
Bi 1: The Great Ideas of Biology
Homework 1

Due Date: Thursday, April 13, 2023

Everything -
a bumptious, stuck-up word.
It should be written in quotes.
It pretends to miss nothing,
to gather, hold, contain and have.
While all the while it’s just
a thread pulled out of a giant tangle.

Wislawa Szymborska

1. The Cost of Getting Around

This first problem set involves a number of challenges in order-of-magnitude
thinking. Remember that we are making “street-fighting estimates”, where
the goal is to do simple arithmetic following the guidelines that all numbers
take the values 1, few (f) or 10; f × f = 10; and 1

f
= f

10 . We also have tools
like the geometric mean to use when confronted by quantities we don’t know.
Please do not provide estimates with multiple “significant” digits; this misses
the point, which is to do sanity checks and to develop intuition. Be thoughtful
about what you know and what you don’t know. If you have some source for
your numbers, please cite it; but in general, we think these exercises will be
more valuable if you do them without looking things up.

Drag Forces on Whales

As any swimmer knows, if you push off the wall and simply glide, after less
than half a pool length you will come to a stop: the inevitable consequence
of the drag force due to the water you are swimming through. Whether birds
and planes moving through air, or whales or boats moving through water,
drag forces are a critical part of the story of how much fuel needs to be con-
sumed to travel a given distance in a fluid medium. In class, we discussed
the migration of whales, noting that once humpacks leave Alaska for Hawaii,
they stop feeding. As their body fat is consumed to fuel this long distance
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swim, they experience a significant loss in body mass. In this problem, we
try to estimate the magnitude of these effects; later on, we use the results to
understand animal motion and metabolism more broadly.
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Figure 1: Humpback whales travel thousands of kilometers between where
they eat in Alaska and their breeding grounds in Hawaii. To estimate the
drag force associated with whale swimming, we hypothesize that it scales with
the density of the water, the speed of the whale, and the size of the whale.
In a scaling estimate, we seek choices for the parameters α, β and γ that
are dimensionally consistent. These ideas can be formalized in the form of the
Buckingham Pi theorem, although here we take a “scratch and sniff” approach
instead.
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Question 1a

Using the concept highlighted in Figure 1, work out a formula for the
drag force on a whale in terms of the density ρ of the medium it is
moving in, its speed v, and its size ℓ. Specifically, derive the required
values of the exponents α, β, γ in the scaling equation

Fdrag = c ρα vβℓγ,

where c is a dimensionless numerical factor (for the cognoscenti, twice the
traditional drag coefficient, c ≡ cD/2). You might argue algebraically on
purely dimensional grounds, or else give a physical argument for your
answer (perhaps having to do with momentum transfer between the
animal and the molecules of the surrounding medium).

2. The Cost of Swimming; the Dirigibles of the Sea

A truly fascinating outcome of modern biological inquiry is the discovery of an
entire suite of so-called scaling laws: empirical relationships that report how
key biological and physical observables scale with body size. In fact, scaling
laws are far more ubiquitous than in the context of animal body size. For
example, at ecological scales, there are a variety of scaling laws that describe
how the number of species (and individuals) depend on the size of the island
they live on. One particularly important scaling law is shown in Figure 2 and
illustrates how metabolic rate (i.e. power) depends upon body mass.

The Power of Resting Humans

Question 2a

Estimate your resting power in watts. Then, look at Figure 2 and com-
ment on how well your estimate for your resting power corresponds to
the result predicted by the scaling law.
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Figure 2: Scaling of metabolic power with animal body size. FMR refers to
“Field Metabolic Rate” and BMR refers to “Basal Metabolic Rate”. Adapted
from Williams et al. Ecology, 85(12), 2004, pp. 3373-3384.

Humpbacks and the Cost of Going from Alaska to Maui!

A fascinating aspect of migrations such as that of humpback whales is that
they go unimaginably long periods without eating. The great cetaceans, such
as the famed humpbacks of Alaska, leave their feeding grounds there and head
for a tiny area nestled between Maui, Lanai, and Molokai where they perform
another crucial activity. It is here, in the warm waters of Hawaii, that they
mate and birth offspring. Recent aerial measurements make it possible to
measure the cross-sectional area of the same whale both in its feeding grounds
and in its mating grounds, thus allowing us to measure the mass they lose
in the process. In this part of the problem, we examine the motion of these
whales and their energetic costs and consequences.

For the following exercise, you can assume that hydrodynamic drag scales
with the frontal cross-sectional area A and some drag coefficient (some fraction
of one). However, as a warning, we note that vexingly, different fields use dif-
ferent conventions for empirically-reported drag coefficients. Specifically, the
reference area A ≡ L2 varies by application. For cars, drag coefficients are usu-
ally reported assuming that the reference area A is the frontal cross-sectional
area; for airfoils/airplanes, the nominal wing area; and for submerged bod-
ies, the total wetted surface area. Since wetted or wing areas are often much
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larger than frontal/projected areas, the empirical drag coefficients reported for
(air)ships are often much smaller than for cars due to this convention.1

Accordingly, if you wish your calculation to be in more direct contact with
the biomechanics/hydrodynamics literature, you may use the fact that stream-
lined whales have been measured to have a drag coefficient of cD ≈ 3 × 10−3

relative to their total wetted surface area (see Miller et al., Journal of Experi-
mental Biology 207.11 (2004): 1953-1967), which you can approximate as that
of a cylinder of comparable characteristic dimensions.

Question 2b

Estimate the fastest speed vmax a whale could possibly swim if all of
the metabolic power difference between field metabolic rate and basal
metabolic rate (of Figure 2) goes into overcoming drag. Assume they
swim constantly. First, work out a formula giving that speed in terms
of power; then plug in numbers based on your best estimates. For the
purposes of substituting numbers into this problem, consider specifically
an orca (with length of order 7 m and mass of order 4700 kg).

Question 2c

Compare your estimate for maximal swim speed to actual empirical
figures for killer whale swim speeds. These could include two studies by
Williams and coworkers: Journal of Zoology 256.2 (2002): 255-270 and
Marine Mammal Science 25.2 (2009): 327-350. Also find a value for the
fastest speeds that whales tend to swim. Last, explicitly estimate the
factor by which whales increase their metabolic output at this maximum
exertion, versus at rest, and compare this to that of humans.

1In fairness, these idiosyncratic conventions for drag coefficients hint at some different
dominant physics for these objects—the contribution of a “pressure drag” (imposed by the
battering ram of a shape impinging on fluid) scales more nearly with the frontal/projected
area of the object, whereas “skin (parisitic) drag” scales more closely with the total wetted
area. The total drag of a real object acknowledges both contributions, but one contribution
can dominate depending on physical context.
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Figure 3: Energy content of fat and sugar resulting in the 9/4 rule.

Question 2d

To estimate how much fat must be burned to give sufficient energy to
a migrating whale, first we must know the energy density of fat. This
gives us the chance to earn the right to use a useful rule of thumb by
deriving it: the energy contents of different foods are about 9 kcal/g
(or, 40 kJ/g) for fat and 4 kcal/g for carbohydrates (the “9/4 rule” for
fat to sugar, as illustrated in Figure 3).

To find this, we compare the number of carbon-carbon bonds per molec-
ular mass in the two cases. Assign an energy ε to the covalent C-C bonds
found in sugars and fat molecules. Now, by counting the number of such
bonds per molecule and dividing by the total molecular mass of these
molecules, provide an approximate justification for the 9/4 rule.
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Figure 4: Whales breaching. Adapted from Segre et al., Elife 9 (2020): e51760.

Question 2e

By assuming that the energy to overcome the swimming drag force comes
from burning fat, work out the mass of fat that has to be burned for a
humpback migrating between Alaska and Hawaii and compare that to
the mass of the whale at the start of the journey. What fraction of its
body weight do you find needs to be consumed?

The Power of a Whale Breach

Remote sensing and tracking gives extraordinary new detail to some of whales’
most expressive behaviors. For instance, Segre et al. (Elife 9 (2020): e51760)
measured the depths of humpback whales as they performed incredible breach-
ing ascents and leaped into the air as shown in Figure 4.
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Figure 5: Depth vs time for whales. Adapted from Segre et al., Elife 9 (2020):
e51760.
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Question 2f

Using the maximum speed you computed earlier in this problem, esti-
mate the maximum height a whale can jump while in breach (see Figure
4). Comment on how this maximum height differs between a light whale
and a heavy whale. Also, use the trajectories shown in Figure 5 to es-
timate the speed of breach whales as they exit the water. Is the height
you predict roughly consistent with the visual evidence reported by the
photographs in Figure 4?
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Figure 6: (A) The stroke frequency at which humpback whales swim correlates
with the velocity they achieve as they exit the water. Figure adapted from
Segre et al. (Elife 9 (2020): e51760). (B) Larger humpback whales tend
to reach faster final breach velocities, even though they stroke with smaller
frequency. (Data were extracted from the same paper’s Table 3, which we
linearly regressed separately.)

Thus far, our analysis of whale movement has been completely agnostic to
how they move. We will be able to start correcting this oversight by appealing
to a remarkable regularity of swimming locomotion.

Here are two motivating facts. Segre and colleagues remarked that the
breach speed at which whales exit the water correlates with their average fre-
quency of strokes while swimming (see Fig. 6). They also noticed that longer
whales had a smaller stroke frequency, but tended to reach faster velocities
(see Fig. 6). They do not interrogate these trends further. Armed with a
scaling argument, we will try to do better and understand why they occur.
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Figure 7: Schematic illustrating how the locomotion of a swimmer is related
to the net lateral velocity it achieves.

Question 2g

The Reynolds number is a dimensionless number that characterizes
important features of fluid flow; it is defined as Re ≡ vL

ν
, where v is the

fluid (or swimmer) velocity; L is the swimmer’s characteristic length;
and ν ∼ 10−6m2/s is the fluid’s kinematic viscosity. In a beautiful pa-
per, Mahadevan and colleagues (Nature Physics 10.10 (2014): 758-761)
establish that despite the complexity of aquatic locomotion for big fast
swimmers, marine swimmers tend to follow a power law Re ∼

(
ωAL

ν

)1

for large Reynolds numbers (turbulent flows; big fast swimmers), but
Re ∼

(
ωAL

ν

)4/3
for low Reynolds numbers (laminar flows; small slow

swimmers), where ω is the tail beat frequency, and A is the tail beat
amplitude (See Fig. 7).

Infer how Aω scales with size L and velocity v for a whale, versus a
small fish. (This quantity is essentially the speed at which the tail
sweeps transversely; it sets the momentum of a whale’s tail if it smacks
you.)

This is a remarkable relation, because it says that if the only thing you
know is the speed at which a marine creature is swimming, you also
know how it is swimming, e.g. the extent and transverse speed of its
contortions as it wiggles through fluid.
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What does this scaling relation anticipate about the ways that whale swim?
The Segre data do not specifically report amplitude A; this would likely be
hard to measure from afar, though you yourself will be able to estimate it
(in units of body lengths) by casually watching a whale swim. But assume
that the amplitude A of a whale’s tail sweep is proportional to the total body
length L. Then this scaling predicts that the true natural variable connecting
a whale’s stroke frequency and lateral swim velocity is Aω ∝ Lω, which should
be just proportional to the velocity a whale exhibits. Peering into the Segre
data, we find this is indeed the case!
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Figure 8: Analyzing a subset of Segre’s whale trajectories (for which length,
velocity, and stroke durations are simultaneously defined) affirms the scaling
law that Mahadevan and colleagues predict. (The best-fit line (slope ≈ 1.06)
is in solid purple; it is close to the y = x (slope 1) line (dotted grey) shown
for reference.)

Returning to the phenomenologies that motivated us, the first scaling be-
tween average stroke frequency and exit speed that Segre et al. reported in
Fig. 6 can make sense from the primordial scaling we expect from Mahadevan
and coworker’s reasoning. If, over these wide data, the length L of whales
varies more slowly than the stroke frequency ω across individuals, then the
v ∼ Lω relationship confirmed in Fig. 8 reproduces the general v ∼ ω cor-
relation reported. Further, the spread about that correlation probably has
something to do with the fact that length also varies and matters across whale
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individuals.
We extracted two other phenomenologies in Fig. 6, grounded in a narrower

subset of Segre’s whale observations: final velocities increase by a factor of
about 30% when whale length about doubles; and whale swim stroke frequency
decreases by a factor of about 75% as whale length doubles. These relation-
ships might be explained by conjecturing that longer whales actively choose
slower stroke frequencies ω so as to more nearly maintain the final breach fre-
quencies v they achieve, but do not modulate their stroke frequencies quite
dramatically enough to cancel out their larger modulation of length, yielding
that still-discernible (albeit reduced) 30% modulation in breach velocity.

Question 2h (extra credit)

By imagining that submarines are not so different from whales from the
perspective of drag, argue how much gasoline fuel a submarine would
need to go around the globe (while submerged), assuming it travels a
whale-like speed of a few meters per second. Thus infer the prominence
of nuclear submarines.

Moving on the Serengeti

As discussed in class, one of the most curious outcomes of a careful quantitative
analysis of the population of wildebeest on the Serengeti was the discovery
that over a roughly decade long period, the number of wildebeest more than
quadrupled from several hundred thousand to more than a million. In the
1950s and 1960s, the observations that were made to count the wildebeest
population were carried out by small propeller planes flying transects over
the plains of the Serengeti. Amazingly, in the modern world, these laborious
studies have been complemented by the use of satellites and drones. In this
problem, we will make a rudimentary analysis of the use of satellite imaging to
identify animals such as wildebeest and elephants. As we will see, our analysis
will be insufficient to handle animal detection in diverse settings; later in the
term, we will generalize the approach used here to do a similarly rudimentary
analysis with machine learning.
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Figure 9: Satellite image of elephants near a watering hole. We are using
this as a simple first example just to practice handling images in Python, and
considering the most rudimentary approaches to identifying objects in such an
image.

Question 3a

Along with this homework, we’ve provided two images of elephants
meandering around two very distinct environments. These satellite
images, with an incredible resolution of 31 cm x 31 cm, were ultimately
used to train a convolutional neural network capable of identifying
elephants across an array of heterogenous environments. But why was
machine learning necessary in the first place? Using the first Python
tutorial for this homework as a guide, develop a simple algorithm
to detect elephants in the image of the elephants near the watering
hole. Explain your process, assumptions, thresholds, and the ultimate
accuracy of your approach.

While preparing your solutions, please use the template Colab notebook
provided on the course website.
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Question 3b

Now attempt to detect the elephants in the second image, without mod-
ifying your code from 3a (other than to simply load in the new image).
Comment on your accuracy (or lack thereof) and interpret the results.

Beasts, Wild and Tame

Figure 10: Yang and colleagues analyzed high-resolution (GeoEye-1) satellite
images of plains captured from space; this is a slightly-animal-dense example.
While they used deep learning to detect wildebeest (black dots in the inset
panels B1-B3 at right), we can consider the image manually by eye here and
estimate a population. (Note that zooming in helps suggest that the inset
panels indicated probably contain nearly all of the wildebeest in the whole 1
km×1 km main image square.) Adapted from Fig. 2 in Yang et al.

Question 4a

Over a year, wildebeest migrate in a loop enclosing the whole Serengeti
area. Given they travel at around several miles per day (say 10 km/day)
when moving, but move on average only one day out of a few (at least
in the net circumferential direction), estimate the area of the Serengeti
region they orbit.
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Question 4b

Recall that in our first lecture, we saw data reporting that the modern
population of wildebeest in the Serengeti was about Nwildebeest ≈ 1.5 ×
106 ≡ few × 106 wildebeest in the 2010-2020s (see also a discussion
by Mduma et al., Journal of Animal Ecology 68.6 (1999): 1101-1122.).
Estimate the daily grass eaten by the migrating wildebeest population.
Make a corresponding estimate of the area of grassland grazed on each
day. Last, estimate the time scale for the wildebeest population to
consume all the grass in the Serengeti if it did not grow back.

Earth's mammals by total biomass 1 Mt = 106 ton

 = 10 Mt

wild terrestrial
≈ 20 Mt

wild marine
≈ 40 Mt

domesticated
≈ 630 Mt

humans
≈ 390 Mt

elephants

even-hoofed
mammals

cattle

baleen whales

Figure 11: The biomass of mammals. Humans and their livestock dominate
the mammalian animal biomass.

As seen in Figure 11, one might say we live on a planet of cows. Given
that the argument was made that the wildebeest carry out their migration
precisely for the advantage of maximizing their food uptake, it is of great in-
terest to contrast the foraging habits of wild mammals and their domesticated
counterparts.
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Question 4c

Estimate the daily grass eaten by grazing cattle. How much land does
this correspond to for each cow? Make an estimate of the total number
of beef cows on Earth and how much land it takes to feed them each
year.
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