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DNA looping participates in transcriptional regulation, for instance, by
allowing distal binding sites to act synergistically. Here, we study this
process and compare different regulatory mechanisms based on repres-
sion with and without looping. Within a simple mathematical model for
the lac operon, we show that regulation based on DNA looping, in
addition to increasing the repression level, can reduce the fluctuations of
transcription and, at the same time, decrease the sensitivity to changes in
the number of regulatory proteins. Looping is thus able to circumvent
some of the constraints inherent to mechanisms based solely on binding
to a single operator site and provides a mechanism to regulate the average
properties of transcription and its fluctuations.
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Introduction

Cells use a wide variety of mechanisms to regu-
late and perform their functions. Some of these
mechanisms are fairly simple. But, more often that
not, there seems to be an unnecessary complexity.
Consider for instance the lac operon, the system
where, together with l phage, gene regulation was
discovered.1 – 3 It consists of a regulatory domain
and three genes required for the uptake and
catabolism of lactose (see Figure 1). A regulatory
protein, the lac repressor, can bind to the main
operator O1 and prevent the RNA polymerase
from transcribing the genes. If it is not bound, tran-
scription proceeds at a given rate. This simple idea
emerged as one of the milestones of gene regu-
lation: there are DNA-binding proteins that can
hinder or stimulate some of the steps leading to
transcription. Regulation of transcription,
however, is actually not so simple. In the case of
the lac operon, besides O1 there are two sites out-
side the control region, the so-called auxiliary
operators O2 and O3, which closely resemble O1

and where the repressor can also bind. At first,
these two sites were considered to be just
remnants of evolution without any specific
function.2 The reasons were diverse. They are far
away from the promoter, so that the repressor’s
binding to them cannot affect the RNA polymerase

directly. They are much weaker than O1, O2 is
as much as ten times and O3 is over 300 times
weaker. Moreover, elimination of either one of
them leaves the repression level practically
unchanged.

The role of O2 and O3, however, proved to be far
from minor: simultaneous elimination of both of
these operators reduced the repression level about
100 times. Such a drastic effect was shown to be
mediated by the DNA loops that the lac repressor
can induce by binding to two sites simultaneously.4

Through looping, the auxiliary operators indirectly
increase the probability for the repressor to be
bound to the main operator.

It is remarkable that, despite its apparent
complexity, DNA looping is widely used in gene
regulation. It was first discovered in the ara
operon5 and subsequently, in other prokaryotic
systems like lac, deo, gal and gln.6 It is a key element
in the regulation of the l phage7 and it is at play in
eukaryotic enhancers, allowing multiple proteins
from adjacent and distal sites to affect the RNA
polymerase.6,8

Here, we analyze how the dynamics of looping
affects gene expression and compare it to different
alternative regulatory mechanisms. The results of
our model are in close agreement with the avail-
able experimental data on the lac operon, which
spans over three orders of magnitude in the repres-
sion level. In addition, the model shows that DNA
looping can be used to circumvent several of the
shortcomings that are inherent to simpler
mechanisms.
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Regulation With and Without Looping

In Figure 2 we illustrate the main differences in
the mechanisms of regulation with and without
looping. The system with a single binding site can
be characterized by two states (Figure 2a). In the
state (i) the operator Om is not occupied and in
the state (ii) one of the N repressors of the cell is
bound to Om: In principle, one might think of a
more detailed description of the system, e.g.
including states for the repressor bound non-
specifically to DNA or freely diffusing in the cell.

Such a detailed description would result at the
end in an effective two-state description. Here,
states are chosen to keep just the essential
elements.

The DNA looping case is more complex and
interesting (Figure 2b). The major contribution of
looping to gene regulation comes from the syner-
gistic effects of two operators. Thus, we consider
the two-operator case, for which there exist the
most detailed experimental data.9 Now, there are
five relevant states: (i) none of the operators is
occupied; (ii) a repressor is bound to just the main
operator Om; (iii) to just the auxiliary operator Oa;
(iv) to both of the operators by looping DNA; or
(v) one repressor is bound to Om and the other to
Oa at the same time.

Repression level

The description based on states is suitable to
tackle, both qualitatively and quantitatively, the
effects of looping in gene regulation. Intuitively,
looping increases repression because the system is
dynamically trapped in the looped state (iv). The
system can only leave this state to either state (ii)
or state (iii). In either of these two states, the
repressor remains near the free operator. Therefore,
the most likely event is that repressor is recaptured
by the free operator to form the loop again. Thus,
with high probability, the system comes back to
state (iv).

This idea of the repressor being dynamically
trapped is also a key element in a recently pro-
posed mechanism for protein localization.10

Proteins with two binding domains for each of the
elements of an array will have a high probability
of being attached to the array by one or both of its
domains at any instant of time because, if the
neighboring array elements are close enough, it is
likely that when one domain unbinds it will
reattach to the array before the other domain
unbinds.

It is important to note the differences of DNA
looping with what is known in inorganic chemistry
as the chelate effect.11 The chelate effect refers to
the fact that the binding of a dimer to a molecule
may be far greater than expected from the binding
of the constituent monomers separately. It happens
because, in the binding, the dimer loses only the
translational and rotational entropies of a single
molecule in contrast to the entropies of two
molecules that the pair of monomers would lose.
In our case, in addition to the loss of translational
and rotational entropies, one has to take into
account the energetic and entropic contribution of
the formation of the DNA loop.

To proceed with the quantitative details, we
consider first the single operator case. We will
follow the standard statistical thermodynamics
approach.12 The main idea of this approach is that
the probability for the system to be in a given
state is a function of the free energy of such a
state. This function is essentially proportional to

Figure 1. A representation of the lac operon (not
drawn to scale). The three genes lacZ, lacY, and lacA are
cotranscribed as a polycistronic message from a single
promoter. The gene lacZ encodes for the b-galactosidase;
lacY, for the permease; and lacA, for the transacetylase.
The lac repressor is encoded by lacI, which is immedi-
ately upstream of the operon. Binding of the repressor
to the main operator site O1 prevents transcription. The
repressor can bind to the auxiliary operators, O2 and O3.
There is an activator site, A, where the CAP–cAMP
complex must bind for significant transcription.

Figure 2. Representative states of the binding of the
repressor to (a) one and (b) two operators. Transcription
takes place only in the states (i) and (iii), when Om is
not occupied. The arrows indicate the possible tran-
sitions between states. Note that in a a single unbinding
event is enough for the repressor to completely leave
the neighborhood of the main operator. In b the repressor
can escape from the neighborhood of the main operator
only if it unbinds sequentially both operators. This
sequence of events is highly unlikely for the typical
values of the rate constants.
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the number of ways in which the state can be
realized multiplied by the exponential of minus the
free energy of the state.12–14 From these probabilities,
one can obtain all the equilibrium properties of the
system. In our case, the quantity of interest is the
repression level ROm; which is defined as the ratio
of the maximum transcription rate ðtmaxÞ to the actual
rate ðtactÞ: If transcription takes place when the
repressor is not bound to the main operator, as in
our case, the actual transcription rate is the maxi-
mum rate multiplied by the probability for the main
operator to be free. The main operator is free when
the system is in state (i). Therefore:

ROm ; tmax=tact ¼ tmax=ðtmaxPiÞ

leads to:

ROm ¼
1

Pi
¼ 1 þ

Pii

Pi
¼ 1 þ N e2DGOm ð1Þ

where P is the probability for the system to be in the
state denoted by its subscript, DGOm is the change in
free energy due to the binding of the repressor to
Om (in units of kBT; with kB the Boltzmann constant
and T the absolute temperature) and N is the number
of repressors. The factor N appears in equation (1)
because one out of N repressors can bind to the site;
therefore, there are N possible ways in which the
state can be realized. Notice that we have used the
probability normalization condition ðPi þ Pii ¼ 1Þ:
An interesting aspect of this mathematical

analysis is that it relates the physical (free energy) to
the genetic (repression level) properties of the
system.

There is a subtle but conceptually important
difference with the most common biochemical
approach: we use the number of repressors per
cell instead of concentrations. Thinking in terms of
concentrations is useful for analyzing in vitro
experiments, but concentrations might not be well
defined in a heterogeneous, non-uniform and
crowded environment like the interior of the cell.
Once the repression level and the number of
repressors are known from experiments,9 the only
unknown in equation (1) is the free energy. By
solving the resulting equation for different sets of
parameters, we obtained the in vivo free energies
for the binding of the repressor to O1, O2, and O3

(see Table 1). The free energies obtained in this
way are not just what is usually measured in vitro;
they take into account the non-specific binding of
the repressor and the looping between the main
operator and non-specific DNA (see Appendix II);
i.e. they take into account the context of the cell.

In a similar way, one can compute the repression
level when DNA looping is involved. As before,
the repression level is the inverse of the probability
for the main operator to be free, which takes place

when the system is in states (i) and (iii). Therefore:

ROm ¼
1

Pi þ Piii
¼ 1 þ

Pii þ Piv þ Pv

Pi þ Piii
ð2Þ

In terms of free energies, we obtain:

where DGOa is the free energy of the repressor
bound to the auxiliary operator Oa and DGl is
the contribution of looping to the free energy
(the free energy of state (iv) is given by
DGiv ; DGOm þ DGOa þ DGl).

Once the number of repressors per cell and the
binding free energies for each site are known, DGl

can be obtained directly from equation (3). This
quantity depends on the particular experimental
situation; mostly, on the distance between oper-
ators and on the elastic properties of DNA. It is
expected not to depend on the strength of the
different operators. The experiments described by
Oehler et al.9 measured the repression levels for
the case in which the auxiliary operator located
92 bp upstream was deleted; i.e. only the main
operator and the auxiliary operator located 401 bp
downstream were present. The experiments were
performed for two different numbers of repressors
per cell and, in both cases, for three different
sequences of the main operator (namely, for the
sequences of O1, O2, and O3). The sequence of the
auxiliary operator was always the sequence of O2

(see the legend to Table 1).
Using these experimental data and equation (3),

we calculated DGl for each case (see Table 2). As
free energies for the binding of the repressor to

Table 1. Free energies, DGOm; of the binding of the
repressor to O1, O2, and O3 obtained from equation (1)
with the data from Oehler et al.9 for the repression levels
ðROmÞ of a lac promoter with a single binding site Om

with the sequence of O1, O2, or O3

Om N Repression level9 DGOm kDGOml

O1 50 200 21.38 21.52
900 4700 21.65

O2 50 21 0.92 0.98
900 320 1.04

O3 50 1.3 5.12 4.61
900 16 4.09

The number of repressors N was increased over the wild-type
level (N ¼ 10) to averages of about 50 and 900/cell. kDGOml is
the average free energy for the two different numbers of
repressors per cell. Explicitly: DGOm ¼ 2lnððROm 2 1Þ=NÞ and:
kDGOml ¼ 1=2ðDGOmðN ¼ 50Þ þ DGOmðN ¼ 900ÞÞ: The units of
energy are kBT; with kB the Boltzmann constant and T the
absolute temperature. The different strains from Oehler et al.9

were constructed as follows. Plasmids with the lacZ gene under
the control of the natural lac promoter and the three lac
operators (O1, O2, and O3) were integrated into the chromosome
of a strain lacking the lacZ and lacI genes (BMH 8117 F0). The
operators were either unchanged or altered by site-directed
mutagenesis. The Lac repressor was expressed from a plasmid.9

ROm ¼ 1 þ
N e2DGOm þ N e2ðDGOmþDGOaþDGlÞ þ NðN 2 1Þe2ðDGOmþDGOaÞ

1 þ N e2DGOa
ð3Þ
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O1, O2, and O3 we have used the average values
from Table 1, which were obtained from the
experimental data reported by Oehler et al.9 To
check the consistency of the results, we have
evaluated ROm for a single value of DGl; taken to
be the average kDGll of the six values displayed in
Table 2. The results obtained in this way are in
close agreement with the experimental results, as
shown in Figure 3, which shows that, indeed,
equation (3) properly accounts for the repression
level over the three orders of magnitude of the
experimental data. In general, DGl will depend on
the distance and on the sequence between
operators.13,15 All the experimental data we have
used9 kept these parameters constant, which is
revealed in our approach by the relatively constant
values of DGl that were obtained.

Increase in the local concentration

It is interesting to analyze how previous
explanations of the effect of the auxiliary operators
relate to equation (3). To this end, we need to con-
sider the case in which the auxiliary operator is
sufficiently strong. In mathematical terms, this can
be expressed as N e2DGOa q 1: Under such con-
ditions, equation (3) simplifies to:

ROm ¼ 1 þ ½e2DGl þ ðN 2 1Þ�e2DGOm ð4Þ

where the repression level is as for the single oper-
ator case (equation (1)) but now with an effective
number of repressors per cell given by:

Neff ¼ e2DGl þ ðN 2 1Þ

The effect of the auxiliary operator is thus
analogous to increasing the number of repressors
per cell.

The connection with the increase in the local
concentration16 explanation comes from assuming
that when the repressor is bound to the auxiliary
operator the sole effect of looping is to reduce the
volume in which the repressor can move around
the main operator. This is, of course, a very crude
approximation, which nevertheless is able to
provide some insights. Under this assumption, the
decrease in free energy because of looping is given
by:

DGl ¼ 2ln Vcell

Vloop

where Vcell is the volume of the cell and Vloop is the
volume in which the repressor is allowed to move
once it is bound to the auxiliary site.6,12 The
repression level follows from equation (1) with:

Neff ¼
Vcell

Vloop
þ ðN 2 1Þ

which coincides with the result obtained from the
increase in the local concentration.16 Notice, how-
ever, that in general, repression through looping
extends beyond the concept of local concentration,
as shown by equation (3).

Dynamics and Fluctuations

To study the fluctuations in the numbers of pro-
tein and mRNA molecules, the dynamics has to be
considered explicitly. The new quantities of interest
are the transition probability rates between differ-
ent states. Unfortunately, so far, there is no in vivo
measurement of those rates and the in vitro data
differ strongly from experiment to experiment.17

We estimated the rates as explained in Appendix
I, taking into account as much in vivo information
as possible.

In Figure 4 we show the typical time-courses and
the histograms of the number of molecules pro-
duced from operons regulated with and without
looping. These graphs were obtained from com-
puter simulations using the standard Gillespie

Table 2. Looping contribution to the free energy, DGl; for
a lac promoter with a main operator (with the sequence
of O1, O2, or O3) and an auxiliary operator (with the
sequence of O2) obtained from equation (3) with the
average values of Table 1 (DGO1

¼ kDGO1
l; DGO2

¼
kDGO2

l; and DGO3
¼ kDGO3

l) and the data from Oehler
et al.9

Om 2 Oa N Repression level9 DGl ROm

O1 2 O2 50 2300 26.17 2804
O1 2 O2 900 6800 26.39 6807
O2 2 O2 50 360 26.86 232
O2 2 O2 900 560 26.38 563
O3 2 O2 50 6.8 26.33 7.1
O3 2 O2 900 15 26.22 16

Explicitly: DGl ¼ 2lnðððROm 2 1Þð1 þ Ne2kDGOalÞ2 Ne2kDGOml2
NðN 2 1Þe2ðkDGOmlþkDGOalÞÞ=N e2ðkDGOmlþkDGOalÞÞ: To check the con-
sistency of the results, ROm was computed (equation (3)) for
all the cases considering DGl ¼ kDGll ¼ 26:39; i.e.: ROm ¼ 1 þ
N e2kDGOm lþN e2ðkDGOm lþkDGOa lþkDGl lÞþNðN21Þe2ðkDGOm lþkDGOa lÞ

1þN e2kDGOa l
: The units of

energy and the experimental details from Oehler et al.9 are as in
the legend to Table 1.

Figure 3. Computed repression (see Table 2) as a func-
tion of the observed repression.9 The continuous line is
the identity function.
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algorithm18 (known as the BKL algorithm in the
physical literature19). The basic idea of the
algorithm is to choose randomly (with probabilities
inferred from the rates20) a transition and the time
at which it happens. The state of the system is
updated accordingly and the procedure is repeated
until some final state, or time limit, is reached. (For
more details about the algorithm see Gillespie18 &
Bortz et al.19)

Figure 4a corresponds to regulation with loop-
ing. In principle, there exist simple mechanisms
involving a single operator that would result in
the same repression level. For instance, one could
use a stronger operator with a lower dissociation
rate (by decreasing the off-rate of the repressor),
as shown in Figure 4b, or, alternatively, a repressor
with a higher association rate (by increasing the
on-rate), as shown in Figure 4c. In both cases, the
parameters of the system can be chosen so that the
number of molecules fluctuates around the same
average. Note, however, that the fluctuations
around the average value are very different.

Figure 4 clearly illustrates that mechanisms that
give the same repression level are not necessarily
equivalent. For instance, eliminating the auxiliary
operator and increasing the strength of the main
operator (while keeping the same repression level)
would result in higher fluctuations in mRNA and
protein production. In contrast, increasing repres-
sion by increasing the association rate has basically
the same fluctuations as the original system with
DNA looping.

The reason for these differences is a matter of
time-scales. The rule of thumb is that the faster

the fluctuations (i.e. the shorter their correlation
time), the smaller the effect of the fluctuations is.
The underlying idea is that a greater number of
uncorrelated events per unit of time will result in
a better average at longer time-scales. This can be
seen explicitly, for instance, in linear systems with
correlated Gaussian noise,20 and in certain classes
of non-linear systems.21 Exceptions to this rule can
appear when changes in the correlation time
induce also other effects in the dynamics of the
system. In our case, looping introduces a fast
time-scale: the time for the repressor to be recap-
tured by the main operator before unbinding the
auxiliary operator. If transcription switches slowly
between active and inactive, there are long periods
of time in which proteins are produced constantly
and long periods without any production. There-
fore, the number of molecules fluctuates strongly
between high and low values. In contrast, if the
switching is very fast, the production is in the
form of short and frequent bursts. This lack of
long periods of time with either full or null
production gives a narrower distribution of the
number of molecules.

At a glance, looping and a higher association
rate seem to provide equivalent mechanisms
regarding the repression level and the fluctuations.
There are, however, certain limits for the values
that the rate constants can achieve. The theoretical
limit for diffusion limited reactions22 is about ka .
109 M21 s21: The values inferred from our analysis
and the experimental data on the lac operon (see
Figure 4 and Appendix I) are consistent with
this upper limit. To reduce the fluctuations by

Figure 4. Time series (left) and
histograms (right) of the number of
molecules produced from operons
regulated with and without loop-
ing. When the repressor is not
bound to Om; molecules are
produced randomly at a rate of
6.67 per second and degraded at a
constant rate so that their
characteristic life time is 30 minutes.
a, Regulation through looping with
kOm

¼ kO1
¼ 0:016 s21; kOa

¼ ka ¼
kO1

e2DGO1 ¼ 0:073 s21; kO2
¼ 0:19 �

s21; kO3
¼ 7:33 s21; b ¼ 1; a ¼

b £ e2DGl ¼ 596; and N ¼ 10: b,
Regulation with a single operator for
the value of the repressor–operator
dissociation rate constant, kOm

¼
0:021 £ kO1

¼ 0:00034 0:016 s21; cho-
sen so that the repression level is the
same as in a. The association rate
constant remains unchanged.
c, Same situation as in b but now
with kOm

¼ kO1
¼ 0:016 s21 and ka ¼

ð1=0:021Þ0:073 s21: Note that the
association rate constants ka are per
molecule. If we assume that the

cellular volume is 2 £ 10215 l; we can express these constants in terms of concentrations: ka ¼ 8:8 £ 107 M21 s21 for a and
b and ka ¼ 4:1 £ 1010 M21 s21 for c. This last value of ka is over the limit of diffusion-limited reactions (see the text).
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increasing the association rate constant, the
diffusion limit would have to be surpassed; the
values used in Figure 4c are larger than this limit.
Looping provides the cell with a mechanism to cir-
cumvent the physical constraints of diffusion-lim-
ited reactions. Note that other mechanisms have
been hypothesized for regulatory proteins to locate
their targets at higher rates than those allowed by
the diffusion limit, such as sliding on the DNA
strand.23

Cell-to-Cell Variability

The number of repressors is expected to differ
from cell to cell. An important property is therefore
the dependence of the repression level (equation
(3)) on the number of repressors. In Figure 5a we
illustrate this dependence for both the looping
and the single operator cases.

For a single operator, the repression level is a
linear function of the number of repressors, i.e. a
constant term plus a term proportional to the
number of repressors. The proportionality factor is
the repressor–operator equilibrium binding con-
stant. In the looping case, the repression level is
no longer a linear function of the number of repres-
sors. Therefore, it is not possible to understand the
looping case in terms of a single site with an
increased effective binding constant. Interestingly,
this non-linear dependence of the repression level
decreases the sensitivity of the repression level to
variations in the number of repressors. It is then
possible to attain fairly constant repression levels
even in the presence of marked variable numbers
of regulatory proteins, as Figure 5a illustrates
clearly.

Even more interesting is the possibility to control
the repression level and its variability from cell to
cell. Looping could, in principle, be used to adjust
(over evolutionary time-scales) the levels of pheno-
typic variability: the strength of the main and
auxiliary operators as well as the distance between
them could be chosen so that an optimal cell-to-cell
variability of the repression level is obtained. In
Figure 5b we show an instance of how cell-to-cell
variability could be controlled by looping.

Conclusions

The complexity of the cell contrasts with the
simplicity of the idealized models aimed at its
understanding. In the cell, the numbers of each
molecular component are limited and often
fluctuate strongly, not only in time but also from
cell to cell. In addition, the reactions between com-
ponents cannot happen at arbitrarily high speeds.
The ability to cope with, integrate, and use these
constraints is crucial for the functioning of the cell.
Here, we have studied how these constraints affect
gene regulation. In particular, we have focused on
the role of DNA looping, which seems to exhibit

an unnecessary complexity when compared to
alternative, apparently simpler mechanisms. A
well-established role of DNA looping is to increase
the repression level. In principle, it would be
possible to increase the repression level by just
increasing the strength of the operator or the
affinity of repressor for the operator.

The results of our analysis suggest that DNA
looping, in addition to increasing the repression
level, can confer other relevant properties to gene
regulation systems. (1) Compared to simpler
alternative regulatory mechanisms, DNA looping
is able to reduce the fluctuations in transcription.
(2) The experimental data seem to indicate that

Figure 5. a, Repression level for the looping (con-
tinuous line) and single operator (broken line) cases as a
function of the number of repressors per cell. The con-
tinuous line was obtained from equation (3) with
DGOm ¼ kDGO1

l; DGOa ¼ kDGO2
l; and DGl ¼ kDGll from

Tables 1 and 2. The broken line was obtained from
equation (1) with DGOm ¼ kDGO1

l2 lnð0:021Þ: The term
2lnð0:021Þ was added to obtain the same repression
level as in the looping case for N ¼ 10. This value of N
corresponds to the wild-type average number of repres-
sors per cell. The vertical bars indicate the size of the
fluctuations in the repression level for the looping
(black bar) and single operator (gray bar) cases that
would arise as a result of fluctuations of the size of the
horizontal bar in the number of repressors. b, Cell-to-
cell variability in the repression level as a result of varia-
bility in the number of repressors per cell. The color of
each cell has been selected from equation (4) for a
random N obtained from a Gaussian distribution with
mean 10 and standard deviation 5. White, black, and
gray correspond to high, low, and intermediate repres-
sion levels, respectively. (left panel) No looping, DGOm ¼
2lnð100Þ and DGl ¼ 20: (center panel). Weak looping
contribution, DGOm ¼ 2lnð50Þ and DGl ¼ 2lnð11Þ: (right
panel). Strong looping contribution, DGOm ¼ 0 and
DGl ¼ 2lnð991Þ: The values of the free energies have
been chosen so that the repression level is the same at
N ¼ 10 for all three cases.
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the search of a repressor for its target has reached
the limits that diffusion imposes on reaction rates;
in order for the repressor to find its target faster,
this limit would have to be surpassed. DNA
looping can circumvent this constraint. (3) DNA
looping makes the repression level remain fairly
constant with respect to changes in the number of
repressors.

It is important to realize that noise and fluctu-
ations are ubiquitous at the molecular level. The
cellular function has to be carried out under such
conditions. Regulation systems have evolved to
cope with all the constraints that the intrinsic
molecular nature of the cell imposes. Uncovering
the way in which it is achieved is of fundamental
importance for understanding both naturally
occurring and artificially designed cellular
systems.24,25
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Appendix I. Transition Rates

The transition rates between the different states
are basically the association rate constant, ka;
which gives the rate for the repressor to find an
operator, and the repressor–operator dissociation
rate constants, kOm and kOa: If the repressor is
already bound to one operator, the association rate
constant for the other operator changes by a factor
a to a £ ka: Similarly, the dissociation rate constants
change to b £ kOm and b £ kOa when the repressor
is bound to both operators simultaneously. The fac-
tor b takes into account the energetic contribution
of looping and the factor a, the entropic effects.

The binding of the repressor takes place under
equilibrium conditions, which imposes additional
constraints on the values the biochemical par-
ameters can take. At equilibrium, the probability
per unit of time of going from a given state X to
another state Y is the same as that of going from Y
to X. This fact is known in statistical mechanics as
the principle of detailed balance. In our case, it
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implies that:

akaPii ¼ bkOaPiv ðAI1Þ

akaPiii ¼ bkOmPiv ðAI2Þ

kaNPi ¼ kOmPii ðAI3Þ

kaNPi ¼ kOaPiii ðAI4Þ

which, together with the equilibrium probabilities:

Pii

Pi
¼ N e2DGOm

Piii

Pi
¼ N e2DGOa

Piv

Pi
¼ N e2ðDGOmþDGOaþDGlÞ

Pv

Pi
¼ NðN 2 1Þe2ðDGOmþDGOaÞ

leads to:

a ¼ be2DGl

ka ¼ kOme2DGOm

ka ¼ kOae2DGOa

Therefore, if b (or alternatively a) and one rate con-
stant are known, all the others follow from the free
energies for the different states. So far, there is no
direct measurement of the in vivo values of those
constants. The in vitro data shows a high degree of
variability, as much as 100-fold differences, from
experiment to experiment.A1 As a value of the dis-
sociation rate constant for O1 we have chosen kO1 ¼
0:016 s21; according to experiments that used a
short piece of DNA with just the operator.A2

(Other experiments used long pieces of DNA,
which can induce looping and actually not provide
the dissociation rate constant from a single
operator.A1)

As a value of b, we have assumed b ¼ 1; which
means that the dissociation rate of the repressor
from one operator does not depend on whether it
is also bound to the other operator. This is reason-
able, on the grounds that the two operators are far
apart, beyond the DNA persistence length. If
DNA elastic, torsional, and repulsive effects are
relevant and dominate over the attractive ones,
one would have b . 1: On the other hand, if
attractive effects dominate, one would have b , 1:
Irrespective of the particular value of b, looping
would reduce the transcriptional noise provided
that a . 1: In general, a bigger b implies a bigger a
and, therefore, a more pronounced reduction of
the transcriptional noise.

With the values of b and kO1
; the principle of

detailed balance, and the data from Tables 1 and 2

of the main text, we can infer the values of all the
other constants.

Appendix II. Non-specific Binding and
DNA Looping

One issue that arises when choosing the states of
the system is the level of detail one should con-
sider. For instance, in the binding of the repressor
to a single operator, we considered that there are
only two states (see Figure 2a of the main text).
The repressor is either bound (state (ii)) or not
bound (state (i)) to the operator. In fact, because of
non-specific binding, the state (ii) can be con-
sidered as composed of several sub-states. In such
a state, one binding domain of the repressor is
always bound to the operator but the other domain
can be either free or bound to non-specific DNA
forming a DNA loop.

We label the sub-state without non-specific DNA
looping by (ii,0), and the sub-states with it, by (ii,k).
Here, k is an index ranging from 1 to n, with n
being the number of possible non-specific DNA
binding sites. Then, proceeding as for equation (1)
of the main text, the repression level is given by:

ROm ¼ 1 þ

Pii;0 þ
Xk¼n

k¼1

Pii;k

Pi
ðAII1Þ

which, expressed in terms of free energies, leads to:

ROm ¼ 1 þ N e2D ~GOm þ N
Xk¼n

k¼1

� e2ðD ~GOmþD ~GOk
þD ~Glk

Þ ðAII2Þ

where, D ~GOm is the change in free energy when
one domain of the repressor binds to the operator
while the other domain is free; D ~GOk

is the same
as D ~GOm but referred to the binding to non-specific
DNA at the site labeled by k; and D ~Glk is the corre-
sponding looping contribution.

The key idea in the simplification process is
noticing that the repression level can be rewritten
as:

ROm ¼ 1 þ N e2DGOm ðAII3Þ

with:

DGOm ¼ D ~GOm þ ln 1 þ
Xk¼n

k¼1

e2ðD ~GOk
þD ~Glk

Þ

 !
ðAII4Þ

This result coincides with that of equation (1) of the
main text. Therefore, the two-state description of
Figure 2a of the main text is equivalent to the
more involved description that considers non-
specific DNA looping. The advantage of using the
simple over the complex description is that, in our
case, the relevant parameters are not D ~GOm; D ~GOk

;
and D ~Glk

ð0 , k # nÞ; but their combination into a
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single effective free energy DGOm; which can be
inferred from physiological experiments that
measure the repression level.
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