Optics primer

Cleaning optics
Geometric optics
Aberrations
Fourier optics

Modern microscopy in Aphl162 lab



Cleaning optics

 Don’t clean optics... but if its dirt

Bare optics:

1)Blow off dust
(not with organics)

2)Drag and drop

* Make sure solvent
IS good for coatings

* don’t clean bare metal
surfaces with tissues

* Don’t contaminate lens tissue



Cleaning optics

e ODbjectives
— 1) roll up lens tissue
— 2) blot off excess oll

— 3) roll up lens tissue and apply solvent; shake
off excess

— 4) wipe center outward and discard.



Geometric optics

Image is real Image is virtual



Magnification

f1 f2
M = f1/f2

f1
M = f1/f2



Paraxial approximation




Thin lens eaquation
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Geometric optics

Image is real Image is virtual



Higher approximation (primary abberrations)
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Actually, this lens

Fixes: _
>Apertures IS backwards...
>1 surface (PCX->BCX)

>aspherics

>doublets



e Coma

e astigmatism

Aberrations
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Aberrations

e Fleld curvature

Curvature of Field

e Distortions

{c) Center in Focus
Figure 2



Aberrations

e Chromatic aberration

Substage Condenser
Chromatic Aberration

Figure 1
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Fourier Optics

u(r,t) = Re[A(r)exp(—12avt +1¢(r))]
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Fourier Optics

1) Outgoing waves only (Sommerfeld radiation condition)
2) Field through opening not influenced by aperture
3) Over opaque screen, field is zero

4) ->Aperture dimensions >> A (neglect fringing)
5) Aperture to observation is far compared to wavelength

1

|kr01

U (O) IJU (]_) —COS &ds (Huygens-Fresnel principle)

01 0 is angle between observation and
normal to aperture
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l Good to distances very close to aperture

U, y) = [[UEmen




Fourier Optics
k(§2+772)
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U(x,y) < [[U(&m)e dédry

For visible light, and 1 inch aperture, z is 1600 meters!

Z>> Fraunhofer Approximation

—f7”(x§+yn)

Note: spherical waves passing through an aperture is diffraction.

FT of a circular aperture is an Airy pattern — how we define
optical resolution — width of central lobe

Az A
d=1.22 - > SNA Rayleigh criterion




Fourier Optics

So, light diffracts off an object — and we collect it with a lens.
What's going on? — The lens moves the far-field diffraction
pattern closer.

Amplitude function behind a lens is:

i2x
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Thus, a lens computes the Fraunhofer diffraction pattern.



\\\\\\\ (\ An image is always imperfect since a

lens with a finite diameter captures
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘!A-,? ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ limited frequency information

PSF is the Green’s function for an optical system.
OTF is its Fourier Transform, characterizes a systems frequency response.



Microscopy (this lab)

Brightfield

Darkfield

Phase contrast

TIRF

Optical tweezers
Fluorescence (epi-illumination)



Brightfield light path
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Darkfield

Abbe Darkfield Condenser
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Phase contrast
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Total Internal Reflection Fluorescence
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Optical tweezers

F ocng E?

Need high NA to achieve high enough intensity to trap stuff



Fluorescence

Jablonski Energy Diagram
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Fluorescence is an electronic
state relaxation phenomenom
-Photobleaching

-FRAP

-FRET

-High resolution localization



Fluorescence
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