Optics primer

Cleaning optics

Geometric optics

Aberrations

Fourier optics

Modern microscopy in Aph162 lab

Cleaning optics

• Don't clean optics... but if its dirty

Bare optics: 1)Blow off dust (not with organics) 2)Drag and drop * Make sure solvent is good for coatings * don't clean bare meta

- * don't clean bare metal surfaces with tissues
- * Don't contaminate lens tissue

Cleaning optics

- Objectives
 - -1) roll up lens tissue
 - -2) blot off excess oil
 - 3) roll up lens tissue and apply solvent; shake off excess
 - -4) wipe center outward and discard.

Geometric optics

Image is real

Image is virtual

Magnification

Paraxial approximation

For small ψ , $\cos\psi \approx \psi$ and $\sin\psi \approx \psi$ so $l_o \approx s_o$ and $l_i \approx s_i$

$$\longrightarrow \quad \frac{n_1}{s_o} + \frac{n_2}{s_i} = \frac{1}{R} \left(n_2 - n_1 \right)$$

Gaussian lens formula

Geometric optics

Image is real

Image is virtual

Higher approximation (primary abberrations)

Longitudinal and Transverse Spherical Aberration

Fixes: Actually, this lens >Apertures is backwards... >1 surface (PCX→BCX) >aspherics >doublets

Aberrations

Off-Axis Comatic Aberration Zone 1 Zone 1 Zone 2 Zone 2 Zone 3 Zone 3 Zone 4 Zone 4 B Optical Axis ens Figure 1 Coma Blur Airy Diffraction Tangential (Meridional) Focal Plane Pattern Astigmatism Aberration Airy Diffraction Sagittal Optical Focal Axis Plane Pattern Circle of Least Confusion Airy Diffraction Pattern Objective Figure 2

Object Point

Coma

astigmatism

Aberrations

• Field curvature

• Distortions

(a) Edges in Focus

(b) Entire Viewfield in Focus

(c) Center in Focus Figure 2

Aberrations

• Chromatic aberration

Axial Chromatic Aberration

Fourier Optics

 $u(r,t) = \operatorname{Re}[A(r)\exp(-i2\pi v t + i\phi(r))]$

satisfies

Fourier Optics

For visible light, and 1 inch aperture, z is 1600 meters!

Note: spherical waves passing through an aperture is diffraction.

FT of a circular aperture is an Airy pattern – how we define optical resolution – width of central lobe

$$d = 1.22 \frac{\lambda z}{w} \longrightarrow \frac{\lambda}{2NA}$$
 Rayleigh criterion

Fourier Optics

So, light diffracts off an object – and we collect it with a lens. What's going on? – The lens moves the far-field diffraction pattern closer.

Amplitude function behind a lens is:

$$U(x, y) = \iint T(\xi, \eta) e^{-\frac{i2\pi}{f\lambda}(x\xi + y\eta)} d\xi d\eta$$

Thus, a lens computes the Fraunhofer diffraction pattern.

PSF is the Green's function for an optical system.

OTF is its Fourier Transform, characterizes a systems frequency response.

Microscopy (this lab)

- Brightfield
- Darkfield
- Phase contrast
- TIRF
- Optical tweezers
- Fluorescence (epi-illumination)

We can understand from this how to align the only movable element, the condenser for Kohler illumination.

$$R = \frac{1.22\lambda}{NA_{obj} + NA_{con}}$$

Darkfield

Cardioid Darkfield Condenser

The condenser blocks out the 0th order light, only allowing higher orders to pass, enhancing contrast.

Phase contrast

TIRF

Total Internal Reflection Fluorescence

Need high NA to achieve high enough intensity to trap stuff

Fluorescence

Fluorescence is an electronic state relaxation phenomenom -Photobleaching -FRAP -FRET

-High resolution localization

Fluorescence

So... how do we align the arc lamp of a fluorescence microscope?

Fluorescence Filter Cube (Block) and Associated Spectra Emission to Detector Rack 100 Mounting Excitation Retainer Flange 80 Emission Transmission (0 0 0 0 0 (Barrier) Emission Filter Dichromatic Mirror Dichromatic Mirror Filter Light' From Block Illuminator Filter Set 400 500 600 700 800 Excitation ID Code Retainer Wavelength (nm) Filter Figure 7