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To turn in

A commented m-file containing all of your written MATLAB code
A contrast adjusted image of a graticule
A 3-color image of a prepared slide
A plot of the photobleaching measurement

Introduction

In this set of notes, we will explore the image analysis capabilities of MATLAB, with an emphasis on
analyzing images taken from biological experiments. Before continuing, lets ask a simple question: why
image analysis? One can list a number of objections to this approach. The initial investment in hardware and
software can be costly, and one can argue that the time spent writing and refining scripts is time that might
be better spent looking at images by hand. Some features might be readily identifiable by eye, but difficult to
identify by machine. On the other hand, there are very tangible benefits to image analysis, such as removing
any bias present when it is done by hand and the gaining greater quantify experimental outcomes.   I would
argue that the biggest advantage is time. Automating image analysis can greatly reduce the amount of time
required to process data. To see this, lets look at a quick case study. Below is a movie of a DNA strand
being ejected by lambda phage, a virus that infects E. coli cells. In these images, we (myself and my
colleague David Wu) observed the ejection by stained the DNA with the organic dye SYBR gold and
imaging with fluorescence microscopy.

Figure 1: Montage of a DNA strand.

In our case, we were interested in finding the length of the DNA strand as a function of time. There are two
ways we can extract this - either measuring the length in each frame by hand, or write a MATLAB script
that will identify which pixels of the image belong to the DNA strand tell us the length. Lets estimate how
long it would take to analyze this data by hand. It takes roughly 5 seconds to extract the length from a frame
by hand, and there are about 500 frames in a typical movie. Lets say that we want to look at ejections in 5
different buffer conditions and for each condition, we want about 20 ejection events. Looking at this data by
hand would take us roughly

5x500x5x20 = 250,000 seconds = 70 hours

That's 70 hours! If one (namely me) were to do nothing but select two points on a frame for 10 hours a day,
it would take a whole week to get anything useful out of this data. Further, there is a cost to running
additional experiments if we learn something interesting. The marginal cost of analyzing another condition is
14 hours, and thats on top of the time it takes to actually run the experiment. This estimate gets much worse
it we want to look at a different metric, like the total intensity of the stained DNA. Alternatively, a set of
MATLAB scripts was able to analyze this data set in roughly 15-30 minutes per condition, a savings of an
order of magnitude or two in time.



In this instance, it was preferable to automate your image analysis. MATLAB is a powerful tool for image
analysis, as it has a number of implemented algorithms that makes writing analysis code much simpler. The
purpose of this set of notes is to serve as a simple guide to the basics of image analysis in MATLAB. In the
next section, we will cover how to open images and cover some basic considerations for memory
management. Then we will go over tools for viewing and manipulating images. Finally, we will give a brief
exercise in segmentation where you will measure the amount of fluorescence in individual E. coli cells.

Opening image files

Lets start by learning how to open and view image files. In this tutorial, we will use some images that were
acquired during the microscopy session on Monday. A copy of the images taken by your TAs are also
available on Snowdome folder http://snowdome.caltech.edu/aph162/Dave/bootcamp2009.zip. First, lets direct
MATLAB to the directory with your image files. In my case, the files are stored in
F:\bootcamp2009\Bootcamp; this will likely be different for you. At the MATLAB prompt, we can store the
location of this directory in a variable by typing

>> direc = 'F:\bootcamp2009\Bootcamp'

at the MATLAB prompt. Alternatively, you can type in the directory where you have stored your files from
the microscopy session. Here the ' ' symbols denote that I am saving a string to the variable "direc." We can
then move to this directory by typing

>> cd(direc)

Alternatively, we can skip storing the directory name as a variable and type

>> cd F:\bootcamp2009\Bootcamp

to view the directory contents in the MATLAB window. A third way to change the current directory is by
typing F:\bootcamp2009\Bootcamp into the current directory window at the top of the screen. Once this is
the active directory, we can view its contents by typing

>> dir

or

>> ls

In my case, the output is

>> ls
.                                      
..                                     
Graticule_WARD_94W_9910_1micron_10X_0  
bovine_pulmonary_artery_cells_0        
photobleaching_250ms_0                 
timelapse_EcoligrowthonLB_0   

Notice that because the images were taken with Multi-D acquisition in micro-manager, each has its own
folder.

http://snowdome.caltech.edu/aph162/Dave/bootcamp2009.zip


folder.

Lets open the image of the 1 micron graticules. The function that we will use to open the images is imread.
To learn more about imread, type

>> help imread

into the MATLAB prompt. We can do this with any MATLAB function to gain information on how it can
be used. We can also access help information by selecting "Product Help" under the help menu. The upshot
of the help file is that we need to send a string with the file name to imread - micromanager only saves
images with the tif format, so we don't need to worry about the second input. There are a couple ways we
can send the image name to imread. The simplest is to simply move to the directory by typing

>> cd  Graticule_WARD_94W_9910_1micron_10X_0
>> im = imread('img_000000000_Brightfield_000.tif');  

The semicolon is placed at the end of the last line to suppress output - otherwise we would see the value of
every pixel displayed onscreen. The downside of this approach is that we have to move directories, and we
need to know the name of the files ahead of time. This is especially inconvenient if we want to automate our
analysis later. Another approach is to use the "dir" command to extract the name of the files. By typing

>> cd F:\bootcamp2009\Bootcamp
>> direc_contents = dir
direc_contents = 
6x1 struct array with fields:
    name
    date
    bytes
    isdir
    datenum

we can obtain the contents of the directory in a structure we name "direc_contents". We see that there are 6
elements in this structure, each one having 5 fields. To look at the names of the directory contents, type

>> direc_contents(1).name
ans =
.
>> direc_contents(2).name
ans =
..
>> direc_contents(3).name
ans =
Graticule_WARD_94W_9910_1micron_10X_0

An important observation is that the first two elements are simply "." and ".."; this is often the case for the
"dir" command. Now we can make use of the "dir" command to determine the name of the image graticule
image by typing

>> direc_name = direc_contents(3).name;
>> direc_contents_2  =  dir(strcat(direc_name,'/*.tif'));



>> file_name = direc_contents_2.name;

The first command saved the name of the directory in the variable "direc_name". The second command told
MATLAB to look in that directory for all files ending in ".tif". Note that in this line, we made use of strcat -
this function simply joins two strings together. In this case, its output is the string
'Graticule_WARD_94W_9910_1micron_10X_0/*.tif', exactly what we need to input into

"dir" so that it only searches for tif files. The third function saved the name of that file in the variable
"file_name". With these variables, we can assemble the complete file name with the command

>> graticule_name = strcat(direc,'\',direc_name,'\',file_name)

We can also use the function fullfile

>> graticule_name = fullfile(direc,direc_name,file_name)

Now lets load the image of the graticule by typing

>> im = imread(graticule_name);

In MATLAB, images are stored in 2 dimensional matrices - to get some information about this image in
MATLAB, type

>> whos im
Name         Size                Bytes  Class     Attributes

  im        1040x1392            2895360          uint16    

We see that the image is stored is in a 1040x1392 matrix, takes up about 3 MB in memory, and is of type
"uint16". What does this mean?

Before continuing, lets take a moment to look at some data classes we will run into when analyzing images
with MATLAB. There are 4 data types that are common

uint16: This stands for unsigned 16 bit integers. They range from [0 65535] and are generally used in
images acquired by a CCD camera. Each pixel that contains a uint16 number takes up 16 bits, or 2
bytes, in memory. Converting to uint16 is accomplished by using the "im2uint16" function.
uint8: This stands for unsigned 8 bit integers. They range from [0 255] and are generally used in
images acquired by a standard digital camera. Each pixel that contains a uint8 number takes up 8 bits,
or 1 byte. Converting to uint8 is accomplished by using the "im2uint8" function.
double: This is MATLAB's floating point number. Its range is [10^-308 10^308], and usually arises
when you convert a raw image that is uint16 or uint8 into a matrix with floating point numbers. Any
operation that uses a decimal point will only accept double numbers as inputs. Each pixel that contains
a double number will take up 8 bytes. Converting to double is accomplished by using the "double"
function. One can also use "mat2gray", which converts images to type double and also normalizes
their value range to [0 1].
logical: These are binary matrices - each element has a value of only 1 or 0. These usually appear
during segmentation when we want to isolate a particular piece of an image. Each pixel that contains a
logical number will take up 1 bit, or .125 bytes. Converting to logical is accomplished by performing
any logical operation (such as im < 20) or by using the "logical" function.

These numbers are important to keep in mind, because memory management is a large part of constructing
an efficient image analysis routine. Consider the example of the time lapse of E. coli we took during the
microscopy session. Each image, if stored as a uint16 array, takes up 3 MB. If we wanted to do floating point



microscopy session. Each image, if stored as a uint16 array, takes up 3 MB. If we wanted to do floating point
operations, we would need to store each image as a double, so each image would now require 12 MB. If we
were taking images every 5 minutes for 4 hours, this would give us 48 images - loading them all at once
would take 576 MB - a significant portion of our available memory. More complicated exercises might
involve a longer movie, multiple channels, or intermediate images that we create during processing. As you
can see, it can become quite easy to exhaust the available memory. A good rule that helps us avoid memory
limitations is to keep as few images in memory as possible. Two ways to accomplish this are to design
programs that only analyze one image at a time and to save images to disk rather than keep them in memory.

Viewing images

Lets view the image of the graticule with imshow.

>> imshow(im)

What we see is not what we want - the image is completely black! We get this output because "imshow" has
0 set to black and 1 set to white by default. We can change the display range to fit the range of our image by
typing

>> imshow(im, [])

This gives us the following image.

By inputting "[ ]" into "imshow", we've told the function that we want the minimum pixel value to represent
black and the maximum pixel value to represent white. We can set the black and white levels manually by
typing

>>imshow(im, [low high])

where low and high are the pixel values representing black and white. An alternative method to change the
black and white levels is to scale the picture. By typing

>> im_gray = mat2gray(im);



we can create a new image that has been normalized to the pixel range [0 1]. Viewing "im_gray" with
"imshow" won't have the same problem as viewing "im."

Sometimes, to observe features more clearly, we will need to adjust the contrast of an image. Contrast
adjustment refers to a mapping from one set of pixel values to another. Examples of this mapping are shown
below.

Figure 2: Examples of a transfer functions to adjust contrast
A typical transfer function is the gamma transfer function, which is given by

For low powers of gamma, contrast between dim objects in increased. For high powers of gamma, the
contrast between bright objects is increased. We can perform contrast adjustment in MATLAB on our image
of the graticule by typing

>> im_adj = imadjust(im_gray,[0 1],[0 1],0.5);

Here, we are setting the input and output lows and highs to be 0 and 1 respectively - gamma has been set to
0.5. The following image is the output of this command.

Try toying around with different values of gamma to see the effect on the image. MATLAB can also



Try toying around with different values of gamma to see the effect on the image. MATLAB can also
perform contrast adjustment automatically. By typing

>> im_adj = imadjust(im_gray);

MATLAB selects a value of gamma so that 1% of the pixels have the minimum value and 1% of the pixels
have the maximum value.

With contrast adjustment under our belt, we can make use of it to pretty up some of the images we took
earlier. In this next part, we will look at fluorescent images of bovine pulmonary artery cells. The difference
with this image set is that now we have 4 different channels - brightfield, DAPI, FITC, and TRITC. As an
exercise, lets load these images, perform contrast adjustment in each channel, and then assemble it into a
color image.

To load the images, we first go to the directory, identify the image files, and load them with imread. The
following MATLAB commands accomplish this

>> direc = 'F:\bootcamp2009\Bootcamp
\bovine_pulmonary_artery_cells_0';
>> bright_content = dir(strcat(direc,'/*Bright*'));
>> bright_name = bright_content.name;

>> DAPI_content = dir(strcat(direc,'/*DAPI*'));
>> DAPI_name = DAPI_content.name;

>> FITC_content = dir(strcat(direc,'/*FITC*'));
>> FITC_name = FITC_content.name;

>> TRITC_content = dir(strcat(direc,'/*TRITC*'));
>> TRITC_name = TRITC_content.name;

>> bright_path = fullfile(direc,bright_name);
>> DAPI_path = fullfile(direc,DAPI_name);
>> FITC_path = fullfile(direc,FITC_name);
>> TRITC_path = fullfile(direc,TRITC_name);

>> im_bright = imread(bright_path);
>> im_DAPI = imread(DAPI_path);
>> im_FITC = imread(FITC_path);
>> im_TRITC = imread(TRITC_path);

With these commands, all four images have been loaded into memory. Take a moment and look at what each
image looks like with "imshow". Next, we can convert these images to grayscale using mat2gray, and
automatically adjust the contrast with imadjust.

>> im_bright_adj = imadjust(mat2gray(im_bright));
>> im_DAPI_adj = imadjust(mat2gray(im_DAPI));
>> im_FITC_adj = imadjust(mat2gray(im_FITC));
>> im_TRITC_adj = imadjust(mat2gray(im_TRITC));

Take and moment and look at some of these pictures using imshow - for instance the FITC channel (which is



Take and moment and look at some of these pictures using imshow - for instance the FITC channel (which is
the stain for the cytoskeleton in my image set) is shown below.

It would be useful if we could look at all three channels at once - we can do this with MATLAB by creating
a color image and setting each channel to represent a different color. The way color images are created in
MATLAB is schematized below.

Every intensity image in MATLAB is stored as a matrix, with the first dimension being the rows of the
matrix and the second dimension being the columns of the matrix. Color is included by using a 3rd
dimension. This dimension is 3 layers thick, with each layer used to represent a different color. MATLAB
uses the Red/Green/Blue convention for color; the first element stores the red channel, the second element
stores the green channel, and the third element stores the blue channel. To generate a color image, we need
to create this 3 dimensional matrix - for the images I've taken this matrix will have dimensions of
1040x1392x3. We create this matrix using the "cat" command, which concatenates matrices. By typing

>> three_channels = cat(3,im_FITC_adj,im_TRITC_adj,im_DAPI_adj);



into the MATLAB prompt, we can do exactly this. Looking at "three_channels" with "imshow" gives the
following image.

Manipulating images: Arithmetic and digital filters

At this point, we've familiarized ourselves with loading and viewing images with MATLAB. Now, lets try
our hand at manipulating images. Because the images are stored as matrices, we can apply a number of
mathematical operations - some of these include addition, subtraction, multiplication, division, and various
kinds of digital filters. In this next section, we will look at a couple applications of the arithmetic operations.

Recall for the fluorescent image, we actually had four channels - the DAPI/FITC/TRITC that we viewed and
bright field. Lets say we wanted to overlay the bright field image in white over the three color image we
generated. We can accomplish this by adding the bright field image to all the other channels. When dealing
with color images, adding a white color to a pixel means adding the same pixel value to each color channel.
The MATLAB command

>> three_channels_new = cat(3,im_FITC_adj+im_bright_adj/3,im_TRITC_adj
...
+im_bright_adj/3,im_DAPI_adj+im_bright_adj/3);

gives rise to the following image.



Notice how the bright field image was divided by 3 before it was added to each channel. This was done to
keep the bright field channel from flooding out all the other channels.

Another useful arithmetic operation is multiplication. Multiplication is frequently used to isolate portions of
an image for analysis. This is typically done by creating a matrix called a mask, a matrix that consists of 1's
in the pixels of interest and 0's everywhere else. Lets say we wanted to isolate the upper left corner of our
our FITC channel. We can do that by creating a matrix of zeros the same size as the image and setting the
pixels in the upper left corner to 1. This is accomplished by typing

>> mask = zeros(size(im_FITC_adj));
>> mask(1:1040/2,1:1392/2) = 1;
>> im_FITC_ul = im_FITC_adj.*mask;

The mask looks like



and its product with our image looks like

Masks are often employed to isolate particular features of images. This kind of problem is typically called a
segmentation problem, which is the partitioning of an image into regions to identify objects and features.
The identification of DNA strands can be considered to be a segmentation problem. In the following section,
we will run into another segmentation problem when we will attempt to identify E. coli in a field of view. 

Lets look at a simple segmentation problem to get our teeth wet. Lets say that we wanted to isolate the
pixels in the bright field channel that belonged to the nuclei of each cell. How would we do this? One
method would be to take advantage of the different fluorescent images we have at our disposal. One of the
stains used in my images was DAPI, a DNA staining die that stains the nuclei of cells. This is almost exactly
what we need - the die will identify which pixels belongs to the nuclei! All we need is a method of
converting our fluorescent image into a binary image that has value 1 inside the nuclei and value 0
everywhere else. A simple method of doing this is thresholding. Thresholding converts an intensity image to
a binary image by setting all pixels above a certain value to 1 and all images below a certain value to 0. For
instance, lets set our threshold to 0.2. We can convert our image to binary by using the command "im2bw".
Type 

>> im_DAPI_bw = im2bw(im_DAPI_adj,0.2);

into the MATLAB prompt and use "imshow" to see what the output is. An alternative method to threshold is
to use logical operations. A logical operation will assay each pixel and return 1 in that pixel if the logical
statement is true and 0 if it is false. For instance, the MATLAB command

>> im_DAPI_bw = im_DAPI_adj>0.2;

will return the same matrix as the "im2bw" operation. Both commands will output images of type logical.

The key to getting thresholding to work is finding the right threshold value to use. We can pick one by hand
until the black and white image suits our liking, or we can have MATLAB pick one automatically. The
function "graythresh" will automatically pick a threshold for our image. This function works by separating
the pixels into two classes - those above the chosen threshold level and those below. It then selects a
threshold level so that the variance of the pixels values within each class are minimized. We can use this



threshold level so that the variance of the pixels values within each class are minimized. We can use this
function and then threshold our image by typing

>> th = graythresh(im_DAPI_adj);
>> im_DAPI_bw = im2bw(im_DAPI_adj,th);

This gives us a pretty good mask for our image. 

There are some very small regions that were above the threshold value that are much too small to be nuclei.
How would you get rid of them? As the last step, we can multiply our mask with the bright field image to
solve or miniature segmentation problem.

The final manipulations we are going to learn about in this tutorial are digital filters. A schematic of how a
filter works is shown below.



Essentially, a digital filter works by replacing each pixel with a linear combination of pixels in a small
neighborhood of that pixel. This neighborhood is typically called a window, and the filter defines the weights
for each element of this neighborhood. This process is schematized above. In the example image, every pixel
has value 1. When the filter is applied to the highlighted pixel, each weight is multiplied with its
corresponding pixel value. The products are summed to produce the output, in this case, 45. This example
just shows the action of the filter on one pixel; in practice, the filter is applied to every pixel in the image to
generate the output. 

One problem with applying the filter to every pixel are the edges. Say for instance we wanted to apply the
filter to the bottom left hand pixel in the above example. The weights 1,4,7,8, and 9 would have no pixel to
multiply. This is usually solved by specifying the boundary conditions - i.e specifying values for the
imaginary pixels outside of the image that the filter has to multiply. A very common boundary condition is
zero-padding, where the imaginary pixels are set to 0. Other boundary conditions include mirror boundary
conditions (the imaginary pixels are a reflection of the original image) or reflexive (the imaginary pixels take
on the value of the closest pixel in the image). 

Filters have a variety of uses in image analysis. We can use Gaussian and median filters to remove noise that
is present in our images. Gradient filters are useful for edge finding techniques. As an example, lets use
filters to clean up the bright field picture of E. coli cells we took during the photobleaching measurement.
First, we load one of the bright field images in MATLAB.

>> direc = 'F:\bootcamp2009\Bootcamp\photobleaching_250ms_0';
>> file_names = dir(strcat(direc,'\*Bright*.tif'));
>> file_path = fullfile(direc,file_names(1).name);
>> ecoli_bf = imread(file_path);

Next, we convert the uint16 image into a normalized double image using "mat2gray" and perform a contrast
adjustment using "imadjust".

>> ecoli_adj = imadjust(mat2gray(ecoli_bf));

For my data set, this gives the following image.



We can use filters to remove some of the noise in the image. The first filter we can use to clean up the image
is a mean filter. The filter for a 3 X 3 mean filter is 

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Note that the sum of all the entries for the mean filter is 1. This is generally true for all smoothing filters. We
can apply this filter using the function "imfilter". First, we create the a matrix for the filter, then we apply it
to our image. This is accomplished using the following MATLAB commands.

>> mean_filt = ones(3)/9;
>> ecoli_mean = imfilter(ecoli_adj,mean_filt);

You can view the result using "imshow". Another smoothing filter is the Gaussian filter. The Gaussian filter
removes noise by convolving the image with a gaussian of a given shape and standard deviation. We can
create a Gaussian filter using the "fspecial" MATLAB command. "fspecial" is a library of filters that you can
access for image and signal processing. We can use this function call up and apply the Gaussian filter.

>> gauss_filt = fspecial('gaussian');
>> ecoli_gauss = imfilter(ecoli_adj,gauss_filt);

Note that by not supplying additional inputs to "fspecial", we are using the default setting of a 3 X 3 filter
window and standard deviation for the gaussian of 0.5. The last smoothing filter that is at our command is
the median filter. This filter is functions differently than most filters, because the output for an individual
pixel is no longer a linear combination of the pixels in some surrounding neighborhood. Rather, this filter
replaces each pixel with the median pixel value in a specified neighborhood. We can apply the median filter
to our image using the "medfilt2" command. 

>> imshow(ecoli_med)



The median filter is especially good at dealing with spiky data, which can arise if you have dead pixels on
your CCD camera.

Segmentation exercise: Measuring fluorescence in bacteria

Now we are ready to use some of the tools we learned about to make quantitative measurements of YFP
photobleaching in E. coli. The outline of what we want to do is straightforward. We need to

Open a brightfield image
Adjust the contrast and remove the noise
Identify the E. coli cells and create a mask
Open each FITC image and use the mask to measure the fluorescence in each cell.
Plot the fluorescence as a function of time for each cell

As we go through these 5 steps, one thing to keep in mind is that writing scripts to do image analysis
involves a lot of trial and error. We will try a number of different ideas, and hopefully one of them will
produce the result that we want. Another thing to keep in mind is that a method developed for one set of
images won't necessarily work for another. Getting this segmentation algorithm to work on the data you
collected yourself might require some tweaking. 

We have covered how to do the first two steps in the earlier sections. This is accomplished with the
following MATLAB commands.

>> direc = 'F:\bootcamp2009\Bootcamp\photobleaching_250ms_0';
>> bf_names = dir(strcat(direc,'\*Bright*.tif'));
>> bf_path = fullfile(direc,file_names(1).name);
>> ecoli_bf = imread(file_path);
>> ecoli_adj = imadjust(mat2gray(ecoli_bf));
>> ecoli_med = medfilt2(ecoli_adj);

Take a look at the image using imshow. At this point, we need to find a way to discern a way to pick out the
E. coli cells. We learned about thresholding earlier, so lets give that a try. The MATLAB commands

>> th = graythresh(ecoli_med);
>> ecoli_bw = im2bw(ecoli_med,th);

produce the following image.



It looks like using MATLAB to automatically pick our threshold level is not a good method to generate a
mask. It is easy to see the cells in the black and white image, but a good portion of the background has also
been labeled as a cell (in this instance, the black pixels, ie the ones with value 0, are the ones that are the
cells ... this is the opposite of what we want in a mask, but we can always invert the mask later). We have
two choices - either attempt to refine the mask or find a new way to make generate one. Before we choose,
lets get a better sense of what the pixel values are for our image. We can use a very useful function called
"imtool" to examine our image.

>> imtool(ecoli_med)

This opens a window showing the image and also gives us additional tools at our disposal. For instance, we
can look at a histogram of intensities using the "Adjust contrast" button at the top or measure distances using
the "Measure distance" button. All of these tools are for another time. What is of immediate interest is the
"Pixel Info" that is located at the bottom left of the screen. With this tool, we can find out the value of a
pixel by moving our mouse pointer to that location. A cursory glance gives us a clue why MATLAB didn't
succeed at finding the right threshold. For this image, the background is non-uniform. Further, the cells in
the image take up a very small part of the screen. These two factors probably threw off MATLAB's
algorithm.

By pointing our cursor over the E. coli cells we can make another observation. In this image, it appears that
the pixels in the cells have a value of 0. This suggests 0 as our threshold - because our image doesn't have
negative pixels, we can create our mask by looking for pixels with value 0. This is accomplished by the
logical operation

>> ecoli_seg_1 = (ecoli_med == 0);

This operation produces the following picture.



This is much better, but still not good enough. There are a number of pixels that were assigned as cells
because of noise. Also, in the upper right quadrant of the image, there were a number of particles that are too
misshapen or small to be E. coli. The identity of these particles is unclear - it's possible that it is just dust that
was on the agar pad or coverslip. Regardless, we want them removed from our mask. How can we go about
this. Image analysis allows plenty of room for creativity. One way to remove them would be to rely on the
observation that the actual cells are usually surrounded by a halo, that is a region of pixels with high
intensity value. If we could segment out the location of the halos, we could use them as another layer of
segmentation. Anything that would go in our final mask would have to be both identified by the initial
thresholding and be near a halo. Implementing this would be fun, but is beyond the scope of this tutorial. An
alternative method is to threshold based on area. All of the unwanted regions have one thing in common -
they are too small. All we have to do is measure the area of each white region in our mask, identify which
ones are too small, and then set their pixel values to 0. Because it is easier, we will attempt the latter method.

To measure the areas of the white regions, we will make use of the functions "bwlabel" and "regionprops".
"bwlabel" does what its name suggests - it labels the white regions in black and white images. In the output
image, the pixel values for each white region have been multiplied by a label number. For example, the
pixels in the 14'th region would all have value 14. The output of "bwlabel" is usually called a label matrix.

The label matrix that we generate can then be fed into the function "regionprops". What "regionprops" does
is extract pieces of information about each of the labeled regions and return it in a structure. If I wanted to
find the area of each region, the perimeter, or perhaps the ellipicity, this would be the function to use. Take a
look at the help file to see the different kinds of queries we can make about the labeled regions. In our case,
we want two things, 'FilledArea' and 'PixelIdxList'. The former will tell us how big each region is, while the
latter will tell us where its located. We can generate the label matrix and extract these properties with the
following commands.

>> L = bwlabel(ecoli_seg_1);
>> stats = regionprops(L,'FilledArea','PixelIdxList');

The tricky part about "regionprops" is that it returns a structural array. Because of this, it is not always easy
to get the information we want in the right format. The first thing that we need is an array of all the areas of
labeled region. In other words, we want an array where the first element is the area of region 1, the second
element is the area of region 2, and so on. We can get an array by typing the command



element is the area of region 2, and so on. We can get an array by typing the command

>> areas = [stats.FilledArea];

The brackets are used to store the output into an array. We can look at the areas using the plot command

>> plot(areas)

which gives the following plot.

The spikes are likely the regions that correspond to actual cells. We can always create a method to
automatically pick a threshold, but for now it looks like an area of 200 pixels is a reasonable threshold to
distinguish cells from noise/dust. To perform the areal thresholding, we need to identify which regions are
small and need to be discarded. We can identify them with the "find" command

>>  too_small = find(areas<200);

Next, we need to use our array of indices to extract which pixels belong to these regions and set them to
zero. The problem is that the field 'PixelIdxList', which contains a list of all the pixels for each region, is an
array. Our earlier trick of saving the elements of a field in an array won't work because array elements must
be numbers, not other arrays. We can circumvent this by saving the field elements into a cell array. A cell
array is just like a regular array, but without the restriction on the element type. Cell elements can be strings,
numbers, and even other arrays. Once we capture everything into a cell, we can use the command "cell2mat"
to collapse all of the cell elements into one giant array. This is accomplished with the commands

>> too_small_pix = {stats(too_small).PixelIdxList};
>> too_small_pix_mat = cell2mat(too_small_pix');

With the pixel locations stored in an array, we can create a mask where these pixels are set to 0.

>> mask = ecoli_seg_1;



>> mask(too_small_pix_mat)=0;

As a final housekeeping chore, we can remove all the holes in the mask using the "imfill" command.

>> mask = imfill(mask,'holes');

This produces the final mask.

Comparison with the original image shows we've done a pretty good job identifying the E. Coli cells. The
final step is to extract the fluorescence for each cell. This is pretty simple - we can get the pixel list for each
region in our final mask, open each fluorescence image, extract the fluorescence in those pixels, and take
their mean. Next, we find the background fluorescence by taking the mean of the fluorescence pixels outside
of the cells. We can then save the difference between the signal and the background in a matrix. This is
accomplished with the following script.

% Get file names
FITC_names = dir(strcat(direc,'\*FITC*.tif'));

%Identify cell pixels
mask_label = bwlabel(mask);
mask_stats = regionprops(mask_label,'PixelIdxList');

%Identify background pixels
background_mask = 1-mask;
bg_mask_label = bwlabel(background_mask);
bg_stats = regionprops(bg_mask_label,'PixelIdxList');

%Create a matrix to store the mean fluorescence
fluor_means = zeros(numel(FITC_names),numel(mask_stats));
for i = 1:numel(FITC_names)
    %Load FITC channel
    FITC_path = fullfile(direc,FITC_names(i).name);



    FITC = imread(FITC_path);
    
    %Get background fluorescence
    pixel_list = bg_stats.PixelIdxList;
    background = mean(FITC(pixel_list));
    
    %Extract mean fluorescence
    for j = 1:numel(mask_stats)
        pixel_list = mask_stats(j).PixelIdxList;
        mean_fl = mean(FITC(pixel_list));
        fluor_means(i,j) = mean_fl-background;
    end
end

In the data I collected, the exposure time was 250 ms. I've selected 5 traces that actually represent
photobleaching and placed them on the plot below.


