolled should make this time scale easily accessible.

Finally, the heterogeneity that one sees in the growth ve-
locities of a population of MTs@68# is still not completely
understood. It may be profitable to try to correlate the vari-
ability in growth velocity with the occurrence of catastro-
phes. For example, do MTs that grow more rapidly have less
frequent catastrophes? Or is an individual MT more likely to
have a catastrophe during periods when its growth is particu-
larly slow ~or fast!? These experiments should not require
any new apparatus or procedures.
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APPENDIX A: NOTATION

This appendix collects our notation, which was introduced
gradually throughout the article wherever needed for the first
time. Notation not used more than once in the article is not
included. t denotes time.x is the length of the GTP cap.
dx50.6nm is the amount by which the length of a microtu-
bule and its GTP cap is incremented by the addition of one
heterodimer to it.dx is also the amount by which the cap and
trailing patches of GTP shorten by hydrolysis of one het-
erodimer.kg is the rate heterodimers are added to a growing
microtubule end.vg5kgdx is the average velocity of growth
resulting from the ratekg . vg

(1) and vg
(2) are the notations

used when we wish to distinguish between the two ends’
velocities of growth.kh is the rate of hydrolysis for het-
erodimers at the trailing edge of the cap or at the edge of
GTP patches.vh5khdx is the velocity with which these
edges, or hydrolysis fronts, propagate.vh

(1) andvh
(2) are the

notations used when we wish to distinguish the two different

orientations possible for a hydrolysis front.v5vg2vh is the
velocity with which the cap grows. It is also the velocity
with which it grows before dilution, in dilution experiments,
while v8 is its growth velocity after dilution.D is the diffu-
sion constant parametrizing the unbiased random walk per-
formed byx2vt in time intervals between cutting by inter-
nal hydrolysis. Its value is given in Eq.~6!. kh8 is the rate of
hydrolysis for hetero-dimers in the interior of the cap or a
GTP patch.r5kh8/dx is the rate per unit length cap or patch
that interior hydrolysis opens up two new hydrolysis fronts.
wh5vh

(1)1vh
(2) is the velocity with which a GTP patch

shrinks.g is a dimensionless parameter characterizing the
dynamics of the cap, defined in Eq.~15!. f cat is the catastro-
phe rate.tcat is the average waiting time for dilution-induced
catastrophes, defined in Eq.~25!. pcat(t) is the waiting-time
distribution for dilution induced catastrophes.lGTP is the
amount of GTP at a microtubule end, measured in lengths of
microtubule.x is the amount of GTP per unit length of mi-
crotubule at a given time for a homogeneous microtubule
and at a given position for an inhomogeneous one.n(x,t) is
the average number of GTP patches of lengthx per unit
length microtubule at timet. th5(rwh)

21/2 is the character-
istic time for hydrolysis processes, defined in Eq.~23!.
xh5(wh /r )

1/2 is the characteristic length of GTP patches in
hydrolysis, defined in Eq.~F6!.

APPENDIX B: MASTER EQUATION

The evolution in time of an ensemble of microtubule caps
evolving according to the dynamics described in Sec. III is
described by a linear master equation

] tp~x,t !52]xj ~x,t !, ~B1!

where

j ~x,t !5vp~x,t !2D]xp~x,t !2rxP~x,t !. ~B2!

Here p(x,t) is the ensemble density of microtubules with
caps of lengthx at time t, and we have introduced the num-
ber

P~x,t !5E
x

`

dx8p~x8,t ! ~B3!

of microtubules with caps of length longer thanx.
P(0,t) is the total number of microtubules with caps at

time t. It satisfies the equation

] tP~0,t !5 j ~0,t !5vp~0,t !2D]xp~0,t !, ~B4!

which shows how the number of capped microtubules
evolves in time: it decreases at the rateD]xp(0,t) with
which caps are lost by diffusion to vanishing length and, for
v.0, increases at the ratevp(0,t), if by some mechanism
we supply the ensemble with new, growing microtubules
with caps of zero length. Forv,0, the termvp(0,t) de-
scribes loss of caps by convection to vanishing length. Be-
causep(x,t)50 for x,0, the diffusive loss of caps will be
infinite if p(01,t).0, thereby forcing the system to obey the
boundary conditionp(01,t)50 whenever it is left to itself.
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In that situation, thecatastrophe rate fcat, the rate per
capped microtubule at which caps are lost, is

f cat5D]xp~0,t !/P~0,t !. ~B5!

We see that Eqs.~39! and ~40! contain a total of three
parametersv, D, and r . These are the fundamental param-
eters of our model, which is an effective theory with only
D/v relating to the microscopic scale.

The description given here in terms of a master equation
is not the only one possible. One can, alternatively, describe
the time evolution of the cap by a Langevin equation with a
velocity v and two noise terms, one for the fluctuations in
velocity and another for the cutting by internal hydrolysis.
But for the purposes of the present article we find the master
equation more convenient.

APPENDIX C: RIGOROUS ANALYSIS OF MODEL—
GENERAL RESULTS

Equations~B1! and ~B2! comprise an integro-differential
equation forp(x,t). Differentiating it once with respect to
x makes it a third-order partial differential equation for
p(x,t). Fortunately, we do not have to deal with these equa-
tions. Instead we integrate Eq.~B1! with respect tox from
x to infinity and find

] tP~x,t !5 j ~x,t !5~2v]x1D]x
22rx !P~x,t !, ~C1!

where we have assumedj (`,t)50 for all t. This boundary
condition is satisfied as long asp(x,t) decreases faster than
x22 at infinity. The opposite case makes the average cap
length infinite, a state that is impossible to arrive at with the
dynamics of this model, as long as caps are created with
finite length.

The three dimension-full parametersv, D, and r in Eq.
~C1! can be combined to form three other independent pa-
rameters, of dimension length, time, and none, corresponding
to the dimensions of Eq.~C1!’s two dependent variables:

x0[~D/r !1/3, ~C2!

t0[~Dr 2!21/3, ~C3!

g[
v

2D2/3r 1/3
5

v
2x0 /t0

. ~C4!

The inverse relations to Eqs.~C2! and ~C3! are illustrative
and useful,

D5x0
2/t0 , ~C5!

r5~x0t0!
21. ~C6!

Introducing new, dimensionless variables

j[x/x0 , ~C7!

t[t/t0 , ~C8!

P̃~j,t![exp@2vx/~2D !#P~x,t ! ~C9!

in Eq. ~C1!, it reads

]tP̃~j,t!5~]j
22j2g2!P̃~x,t !. ~C10!

The general solution to this linear equation is

P̃~j,t!5E da c~a!exp~2at!Ai ~j1g22a!,

~C11!

where Ai(j) is the first Airy function, satisfying Airy’s dif-
ferential equation~see@69#, Chap. 10!

S d2dj2
2j DAi ~j!50. ~C12!

The second Airy function Bi(j) is eliminated from the gen-
eral solution by its exponential growth at infinity.

Different boundary conditions atx50 put different con-
straints on the coefficient functionc(a) in Eq. ~C11!. Sup-
pose we leave the ensemble of caps to itself fort.0. Then
p(0,t)50 for all t.0 and consequentlyc(a) is nonzero
only for the discrete set of valuesak , k50,1,2,. . . , satis-
fying

2Ai 8~g22ak!

Ai ~g22ak!
5g. ~C13!

This equation definesak as implicit functions ofg as illus-
trated in Fig. 7. We have determined several of these func-
tions numerically. The graphs of the first 18 functions are
shown in Fig. 8. For any value ofg,

ak;g21S 32pkD 2/3 for k→`. ~C14!

For any positive value ofg2, the set of functions
Ai @j1g22ak(g)#, k50,1,2,. . . , form a basis for real
functions on the real positive-j axis. This basis is orthogonal
in the scalar product

^ f ,g&[E
0

`

dj f ~j!g~j! ~C15!

FIG. 7. Graph of Ai8(j)/Ai( j). With this graph one may solve
Eq. ~C13! graphically.
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and one can show that thekth function has norm
AakAi( g22ak). With this knowledge, we can find the time
evolution for a particularly interesting initial situation, the
one in which all cap lengths are zero at timet50. This
condition is described by setting

p~x,0!}2d8~x! ~C16!

or, equivalently,

P~x,0!}d~x!. ~C17!

This initial condition results in

P~x,t !}(
k50

`

exp~2akt1gj!
Ai ~j1g22ak!

akAi ~g22ak!
, ~C18!

wherej andt are related tox and t by Eqs.~C7! and~C8!.
From Eqs.~C18! and ~B3! it follows that

p~x,t !}x0
21(

k50

`

exp~2akt1gj!

3
2Ai 8~j1g22ak!2gAi ~j1g22ak!

akAi ~g22ak!
.

~C19!

Phrased differently, Eq.~C19! gives the propagator for caps
starting out with zero length. SinceP(0,t) is the total num-
ber of caps in the ensemble, we see that this number is
infinite at timet50 according to Eq.~C17!, but finite at any
later time according to Eq.~C18!. Because caps disappear
from the ensemble by diffusion throughj50 and we start
the caps out with a vanishingj value, we must have an
infinite number of caps in the ensemble initially for a finite
number of caps to survive to any later time.

This infinity is an artifact of our continuum description.
As we will not have to deal with early times, we will not
encounter it. It is not different from what one finds for ordi-
nary diffusion on the real positive axis with a source and a

sink at the origin. The reason it is not different is that at very
short length scales, such as in the immediate neighborhood
of the origin, the diffusion term dominates over the other
terms in our master equation.

APPENDIX D: CATASTROPHE RATE

As argued in Sec. V, caps on theobservedmicrotubules
have existed for a sufficiently long time for the ensemble of
them to be statistically distributed as the asymptotic distribu-
tion obtained from Eq.~C18! for t→`, i.e., as

P~x,t !}exp~2a0t1gj!Ai ~j1g22a0!. ~D1!

Since

P~0,t !}exp~2a0t! ~D2!

is the total number of caps in such an ensemble, the catas-
trophe rate obviously is

f cat5a0 /t0 . ~D3!

Herea0 is a function ofg. Its graph is shown as the lowest
curve in Fig. 8. Notice that this lowest curve for positive
values of g is well below the other curves shown. This
means that neglecting terms withk.0 in Eq. ~C18!, as we
do with Eqs.~D1!–~D3!, is a good approximation even for
moderate values oft.

Furthermore, the first term in the asymptotic expansion of
a(g) in terms of 1/g gives a very good approximation al-
ready forg.1, because the second term in the expansion
has coefficient zero

a05
1

2g
1OS 1g3D . ~D4!

Using this and Eqs.~C3! and ~C4!, we obtain

f cat5Dr /v1OS 1g3D , ~D5!

from which we see that the heuristic result given in Eq.~19!
for large values ofg actually is correct as an approximation
and is a very good one: compare the full and dashed curves
in Fig. 4. Figure 4 shows a fit based on the full expression in
Eq. ~C18! including terms withk.0. Because of these terms
with k.0, the instantaneous catastrophe rate

f cat~ t !5
dP~0,t !

dt Y P~0,t ! ~D6!

is time dependent, being larger initially than its asymptotic
value, which is approached monotonically. We calculated the
average time that a microtubule is observed in its growing
state as

^t&5P~0,tcutoff!
21E

tcutoff

`

dt~ t2tcutoff!U dP~0,t !

dt U
5P~0,tcutoff!

21E
tcutoff

`

dt P~0,t !. ~D7!

FIG. 8. Graphs ofak(g) for k50,1,2, . . . ,counting up from the
bottom. Note the gap betweena0(g) andak(g), k51,2, . . . , for
g>1. It is the reason why the term withk50 quickly dominates
the sum overk in Eqs.~C18! and ~C19! ast increases from zero.
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Here tcutoff is the time it takes microtubules to grow long
enough to be observed, i.e.,tcutoff5xcutoff /vg , wherexcutoff is
the minimal length that a microtubule needs to have to be
observed. We have usedxcutoff50.1mm as this is the typical
resolution of the light microscopes used to take the data.

For any nonzero value fortcutoff , Eq. ~D7! is the observed
average lifetime of microtubules, related to the observed ca-
tastrophe rate by

f cat51/̂ t&. ~D8!

The limit tcutoff→0 is tricky. The exact expression for the
observed catastrophe rate given in Eq.~D8! is the one our
model tells us to use in the limit oftcutoff→0. This catastro-
phe rate is infinite, because with the particular choice of
initial condition leading to Eq.~C18!, ^t& vanishes with
tcutoff in Eq. ~D7!. This is so because an infinity of microtu-
bules vanish in the first instant after they are created with
zero length att50, while only a finite number survive a
finite time, as discussed in the last two paragraphs of Appen-
dix C. As also explained there, this infinity is an artifact of
our continuum description of the cap and is an acceptable
artifact since it only shows up in situations that are not en-
countered when we relate to experimental data, while the
continuum description greatly facilitates our modeling task.

APPENDIX E: DILUTION EXPERIMENTS

Our model is a partial differential equation, and initial
data and boundary conditions characterizing dilution experi-
ments are required in order to describe such experiments
with the model. We meet this requirement in the following
way. When microtubules are grown at high tubulin concen-
tration, catastrophes are very rare, so the caps on such mi-
crotubules are as old as the microtubules themselves. When
these microtubules are grown from seeds, i.e., from zero
length, each cap has aggregated and lost again by hydrolysis
as much tubulin-t as there is tubulin in the microtubule. So
the ensemble of caps in an ensemble of such microtubules is
extremely well equilibrated statistically, i.e., distributed ac-
cording to the asymptotic form given in Eq.~D1!. When the
growth ratevg is so large thatg2@1, g.0, the right-hand
side of Eq.~D1! is well approximated by the first term in its
expansion ing22,

P~x,0!5exp~gj!
Ai ~j1g22a0!

Ai ~g22a0!

5expS 2
j2

4g D1O~g22!. ~E1!

Alternatively, we may arrive at the last expression in Eq.
~E1! by neglecting the diffusive term in our master equation
~C1!, that is, by settingD50 in it. Then the steady-state
solution to the master equation is easily found to be the last
expression on the right-hand side of Eq.~E1!. Either way,
this approximation results in the steady-state distribution

p~x!5
rx

v
expS 2

rx2

2v D , ~E2!

with mean value

^x&5Apv
2r

. ~E3!

Comparing this result with our estimate in Eq.~13!, we see
that the latter is very good: it has the form we expected from
dimensional analysis and only misses the numerical prefactor
by a factorAp/A351.02. Considering the method of esti-
mation, this precision is the result of luck.

Though we have neglected the diffusive term responsible
for catastrophes by assumingD50 in deriving the distribu-
tion ~E2!, we can still find the catastrophe rate that results
from this distribution when catastrophes are permitted by
having D nonzero. Strictly treated, these catastrophes will
affect the form of the distribution, but that is a higher-order
effect in D that can be ignored to a good approximation
whenD is small. The catastrophe rate is

f cat5D
dp

dxU
x50

5
Dr

v
, ~E4!

which is just what one gets from inserting Eq.~D4! into Eq.
~D3!. So now we also understand that approximate result as
a leading-order perturbative result.

Exact or approximated, the function~E1! is our initial
data for the cap length distribution when we model dilution
experiments. Suppose that the tubulin concentrationc at
which microtubules are grown is diluted abruptly to concen-
tration c8 at time t50. Then, with primes denoting values
for t.0, the cap length distribution evolves according to

P~x,t !5 (
k50

`

ck~g,g8!exp~2ak8t81g8j8!

3
Ai ~j81g822ak8!

Aak8Ai ~g822ak8!
, ~E5!

where

ck~g,g8!5E
0

`

dj8
Ai ~j81g822ak8!

Aak8Ai ~g822ak8!

3exp@~gx08/x02g8!j8#
Ai ~j8x08/x01g22a0!

Ai ~g22a0!

~E6!

is the scalar product@Eq. ~C15!# between our diagonalizing
basis vectors fort.0 and our initial condition att50.

The distribution in time of catastrophes following dilution
is the instantaneous rate at which caps disappear from the
ensemble of caps we had at the time of dilutiont50:

pcat~ t !52] tP~0,t !/P~0,0!. ~E7!

For the average lifetime of caps following dilution we then
have
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tcat5E
0

`

dt tpcat~ t !

5t08(
k50

`

ak8
23/2ck~g,g8!Y (

k50

`

ak8
21/2ck~g,g8!.

~E8!

For only slight dilution,g8.g and the exact expressions
in Eqs.~E5! and ~E8! are well approximated by the first, or
the first few, terms in the sum overk. For the more interest-
ing case of massive dilution,g8;0 or g8,0 and many
terms are required in the sums in Eqs.~E5! and ~E8! to
obtain a reasonable approximation. Also, little is gained by
using the approximation of Eq.~E1! in Eq. ~E6!. However,
for v8,0 cap ‘‘growth’’ is negative and causes cap loss by
the convective term in Eq.~C1! in addition to the loss by its
diffusive term. In this case we can neglect the diffusive term
to a good approximation forugu large, as it only causes a
slight smearing of the cap-lifetime distribution obtained
without it. SettingD50 in Eq. ~C1!, we can solve it exactly
for t.0 by using the method of characteristic lines and find

P~x,t !5exp~2rxt1 1
2 rv8t2!P~x2v8t,0!. ~E9!

We could improve on this approximate result by treating it as
a leading-order approximation in a perturbation theory in
D, but do not need to for our purposes here.

So now we know the cap length distribution at all times
after dilution to a concentration that rendersv8 sufficiently
negative,

P~x,t !5exp~2rxt1rv8t2/2!

Ai S x2v8t

x0
1g22a0D

Ai ~g22a0!

5exp@~12v8/v !~rv8t2/22rxt !2rx2/~2v !#

1O~g22!. ~E10!

Notice the normalizationP(0,0)51. P(0,t) is the fraction of
microtubules that have not yet experienced catastrophe at
time t after dilution and is just a Gaussian distribution to
leading order ing22. So, then, is the distribution in time of
catastrophes

pcat~ t !52] tP~0,t !5
pt

2tcat
2 expS 2

pt2

4tcat
2 D , ~E11!

where the average lifetime upon dilution is

tcat5F22rv8

p S 12
v8

v D G21/2

.S p

22rv8D
1/2

~E12!

in the approximation used here.

APPENDIX F: GTP HYDROLYSIS RATES—
CASE OF HOMOGENEOUS MICROTUBULE

The variables needed to describe the kinetics of GTP hy-
drolysis are well illustrated by a much simplified situation.
From their functional forms in this situation we easily obtain

their forms in realistic situations in Sec. VIIIC and in Ap-
pendix G.

We consider an infinitely long microtubule that at time
t50 consists entirely of tubulin-t. After that time it suffers
internal hydrolysis at rater per unit length, and hydrolysis
from the ends of the patches thus created, each patch shrink-
ing with velocity wh5vh

(1)1vh
(2) . Let n(x,t) denote the

average number of patches of lengthx to be found per unit
length of microtubule at timet>0; since this is an average, it
is a real number. The total number of patches per unit length
of microtubule then is

n~ t ![E
0

`

dx n~x,t !. ~F1!

Similarly, the total length of tubulin-t per unit length of mi-
crotubule is

x~ t ![E
0

`

dxxn~x,t ! ~F2!

at timet and should equal 1 at timet50. The average length
of patches at timet is

^x& t5x~ t !/n~ t !. ~F3!

The densityn(x,t) evolves in time according to the mas-
ter equation

] tn~x,t !5wh]xn~x,t !2rxn~x,t !12r E
x

`

dx8n~x8,t !.

~F4!

On the right-hand side of this integro-differential equation,
the first term describes the change of patch length by hy-
drolysis from both ends at velocitywh5vh

(1)1vh
(2) . The

second term describes the loss of patches of lengthx caused
by their internal hydrolysis at raterx. The third term de-
scribes the creation of patches of lengthx from patches of
any lengthx8.x by internal hydrolysis at rater per unit
length. The factor 2 in front of this term is there because one
event of internal hydrolysis in a patch of lengthx8 can create
a patch of lengthx in two ways: by separating the lengthx
either from one end or from the other end.

The master equation~F4! contains two parameterr and
wh with dimensions@length 3 time]21 and @length/time#,
respectively. These parameters may be replaced by two other
parameters

th[~rwh!
21/2 ~F5!

and

xh[~wh /r !1/2 ~F6!

of dimensions~time! and ~length!, respectively. The latter
parameters define the time and length scales of the process of
hydrolysis.th was introduced already in Eq.~23!. Using the
values forr andvh

(6) given in Table I, we findth55 sec and
xh529 nm. When time and length are measured in units of
these parameters,
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j[x/xh , ~F7!

t[t/th , ~F8!

ñ~j,t![xh
2n~x,t ! ~F9!

~wherej and t should not be confused with those of same
name in Appendix C!, the master equation~F4! becomes
dimensionless and contains no free parameters,

]tñ~j,t!5]jñ~j,t!2jñ~j,t!12E
j

`

dj8ñ~j8,t!.

~F10!

From the master equation follow equations for the total
length of tubulin-t,x(t), and the total number of patches
n(t) per unit length of microtubule

d

dt
x~ t !52whn~ t ! ~F11!

and

d

dt
n~ t !52whn~0,t !1rx~ t !. ~F12!

The interpretation of these coupled equations is obvious, but
they do not close becausen(0,t) occurs. Only the master
equation closes. It has the solution

ñ~j,t!5t2exp~2tj2t2/2! ~F13!

or, returning to variablesx, t, andn(x,t),

n~x,t !5~rt !2exp~2rtx2rwht
2/2! ~F14!

and, consequently,

n~ t !5rtexp~2rwht
2/2!, ~F15!

x~ t !5exp~2rwht
2/2!. ~F16!

The form of the solutionn(x,t) in Eq. ~F14! is easily
understood. Internal hydrolysis of the infinite microtubule is
a Poisson process causing an exponential distribution of
patch lengthsx. This Poisson process is superposed with the
shrinking at velocitywh of the patches it creates. But an
exponential distribution on the positive half axis remains in-
variant under a shift of the origin of the axis. So the shrink-
ing process does not change the character of the result of the
Poisson process. Were it not for the shrinking and vanishing
of patches, the Poisson process would have resulted in a
density rt of points of internal hydrolysis, hence in
n(t)5rt patches per unit length, with average length

^x&51/~rt !,

from which

n~x,t !5~rt !2exp~2rtx !

follows because patches shrink and vanish, their number
does not just grow asrt . But the patches present at any time
t are, nevertheless, distributed inx according to the distribu-

tion just given. So the shrinking process does not affect the
distribution of patch lengths. Only thenumberof patches is
affected: compare Eqs.~F14! and ~F15! with the same ex-
pressions forwh50.

APPENDIX G: GTP HYDROLYSIS RATES—
CASE OF MICROTUBULES GROWING

AT DECREASING RATE

In Sec. VIIIC we considered the case of GTP hydrolysis
of caps grown with constant microtubule growth ratevg . If
insteadvg decreasesas the microtubules grow, because the
concentration of tubulin-t in solution is depleted by their
growth, the situation is more complicated. Depletion of
tubulin-t takes place in the hydrolysis experiments reported
in @17#, @43#, and@40#. So for the benefit of the reader want-
ing more than the upper bound given in Sec. VIIIC, we
present our model’s predictions in this appendix.

If the characteristic time for depletion is much longer than
the characteristic time for hydrolysisth , we have a quasista-
tionary growth rate as regards hydrolysis and the hydrolysis
rate and the amount of tubulin-t present at microtubule ends
will follow the instantaneous growth rate; the results in Sec.
VIIIC apply when the instantaneous growth rate is substi-
tuted for the constant groat rate assumed there.

This is not the situation in the experiments described in
@17# and @43#. In those experiments tubulin-t depletion oc-
curred at rates comparable toth . This appendix describes
that situation.

When stabilized microtubules grow with a velocityvg
that is proportional to the tubulin-t concentrationc,

vg5vg8c, ~G1!

and deplete the latter by their growth, the absence of catas-
trophes makes them all grow to the same lengthl (`) and in
the same way

l ~ t !5 l ~`!~12e2nMTvg8t!5 l ~`!~12e2t/td!, ~G2!

where we have introduced the characteristic time

td5
1

nMTvg8
~G3!

for depletion of the tubulin-t concentration by a constant
concentration of microtubulesnMT . The assumption that the
concentration of microtubules is constant during their growth
applies in the experiment described in@17# because microtu-
bules are grown from seeds; see@18#, Fig. 1. When microtu-
bules are nucleated in the bulk of the tubulin-t solution, the
randomness of the nucleation process gives rise to a distri-
bution of finite width for the lengths of microtubules at any
given time, compare@43#, Fig. 4~E!. In this case Eq.~G2!
applies only to the distributions average length and only after
nucleation has been effectively stopped by depletion of
tubulin-t.

At time t, the age since assembly t8 of the part of the
microtubule located a distancel 8 behind its growing tip sat-
isfies the equation

l ~ t2t8!5 l ~ t !2 l 8. ~G4!
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Using this with Eqs.~G2! and ~F16!, we find for the total
amount of GTP present at timet,

lGTP~ t !5E
0

l ~ t !
dl8x@ t8~ l 8!#

5 l ~`!e2t/tdtd
21E

0

t

dt8et8/tdx~ t8!

5 l ~`!Ap

2

th
td
e~ th /td!2/2e2t/td

3FsgnS tth 2
th
td
D FS t

A2th
2

th

A2td
D 1FS th

A2td
D G

; l ~`!Ap

2

th
td
e~ th /td!2/2e2t/tdF11FS th

A2td
D G , ~G5!

where the last expression gives the asymptotic behavior at
late timest.

The GTP content of a microtubule described by this result
has a maximum at a time that can be determined from the
expression given. But as shown in Sec. VIIIC, bounds can
easily be established, which suffice to understand the key
experimental result, the zero result in@17#, and we give Eq.
~G5! only to show it can be found within our approach, to
put it on record for anybody wanting a description taking
depletion into account, and to illustrate the complexity of
such a description.

In the experiments described in@17# and @43#, the GTP
content of microtubules is not measured directly. The total
amount of microtubulel (t) is measured both turbidimetri-
cally and by radioactive labeling and the total amount of
GDP produced is measured by radioactive labeling of the
phosphate ion released in the hydrolysis of GTP to GDP.
Since the microtubules polymerized in those experiments are
stabilized against depolymerization, the GDP produced is all
located in microtubules and

lGDP~ t !5 l ~ t !2 lGTP~ t !

5 l ~`!S 12H 11Ap

2

th
td
e~ th /td!2/2

3FsgnS tth 2
th
td
D FS t

A2th
2

th

A2td
D

1FS th

A2td
D G J e2t/tdD ~G6!

; l ~`!S 12H 11
th
td
Ap

2
e~ th /td!2/2

3F11FS th

A2td
D G J e2t/tdD , ~G7!

where the last expression gives the asymptotic behavior at
late timest.

@1# T. Mitchison and M. Kirschner, Nature312, 232 ~1984!.
@2# T. Mitchison and M. Kirschner, Nature312, 237 ~1984!.
@3# M.-F. Carlier and D. Pantaloni, Biochemistry20, 1918~1981!.
@4# H. P. Erickson and E. T. O’Brien, Annu. Rev. Biophys. Bio-

mol. Struct.21, 145 ~1992!.
@5# M. Caplow, Curr. Opinion Cell Biol,4, 58 ~1992!.
@6# M.-F. Carlier, Int. Rev. Cytol.115, 139 ~1989!.
@7# Graphics are by Imre Janosi.
@8# R. H. Wade and D. Chre´tien, J. Struct. Biol.110, 1 ~1993!.
@9# M. Maaloum, D. Chre´tien, E. Karsenti, and J. K. H. Horber, J.

Cell Sci.107, 3127~1994!.
@10# D. Kuchnir Fygenson, E. Braun, and A. Libchaber, Phys. Rev.

E 50, 1579~1994!.
@11# S. R. Martin, M. J. Schilstra, and P. M. Bayley, Biophys. J.65,

578 ~1993!.
@12# Y. Chen and T. L. Hill, Proc. Natl. Acad. Sci. U.S.A.82, 1131

~1985!.
@13# D. N. Drechsel, A. A. Hyman, M. H. Cobb, and M. W. Kir-

schner, Mol. Biol. Cell3, 1141~1992!.
@14# R. A. Walker, E. T. O’Brien, N. K. Pryer, M. F. Soboeiro, W.

A. Voter, and H. P. Erickson, J. Cell Biol.107, 1437~1988!.
@15# W. A. Voter, E. T. O’Brien, and H. P. Erickson, Cell Motil.

Cytoskel.18, 55 ~1991!.
@16# R. A. Walker, N. K. Pryer, and E. D. Salmon, J. Cell Biol.114,

73 ~1991!.
@17# R. J. Stewart, K. W. Farrell, and L. Wilson, Biochemistry29,

6489 ~1990!.

@18# D. J. Odde, L. Cassimeris, and H. M. Buettner, Biophys. J.69,
796 ~1995!.

@19# D. D. Drechsel and M. W. Kirschner, Curr. Biol.4, 1053
~1994!.

@20# R. A. Walker, S. Inoue´, and E. D. Salmon, J. Cell. Biol.108,
931 ~1989!.

@21# H. Flyvbjerg, T. E. Holy, and S. Leibler, Phys. Rev. Lett.73
2372 ~1994!.

@22# P. M. Bayley, M. J. Schilstra, and S. R. Martin, J. Cell Sci.95,
33 ~1990!.

@23# The result reported in@13# may, of course, depend on the
buffer used as well as other experimental conditions. However,
the model we derive here under the assumption of a zero off
rate covers the case of a nonzero off rate as well, in the sense
that the resulting mesoscopic model is the same when ex-
pressed in terms of its parametersr andD and its variablev.
However, its interpretation in terms of underlying processes
has changed, of course.

@24# Specifically, Eq. ~6! is no longer valid, but replaced by
2D5(kg1kg

(off)1kh)dx
2, wherekg

(off) is the off rate comple-
menting the on ratekg . In the case where the off rate is not
known from direct experimental measurement, the net result is
a theory with one more free, though necessarily positive, pa-
rameter to be determined by fitting the theoretical catastrophe
rates and waiting times upon dilution derived here to experi-
mental data. With the data we fit to, a positive off rate gives
better fits than those we show. But we already know from@13#

54 5559MICROTUBULE DYNAMICS: CAPS, CATASTROPHES, . . .



that the rate is zero with rather good experimental precision,
hence we can work with one less parameter to fit and conse-
quently obtain a correspondingly stronger test of the model.

@25# In general, experiments testing the model are optimized by
including direct measurements of the off rate in addition to
measurements of the catastrophe rate and the waiting time
upon dilution and all experiments should be done with the
same preparation of tubulin and in the same buffer.

@26# M. Caplow, R. Ruhlen, J. Shanks, R. A. Walker, and E. D.
Salmon, Biochemistry28, 8136~1989!.

@27# F. Verde, M. Dogterom, E. Stelzer, E. Karsenti, and S. Leibler,
J. Cell Biol.118, 1097~1992!.

@28# N. R. Gliksman, S. F. Parsons, and E. D. Salmon, J. Cell Biol.
119, 1271~1992!.

@29# K. R. Summers and M. W. Kirschner, J. Cell Biol.83, 205
~1979!.

@30# T. Horio and H. Hotani, Nature321, 605 ~1986!.
@31# E. T. O’Brien, E. D. Salmon, R. A. Walker, and H. P. Erick-

son, Biochemistry29, 6648~1990!.
@32# This follows upon settingvg- ~before dilution! @vh and vg

~after dilution! 50. This second condition deserves some
clarification. One does not expect dilution to be complete. In
fact, the authors@16# estimate that the tubulin concentration
after dilution is as high as 3mM. However, with their condi-
tions this is probably not sufficient to generate any growth; in
fact, one might expect that the microtubule should shrink
slowly, even without suffering a catastrophe@14#. However,
the growth rate at these low tubulin concentrations is contro-
versial and almost certainly dependent on conditions@13#, so
we make the simplest reasonable assumption and setvg, ~after
dilution! 50.

@33# M. Caplow, R. L. Ruhlen, and J. Shanks, J. Cell. Biol.127,
779 ~1994!.

@34# J. R. Simon, S. F. Parsons, and E. D. Salmon, Cell Motil.
Cytoskel.21, 1 ~1992!.

@35# M. J. Schilstra, P. M. Bayley, and S. R. Martin, Biochem. J.
277, 839 ~1991!.

@36# In theory, the combined fit shown here to the plus-end catas-
trophe rate and the plus-end delay time for dilution-induced
catastrophes does not involve the minus-end data. In practice it
does, because we also fit an effective time of dilution because
dilution was initiated att50 and required some time for
completion. This last parameter is the same for the plus- and
minus-end data, we can reasonably assume, since they were
taken with the same apparatus. For this practical reason, the
fitting to plus-end data are not done separately, but as a com-
bined fit to plus- and minus-end data.

@37# M. F. Carlier, T. L. Hill, and Y. Chen, Proc. Natl. Acad. Sci.
U.S.A. 81, 771 ~1984!.

@38# E. Hamel, J. K. Batra, A. B. Huang, and C. M. Lin, Arch.
Biochem. Biophys.245, 316 ~1986!.

@39# Maria J. Schilstra, Stephen R. Martin, and Peter M. Bayley,
Biochem. Biophys. Res. Commun.147, 588 ~1987!.

@40# E. T. O’Brien, W. A. Voter, and H. P. Erickson, Biochemistry
26, 4148~1987!.

@41# M.-F. Carlier, D. Didry, and D. Pantaloni, Biochemistry26,
4428 ~1987!.

@42# R. J. Stewart, K. W. Farrell, and L. Wilson, J. Cell Biol.107,
241a~1988!.

@43# R. Melki, M.-F. Carlier, and D. Pantaloni, Biochemistry29,
8921 ~1990!.

@44# M. F. Carlier. Mol. Cell. Biochem.47, 97 ~1982!.
@45# T. L. Hill and M.-F. Carlier, Proc. Natl. Acad. Sci. U.S.A.80,

7234 ~1983!.
@46# T. L. Hill and Y. Chen, Proc. Natl. Acad. Sci. U.S.A.81, 5772

~1984!.
@47# M. Caplow and R. Reid, Proc. Natl. Acad. Sci. U.S.A82, 3267

~1985!.
@48# P. M. Bayley, M. J. Schilstra, and S. R. Martin, J. Cell Sci.93,

241 ~1989!.
@49# P. M. Bayley, M. J. Schilstra, and S. R. Martin, J. Cell Sci.95,

329 ~1990!.
@50# R. K. McNeal and D. L. Purich, J. Biol. Chem.253, 4683

~1978!.
@51# E. Hamel, A. A. del Campo, M. C. Lowe, P. G. Waxman, and

C. M. Lin, Biochemistry21, 503 ~1982!.
@52# D. Chrétien, S. D. Fuller, and E. Karsenti, J. Cell Biol.129,

1311 ~1995!.
@53# R. C. Weisenberg, Science177, 1104~1972!.
@54# J. B. Olmsted and G. G. Borisy, Biochemistry14, 2996~1975!.
@55# R. P. Frigon and S. N. Timasheff, Biochemistry14, 4567

~1975!.
@56# J. C. Lee and S. N. Timasheff, Biochemistry16, 754 ~1977!.
@57# V. Gal, S. Martin, and P. Bayley, Biochem. Biophys. Res.

Commun.102, 1464~1988!.
@58# E. T. O’Brien, R. A. Walker, E. D. Salmon, and H. P. Erick-

son, inCytoskeletal and Extracellular Proteins, edited by U.
Aebi and J. Engel~Springer-Verlag, Berlin, 1989!, pp. 259–
261.

@59# D. L. Gard and M. W. Kirschner, J. Cell Biol.105, 2203
~1987!.

@60# R. J. Vasquez, D. L. Gard, and L. Cassimeris, J. Cell Biol.127,
985 ~1994!.

@61# S. S. L. Andersen, B. Buendia, J. E. Dominguez, A. Sawyer,
and E. Karsenti, J. Cell Biol.127, 1289~1994!.

@62# M. Dogterom, M. A. Felix, C. C. Guet, and S. Leibler, J. Cell
Biol. 133, 125 ~1996!.

@63# R. A. Walker, University of North Carolina Ph.D. thesis,
Chapel Hill, 1989~unpublished!.

@64# C. E. Walczak, T. J. Mitchison, and A. Desai, Cell84, 37
~1996!.

@65# E. D. Salmon, Science189, 884 ~1975!.
@66# B. Bourns, S. Franklin, L. Cassimeris, and E. D. Salmon, Cell

Motil. Cytoskel.10, 380 ~1988!.
@67# E. D. Salmon~private communication!.
@68# R. F. Gildersleeve, A. R. Cross, K. E. Cullen, A. P. Fagen, and

R. C. Williams, J. Biol. Chem.267, 7995~1992!.
@69# Handbook of Mathematical Functions, edited by M.

Abramowitz and I. A. Stegun~Dover, New York, 1972!.

5560 54FLYVBJERG, HOLY, AND LEIBLER


