Bi 1: The Great Ideas of Biology
Homework 4
Due Date: Thursday, May 4, 2023

1. Genetic Drift as a Force of Evolution

Simulating the processes of evolution

In class this week we learned about the mathematical formalism behind pop-
ulation genetics, one of the centerpieces of evolutionary theory. The ideas
described in class will provide a quantitative backdrop for understanding the
different evolutionary forces that shape life on our planet. It is both profound
and amusing how much we can learn about evolution by thinking about coin
flips and similar games of chance. Indeed, the broad reach of the mathematics
of coin flips is an example of what former Caltech undergrad and now Harvard
professor Joe Blitzstein likes to say: “The nouns change, but the verbs remain
the same.”

In this problem we want you to explore different evolutionary forces by
means of simulations. You will use what you learned in the stochastic simu-
lation tutorial to explore the interplay of different evolutionary forces such as
genetic drift and mutation. By using simulations we will sidestep more ad-
vanced mathematics of stochastic differential equations needed to study these
concepts analytically while still getting clear insights into how these forces
may affect the course of evolution.

The Buri genetic drift experiment

In 1956 Peter Buri, a student of Sewall Wright published the now classic
paper “Gene Frequency in Small Populations of Mutant Drosophila” in which
he experimentally demonstrated the concept of genetic drift. The idea for this
beautiful experiment is depicted in Figure 1. Briefly, Buri began with eight
female and eight male flies, all heterozygotes of the bw locus. This means that
all of the flies had 1 copy of the gene associated with white eyes, and one copy
of the gene associated with red eyes. The phenotype that this combination of
alleles gives is flies with orange eyes. He then allowed the flies to reproduce,
and after removing the adults, he randomly chose 8 males and females from
the next generation of offspring without looking at the eye color. These new


http://www.people.fas.harvard.edu/~blitz/Site/Home.html
https://en.wikipedia.org/wiki/Sewall_Wright

8 males and 8 females were transferred to a new flask and the procedure was
repeated for 19 generations.
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Figure 1: Buri’s experimental setup. At time ¢ = 0 eight heterozygote
females and eight heterozygote males were allowed to reproduce. From their
offspring, eight males and eight females were chosen at random and transferred

into a new flask.



Question la

Work out what is the expected genotype frequency of red-eyed flies,
white-eyed flies and orange-eyed flies after the first generation. (Hint:
Recall that each allele is drawn from the parent’s pool at random
with replacement. This means that to compute the frequency
of red-eyed flies you should calculate f,, = P(red allele first draw) -
P(red allele second draw)

Since the offspring that made it to the next generation were chosen at
random, Buri knew that the outcome would be different if he repeated an
identical experiment in different vials. As a result, for statistical power he
simultaneously tracked 107 flasks as shown in Figure 1. Each generation,
he counted the number of red-eyed, white-eyed and orange-eyed flies he had
randomly chosen. Figure 2 shows the outcomes for these different vials after
19 generations. Because the flies are allegedly mating at random, with each
generation there is an accumulation of fluctuations. As a result, after 19
generations, many vials contained only white-eyed or red-eyed flies, though
some vials still contained a mixture of eye colors.

Having quantified the number of red-eyed, white-eyed and orange-eyed
flies Buri was able to quantify the frequency of alleles in the population. Since
none of the alleles were dominant, he could infer the genotype by looking at
the phenotype of the flies.

Question 1b

Write down the formula for the genotype frequencies in terms of the
eye color count. Use the notation N,.4 for the number of red-eyed flies
in a given vial, Nypise for the number of white-eyed flies in that same
vial and finally, Noyqnge for the number of orange-eyed flies in that same
vial. Your task is to figure out the frequency of red (f,) and white (f.,)
alleles in a given vial given the counts of the number of red-, white- and
orange-eyed flies.

Figure 3 summarizes the results of the experiment. By tracking alleles over
time with these 107 populations exposed to the same conditions, Buri was able
to observe evolution driven entirely by genetic drift! He saw how in some of
the populations one of the alleles went extinct, arising from nothing more than
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Figure 2: Multiple replicates of the Buri experiment. Buri repeated
his experiment in 107 separate vials, with the evolutionary trajectory different
each time as a result of genetic drift. Note that in the long time limit, many
of the vials have gone to fixation with all flies having either white or red eyes.

the fluctuations inherent in small populations.
It is now time for us to use our computational prowess to simulate and

explore the Buri experiment.

Reproducing the Buri experiment in-silico

Your first task will be to reproduce Figure ??figBuriExperiment] by means
of stochastic simulations. The key elements of the code you need to do this
analysis you already worked out in the stochastic simulation tutorial.
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Figure 3: Results of the Buri experiment. By tracking the phenotypes of
the flies, Buri was able to infer the allele frequencies for each population. The
allele frequencies change as a result of genetic drift and after 19 generations,
many of the vials contain flies all with the same eye color, implying fixation
of alleles and evolution due to genetic drift.

Question 1c

Perform stochastic simulations of genetic drift for 107 populations over
19 generations using the same population size as Buri, i.e. 16 flies total
(32 alleles). Plot histograms of the allele frequency for generation num-
bers 0, 1, 10, and 19. (Assemble your code in a Python notebook like
that structured in the template linked on the course webpage.)

The effect of the population size

Using these exact same tools we will now explore the effect of the population
size.



Question 1d

Repeat the stochastic simulations for 107 populations during 1000 gen-
erations using the same population size as Buri. Quantify the time it
takes for each of these populations to have one of the alleles fixed, i.e.
find the time point for each population at which the allele frequency
becomes either zero or one, and save the generation number at which
this happened. Now repeat the simulation for varying population size
(N =4, 8, 16, 32, and 64). Plot the mean time to fixation as a function
of the population size and comment on the results. (Hint: to find which
generation one of the alleles was fixed in the population, the function
numpy . where might become handy. Basically you just need to find a
way for Python to tell you at which entry of the array the frequency
became f == 1 or £ == 0).

The effect of mutations

Let’s now explore the effect of another evolutionary force — mutation. In our
toy model, rather than thinking about tracking the complexity of single base
pair mutations, we will think of a “reaction” of the following form

A& (1)
2
where A and a are the two versions of the allele (for example red and white),
and p; and po are the mutation rates that take you from one allele to the
other. To simplify things even further we will assume p; = ps = p.

Question 1le

Implement a stochastic simulation to include the effect of mutation for
a single population and plot the allele frequency over time. (Hint: The
mating still happens at random in this scenario, but now each allele after
being selected for the next generation must flip a second coin to decide
if it remains as the same allele, or it mutates into the other allele). Use
the value p =~ 0.001 for your simulations.




Question 1f

Extend the algorithm you just wrote and simulate 100 populations. Plot
10 of these trajectories, as well as histograms of allele frequency at repre-
sentative time points such as ¢t = 0, 5, 10, 50, 100, 500 generations. Com-
pare this to the null model where the mutation rate is equal to zero and
comment on the differences if any between the distributions over time.

Question 1g:

You will now explore the effect of the magnitude of the mutation rate.
Run the simulation for 100 generations for x =0, 0.001, 0.01, 0.1 and
plot the histogram of allele frequencies of the final time point for each
of these mutation rates.




2. Experimental evolution in the era of genome sequenc-
ing

Within the past two decades, sequencing an organisms’ entire genome has
become a nearly trivial procedure. This affords us the ability to observe evo-
lution at the genetic level in real time. This has opened up an exciting new
field in which the technology of next-generation sequencing is combined with
the experimental advantage of microbial systems making it possible to test
quantitative evolutionary theories.

A particularly interesting long-term experiment involves Professor Richard
Lenski at Michigan State University. On February 24, 1988, Lenski began
growing twelve FE. coli cultures in parallel, similar to Buri’s experiment from
problem 1 but in a haploid world with organisms with generation times of
around one hour. Twenty-nine years and almost 70,000 generations later this
experiment has watched more generations of evolution than any other experi-
ment ever done.

These bacterial cultures have been adapting to a very simple environment
with a fixed media composition. The advantage of working with these microbes
is that every certain number of generations a sample can be frozen and brought
back to life at will. In this sense, Lenski’s —80°C freezers act as an evolutionary
time-machine, allowing him to recover organisms from the “fossil record”!

One surprising outcome of this experiment is the appearance of a bacterial
strain capable of metabolizing a new carbon source. For historical reasons
(most likely to avoid phage infection) the cultures have always been grown
in the presence of citrate. Back in the day, before the sequencing revolution,
one of the ways to identify bacterial species was by their metabolic repertoire.
Scientists would classify a bacterium as E. coli for example based on its ability
to ferment arabinose, lactose, mannitol, and the lack of ability to ferment
citrate, among other things (look at this site for a complete list of the features).
So in principle if you were to collect a sample from the soil that was able to
ferment citrate you would immediately conclude it was not a wild-type E. coli
strain.

In fact, E. coli does contain the machinery to ferment citrate encoded in
its genome, but this set of genes is only expressed under anaerobic conditions.
Lenski found that in one of his 12 replicate populations bacteria were able to
metabolize citrate under aerobic conditions. This means that once the glucose
that is found initially in the media runs out, this mutant strain can still grow
further before the culture is diluted the next morning, giving it a clear fitness
advantage over its competitors!


http://myxo.css.msu.edu/index.html
https://en.wikipedia.org/wiki/Citric_acid
http://www.microbiologyinfo.com/biochemical-test-and-identification-of-e-coli/

In this problem we will work out a very simple equation to analyze how
long it would take for this mutant to overtake the culture.

Toy model for two competing bacteria strains

Consider the case in which two alleles, A; and As, are present in a population
with initial frequency p and ¢ = 1 — p, respectively. For example, these alleles
could be those associated with the ability to metabolize citrate or not. Let us
assume that cells harboring allele A; have a growth rate m, and those harbor-
ing Ay have a growth rate ms. When thinking about microbial organisms the
growth rate is often taken as a metric for fitness and it’s given the name of
Malthusian parameter. For natural selection to act on organisms there must
be a difference in fitness, otherwise if all organisms had the same fitness, no
Darwinian evolution would occur.

Let us further assume that A; represents the allele that allows bacteria to
metabolize citrate, and as a consequence m; > mso. In particular we will say
that my = my(1 — s), where s is a small parameter s < 1. If Nj represents
the number of cells with allele A;, and Ny the number of cells with allele A,
the equation that describes the growth curve is given by

dN;
= m;N; 2
dt m’b (2 ( )

for i € {1,2}. The solution to this differential equation results in an exponen-
tial growth profile, namely,

where NV;(0) is the initial number of cells with allele A;.

Question 2a:

Write an expression for Ny, (t) the total number of cells as a function of
time. (Hint: Remember we have two competing cell types and we are
assuming they don’t interfere with each other).

Having this expression for Ny, (t) is interesting. But what we really care
about is the frequency of alleles in the population given that one of the alleles
has a fitness advantage over the other. This means that the quantity we care
about is the normalized frequency p(t).


http://mathworld.wolfram.com/MalthusianParameter.html

Question 2b:

Write an expression for p(t), the frequency of the mutant allele A; and
another expression for ¢(t¢), the frequency of the wild-type allele A, as
a function of time. This should be a function of the initial cell count
N1(0) and N2(0), as well as the selection coefficient s.

Hopefully you ended up with a nice, compact expression that looks like a
logistic function. Let’s now explore the consequences of this expression.

Question 2c:

Let p(0), the initial frequency of Ay, be 107°. Assume the doubling time
of the mutant is 1 hour, then plot p(¢) and ¢(t) for different selection
coefficients, s = 107%,1073,1072. Label the x axis as years rather than
hours to have a better sense of how long it would take for the mutants
to overtake the population.

In one of Lenski’s experiments, since his fridges contain samples at many
time points of this long-term experiment, he was able to go back in time
and measure the relative fitness of strains compared to the parental strain.
Figure 2 shows some of his results. The blue curve shows how for the first
20,000 generations the rate of mutation accumulation remains pretty constant
over time. The green curve shows the relative fitness of further time points
compared to the parental strain at the beginning of the experiment. There
we can see that at the beginning there was a sharp increment in the relative
fitness, to then transition to a less steep rate of fitness increment.

Provide a qualitative explanation for why these two phases of fitness
increment might exist. (Hint: Think of the number of sites in a genome
where a mutation might be beneficial as finite.)

Throughout the first 20,000 generations of a specific E. coli culture, the
mutation rate was estimated to be approximately 1.6 x 107! per bp per gen-
eration. However, between generations 25,000 and 40,000, eighty-three new
synonymous mutations were detected. Additionally, most of these mutations
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Figure 4: Rates of genomic evolution and fitness improvement. Blue
circles show the total number of genomic changes relative to the ancestor in
each sampled clone. The blue line represents a model where mutations accu-
mulate uniformly over time. The light blue curves define the 95% confidence
interval for this linear model. Green squares show the improvement of this
populationaAZs mean fitness relative to the ancestor over time, and the green
curve is a hyperbolic plus linear fit of this trajectory. Each fitness estimate is
the mean of three assays; most of the spread of points around the fitness tra-
jectory reflects statistical uncertainty inherent to the assays. The inset shows
the number of mutations in the 40,000-generation clone. Reproduced from [1]

involved A:T pairs mutating to C:G, a mutation that has an 11.3% chance of
being synonymous.

Question 2e:

With a genome size of 4.57 x 10 bp, what was the mutation rate for
this timeframe? How does this compare to the original mutation rate
of 1.6 x 1071 per bp per generation? Given your knowledge of how
mutations arise, what might have happened near the 25,000th generation
that caused this discrepancy?
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http://www.nature.com/nature/journal/v461/n7268/full/nature08480.html

Question 2f (EXTRA CREDIT):

Typically, an allele with a frequency within a population as low as 0.01
would not be detectable with sequencing. However, the increasing ease of
sequencing entire genomes has made the technique of “deep sequencing”
possible, in which a population is sequenced many (possibly hundreds)
of times over so that even rare alleles have a high probability of being
detected. In the sequencing techniques used by Lenski, the genome
received 50X coverage, meaning that each nucleotide was read at least
fifty times. What is a reasonable lower bound of allele frequency that
you would expect to be able to detect? Remember that sequencing
techniques are not perfect, with possible error rates around 1%.
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