
Bi 1: The Great Ideas of Biology
Homework 7

Due Date: Thursday, May 25, 2023

“Problems worthy of attack prove
their worth by hitting back.”

Piet Hein

In the last homework, you worked out a statistical mechanical theory of
gene expression regulation. Now, we’ll put that theory to the test by analyzing
the results of real-world experiments!

1. The Theory-Experiment Dialogue

In class, we described the role of transcription factors as the molecular agents
that tune the level of gene expression, either by inhibiting the ability of RNA
polymerase to bind the promoter (repressors), or by recruiting the polymerase
to the promoter (activators). In your homework, you then turned the cartoon-
level model that represents one of these processes into a concrete mathematical
form using statistical mechanics. But it is never enough to simply write down
a formula; we also need to put it to the test. Our expression for the fold-
change in gene expression featured several tunable parameters, including the
repressor copy number R, and the binding energy ∆εr describing the protein-
DNA interaction between the repressor and its binding site on the genome.
Ideally, our experiment will use these parameters as “knobs” to be tuned in
order to assess the agreement of the results with our model. To access these
parameters, we’ll exploit the tools of modern molecular biology.

We can tune R by mutating a region of the DNA known as a ribosomal
binding site (RBS). As the name suggests, this is a sequence downstream
of the transcription start site that is recognized and bound by the ribosome.
Therefore, once a gene has been transcribed into mRNA, a ribosome will arrive
at the RBS in order to initiate its translation into protein. Mutating the RBS
allows us to adjust the strength of the interaction between it and the ribosome,
altering the probability of binding. In turn, this controls the frequency with
which translation is initated, and hence the number of proteins that end up
being made.
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ards using our immunoblots (as low as 50 pg, corresponding to
around five repressors per cell). This result increases our confi-
dence in the method as a way of precisely quantifying protein
counts in bulk even at very low levels (Materials and Methods and
Fig. 3D). It is important to note, however, that counting methods
based on purification, such as immunoblots, have the inherent
caveat that some proteins might have stayed behind in the dif-
ferent fractions. Although we took action to reduce this effect, the

results from immunoblots should be viewed as a lower bound on
the actual number of proteins in vivo.
Our predictions for the number of Lac repressors in each

strain can now be compared with the direct measurements of this
quantity, which are shown in Fig. 4A. In Fig. 4B we compare the
predictions and direct measurements explicitly. The direct mea-
surements are comparable to the predictions within experimen-
tal error, giving us confidence that the proposed input–output
function from Eq. 5 appropriately describes the input–output
properties of the simple repression regulatory motif. This result
suggests in turn that once we know the binding energy for an
operator, we have predictive power. Although this analysis yiel-
ded results that are largely consistent between theory and ex-
periment, it appears that we systematically underestimate the
number of repressors in the two strains with the highest repressor
number. The reader is referred to SI Text for a further discussion
of these two strains.

Direct Determination of the in Vivo Lac Repressor Binding Energies.
The scheme for exploring the limits and validity of the thermo-
dynamicmodel advocated in the previous section is based on using
one strain to determine the binding energy of Lac repressor to its
operator DNA. However, as noted earlier, an alternative ap-
proach is to simply use the entirety of our data to evaluate global
fits of Eq. 5 to the data corresponding to a given operator.
Implementation of this concept is shown in Fig. S7B, where we
combine all of our measurements to determine the best values of
the different in vivo binding energies. On the other hand, one
might choose to use the information about fold change and re-
pressor copy number for one particular strain to derive the dif-
ferent binding energies. This analysis can be done, in turn, for all
strains created for this work in an analogous way to what we did
with strain RBS1027 in the previous section. In Fig. 5 we compare
such fits with the binding energies that can be obtained from an-
alyzing a single strain. Additionally, we show the energies
obtained from the Oehler et al. data (33) (SI Text and Fig. S8) and
from Fig. S7B for comparison. These multiple approaches for
obtaining the binding energies, all leading to essentially compa-
rable results (for example, Fig. S7A), increase our confidence in
the simple model of Eq. 5 and in the minimalist modeling phi-
losophy used to obtain it as a quantitative and predictive tool.
Finally, it is common in the theoretical treatment of experi-

ments on transcriptional regulation to include a constant level of
expression dubbed the “leakiness”. Such leakiness is usually un-
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Fig. 2. Single-site binding energies and prediction of the number of
repressors for different strains. (A) The operator binding energies and ap-
proximate dissociation constants are deduced from the measurement of the
fold change for the different operators in strain RBS1027 combined with our
knowledge of its intracellular number of repressors, using Eq. 5. (B) The fold
change in gene expression is measured for all four operators in six different
strain backgrounds (including RBS1027). Using the binding energies from A,
we fit the data to Eq. 5 to make a parameter-free prediction of the number
of repressors present in each strain shown in C. Errors in the predictions
represent the SE of the corresponding fit. The errors in the binding energies
are here denoted as gray shaded regions. Estimated dissociation constants
are shown for convenience for comparison with literature values. The basis
for these estimates is explained in SI Text.
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A B Fig. 3. Immunoblots for the measurement
of the in vivo number of Lac repressors. (A)
Typical luminescence image obtained from an
immunoblot. (B) Map of the samples loaded
on the membrane shown in A. The blank
(HG105) and 1I samples are used to create
a normalizationmap by subtracting the blank
luminescence fromall samples anddividing by
1I. White spots correspond to the cell lysates
measured and the blue spots correspond to
the different concentrations of purified Lac
repressor standard. (C) Normalization map
generated by fitting a 2D polynomial to 1I
samples scattered around the membrane
(black dots) after removing the blank. This
map was used to account for nonuniformities
in the collection of luminescence from the
membrane. (D) Luminescence vs. quantity of
LacI loaded. The calibration samples are used
to construct a power lawfit. The luminescence
of themeasured samples is shown aswell. The
unknown amounts of repressor loaded are
determined by using the calibration curve.
Samples 1I and RBS1 have been diluted 1:8
to match them to the dynamic range of the
assay and therefore appear to have less signal
within a spot (SI Text).

12176 | www.pnas.org/cgi/doi/10.1073/pnas.1015616108 Garcia and Phillips

Figure 1: Results of immunoblot experiments to measure LacI re-
pressor protein copy number. (A) A typical example of a real immunoblot
luminescence image. (B) Legend indicating layout of strains in (A). The in-
terleaved pattern of 1I and blank strains is chosen to help correct for nonuni-
form illumination, which is a common technical artefact in these experiments.
White spots are actual experimental strains of interest. Blue spots contain pu-
rified LacI protein at known concentration, mixed with cell cultures of similar
concentration to the experiments that lack the LacI gene. This makes it pos-
sible to convert brightness to mass of protein, and from mass to copy number
using the known mass of LacI. Knowing the number of cells in the experimen-
tal strains, we can further convert their brightness to an average number of
LacI proteins per cell. (C) The aforementioned uneven illumination profile,
which we correct for during data processing. (D) The luminescence vs protein
mass for the calibration samples is fit to a low-order polynomial to produce
a calibration curve. Then the luminescence of the unknown strains can be
converted to protein mass. From Garcia and Phillips (2011).

2

https://doi.org/10.1073/pnas.1015616108


Tuning the number of repressors is a good start, but we also have to verify
how many there are in the cell. To do so, we can use techniques such as
fluorescent protein fusions or quantitative Western blots.

Your dataset

In this homework, you will analyze images from experiments used to measure
fold-changes in the expression of a fluorescent protein under control of the
LacI repressor. When there are many copies of LacI around, the fluorescent
protein will be lowly expressed; when there are only a few copies of LacI, the
fluorescent protein will be expressed at higher numbers. Your objective is to
analyze fluorescence microscopy images of live cells in order to extract fold-
change values, then compare your results with those predicted by the theory
you developed last week.

The dataset also contains LacI copy number values that were determined
by purifying repressor protein up to known quantities as a standard. This stan-
dard was then compared to measurements obtained by breaking open millions
of bacteria before “fishing” out repressors by using antibodies that bind to
them. The repressors bound to antibodies were subsequently modified so that
they emit light, and absolute counts were obtained by comparing the amount
of light emitted by these repressors to that from the purified standard. Figure
1 gives a broad sense of the data produced by these experiments.

We note that the fluorescence-based approach described here is by no means
the only way to measure fold-changes experimentally. Another approach is
known as a LacZ assay (Figure 2), which involves tracking the expression of
the titular LacZ enzyme. LacZ digests sugars; when fed a particular colorless
sugar called ONPG, the resulting products appear yellow in solution. Hence,
the color of the mixture is directly proportional to LacZ expression. This
system provides another way to observe and tinker with the kind of phenomena
we’re discussing. Remember that curating multiple orthogonal, independent,
and consistent measurements of a single phenomenon is essential if we wish to
prove to ourselves (and the world) that we truly understand something.

First, a prediction

The main task in this homework is to test our thermodynamic theory of simple
repression from last week by analyzing fluorescence microscopy images. But —
like we just mentioned — there are other experimental methods of measuring
the same thing. Do they agree?

Recall our theoretical expression for fold-change from last week,
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Figure 2: Schematic of a LacZ assay. Cells are lysed using detergent,
then a sugar (ONPG) is added. LacZ cleaves ONPG (which is colorless) into
simpler sugars (which appear yellow in solution). Thus, the initially colorless
mixture acquires color as more product accumulates. The slope of this line is
proportional to the amount of LacZ enzyme present.

fold-change = 1
1 + R

NNS
e−∆εr/kBT

(1)

In Equation (1), NNS is the genome size, and R is the copy number of
repressor proteins. Both of these are known; recall from your last homework
that NNS = 4.6 × 106 for E. coli, and we just described the process for de-
termining R. We’re measuring fold-change using the proxy measurement of
fluorescence intensity, which is essentially proportional (with some caveats to
be cleared up shortly).

For now, the point is that the only unknown parameter is ∆εr: the binding
energy between LacI and DNA. More precisely, ∆εr is the difference in energy
between having a repressor bound to its target site and having it bound to any
random sequence in the genome. If we can independently determine ∆εr, we
can make a parameter-free prediction to which we can compare our microscopy
data. Luckily, we have such a method!

Not only can we engineer strains with known R, but we can also change the
DNA sequence where the repressor itself binds! These regions are sometimes
called operators, and different operators have different ∆εr. A list of some
different strains and their respective operators can be seen in Table 1. Using
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Figure 3: Fold-change in gene expression, in cartoon form. Recall from
the last set that fold-change is a ratio of gene expression levels in cells with and
without repressor proteins present. Since the expressed gene is a fluorescent
protein, expression levels are proportional to fluorescence intensity. In other
words, when working with fold-changes, we need not convert the arbitrary
fluorescent units into absolute units of mRNA or protein.

the LacZ assay described above, we can measure fold-changes based on each
strain’s operator, and use the results to infer ∆εr for each particular operator
sequence.

Question 1a

In preparation for the rest of the set, invert Equation (1) (i.e., solve for
∆εr as a function of the other variables).

Question 1b

For each strain in Table 1, use your result from the previous problem to
calculate ∆εr. Then plot your fold-change predictions for the microscopy
experiments (i.e., plot Equation (1) as a function of R for each operator).
Show all three curves on one plot, and let R range from 100 to 103. As
a sanity check, be sure to also plot the provided data point for each
operator.
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Operator Repressor # Measured Fold-change
O1 260 2.77 × 10−3

O2 260 1.24 × 10−2

O3 260 4.77 × 10−1

Table 1: Fold-change measurements from lacZ assays for Question 1b.

Enter real data

It’s finally time to put our predictions to the test! We’ll walk through how
to analyze some fluorescence microscopy data from multiple strains of E. coli.
The strains are identical except for their operator sequence (e.g. their ∆εr)
and repressor copy number (R) regulating our gene of interest, which is a
fluorescent protein. There are 12 “experimental” strains, for each combination
of operator (O1, O2, or O3) and repressor count per cell (22, 60, 124, or 260
molecules). There are also 2 “control” strains per operator: “delta” (which
have 0 repressors) and “auto” (in which the fluorescent gene of interest is
removed entirely). The auto strains are necessary because cells can display a
low level of basal fluorescence even without the protein, a phenomenon called
autofluorescence.

We assume that the amount of fluorescent protein is proportional to the
total fluorescence of the cell. However, autofluorescence throws a wrench into
this proportionality. So, to get an accurate measurement, we subtract off
the average autofluorescence from the total fluorescence intensity of the cells.
Hence our empirical formula for fold-change is

fold-change = ⟨IR ̸=0⟩ − ⟨Iauto⟩
⟨Idelta⟩ − ⟨Iauto⟩

(2)

where each average intensity ⟨I⟩ is the average over all cells in all images for
that particular strain, and all intensities are for strains with the same operator.
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Figure 4: An image analysis workflow for fluorescence microscopy.
All strains of E. coli appear clearly under phase contrast (A), so that image
is used to segment cells from the background. The fluorescence image (B)
provides a readout of the gene expression in each cell. Using it as a mask (D)
allows us to compute the distribution of fluorescence for the entire population
of cells (E). Fold-change is calculated from the mean intensities, as shown in
Figure 3.
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Question 1c

Write a Python function called segment_im that takes as input a phase-
contrast image, and returns an appropriate segmentation mask (as a
binary image). All the concepts you need to do this were covered in the
tutorial, but you will have to think carefully about how to put everything
together. To get you started, we provide a header for you to follow:

def segment_im(im_phase, ip_dist=0.160,
area_bounds=(1, 4), phase_thresh=0.3,
show_mask=False):

All the arguments should be clear from the tutorial except show_mask.
If True, it should create a figure that displays the segmentation
mask overlaid on top of the original image, as demonstrated in the
tutorial. If False (the default behavior), it should skip this step,
increasing speed when processing the over 1000 images in this dataset.
You should demonstrate to your own satisfaction that the function
works as expected by testing it on at least a few images from a few
different strains and visually evaluating the results. As in real science,
there are a few images in the dataset with poor illumination that
will be impossible to segment. Remember that the identification of
single cells (and rejection of cell clusters and other “garbage”) need
not be flawless, but the error rate does need to be sufficiently low
as not to significantly impact the statistical robustness of your re-
sults. We are not asking for rigorous testing here, merely common sense.

For your submission, demonstrate the function on the following list of
images from the dataset:

[‘O1_delta_phase_pos_01.tif’,
‘O2_delta_phase_pos_01.tif’,
‘O3_auto_phase_pos_01.tif’,
‘O1_R60_phase_pos_01.tif’]

by showing us the segmentation mask overlaid on the original image.
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Question 1d

Write a function called extract_intensities that takes as input a
phase contrast image and its associated fluorescent image. It should use
your code from Question 1c to segment the phase image, then use that
mask to compute fluorescent intensities for all segmented cells. The
function should return a list containing the total fluorescent intensities
of all segmented objects.

Demonstrate your function works as expected by plotting histograms of
cell intensities for the corresponding fluorescent images from Question
1c. Again, we enclose a header to get you started:

def extract_intensities(im_phase, im_fluor):
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Question 1e

Write a function called strain_totals that takes as input strings cor-
responding to a single repressor and single operator label in the image
filenames, and returns a list of cell fluorescent intensities for all cells
corresponding to the input labels.
This time we offer a header and a pseudocode sketch of the logic:

def strain_totals(op, rep):
glob to get all filenames with op & rep
for each position:

read images from a single position
get list of single-cell intensities
append single-cell ints into 1 list

return list of intensities for all cells

For instance, op could be ‘O1’, ‘O2’, or ‘O3’ and rep could be any
of ‘delta’, ‘auto’, ‘R22’, ‘R60’, ‘R124’, or ‘R260’. The function
should construct a filename pattern from the input strings, then use
glob.glob to grab all images corresponding to the specified strain.a

Demonstrate your function works as expected by plotting histograms of
cell fluorescent intensities for the O1 auto, O2 auto, O2 delta, and O3
delta strains. All should be fairly Gaussian distributed, with perhaps a
few outliers on the high intensity side, especially for the delta strains.

aglob returns a list of filenames matching an input string with wildcards. For
instance, if op = ‘O1’ and rep = ‘delta’ then

glob.glob(op + ‘_’ + rep + ‘_phase*.tif’)
will return a list with all filenames for all phase contrast images for the strain with

O1 operator and no repressors. Note the use of string concatenation to avoid writing
strings by hand, which will also be useful later.

Even with beautiful code, the next problem will take some time to run
(something on the order of a minute, depending on your computer and your
exact code implementation). This can make debugging tedious. So, we rec-
ommend you test all your functions above thoroughly and ensure they work
as expected before moving on!

10



Question 1f

Building off the code you’ve written so far, compute the mean fluorescent
intensity for all provided strains. Then, calculate the fold-change in
expression for all repressor copy numbers and operator sequences.
A good idea would be to define some lists like

ops = [’O1’, ’O2’, ’O3’]
rep_names = [’R22’, ’R60’, ’R124’, ’R260’]
rep_nums = [22, 60, 124, 260]

to help with any loops. A pseudocode sketch might go something like

predefine storage arrays
loop over operators:

compute auto & delta means
loop over repressor #:

compute mean intensity
compute fold-change and store it

Your code should return the fold-change values in a 2D array. Remember
that we need to subtract off the autofluorescence as specified in Equation
(2).

Question 1g

Replot your prediction curves from Question 1b, but now overlay all the
fold-change results from the microscopy data you just analyzed. Your
results should fit the predictions reasonably well, with the exception
of a few data points. Briefly discuss the possible experimental and/or
computational reasons for these outliers.

(Hint: it may be informative to examine the mean fluorescent intensity
of each strain, from before you computed fold-changes.)
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Figure 5: Some of the many determinations of Avogadro’s number
from independent experimental techniques! From Atoms, Jean Perrin,
1913.

Revisiting ∆εr: least-squares regression

You have now seen firsthand that we have a great deal of gene expression data,
on a variety of strains, produced via orthogonal and complementary methods
(single-cell fluorescence and a bulk enzymatic assay). Once again, we note
that comparing independent, empirical determinations of a single quantity is
an important part of building scientific understanding. An excellent historical
example of this is shown in Figure 5, presending Jean Perrin’s curation of
many efforts to calculate Avogadro’s constant using wildly different physical
approaches.

You made a prediction in Question 1b for where the data points analyzed
in Question 1f should land. The agreement — or lack thereof — between that
prediction and the results is some measure of our confidence in the theory’s
correctness. But we would like something stronger. Since we have measure-
ments of fold-change from microscopy and from lacZ assays, can we compare
these two independent determinations of the same quantity against each other
to test our theory more decisively? What do we need to know to do so?
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Since we are able to measure repressor copy number R independently with
other experiments, the only unknown parameter in our theory seems to be
∆εr. In Question 1b, we inferred the binding energies ∆εr for each operator
by considering bulk lacZ assays for a single strain for each operator. But we
have data from many similar experiments on (otherwise identical) strains with
different repressor copy numbers. There was nothing special about the strains
we used above. Each of these independent experiments contains information
about its respective ∆εr.

There are a variety of valid ways of thinking about this data. One common
approach is to use least-squares, like we did in class, to fit all the data at once.
In other words, we can pool all the data — from microscopy experiments
and lacZ assays alike — and perform least-squares regression on the entire
combined dataset to determine ∆εr. The theory is then judged by the goodness
of fit of all the data to this theory fit.

Here we propose an (arguably) more satisfying alternative: use the data
from one independent experiment to determine best fit model parameters, then
take this as a prediction that the other experiment must agree with if we are
to believe the theory. In other words, take all the lacZ data for each operator
and do least-squares to infer ∆εr for each operator. This provides a prediction
that the microscopy data should agree with. (This is similar in spirit to many
of the cross-validation techniques common in statistics and machine learning.
Those methods typically require careful consideration of how to split data
into subsets for training, testing, and validation. Here, we can be simplistic
and choose a higher bar: that completely different experimental methods for
measuring the same quantity should yield comparable results.)
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Question 1h

Rather than inferring ∆εr from a single datum, use the least-squares
techniques you learned in the tutorial to fit ∆εr using all the lacZ
assay data for each operator. Download the data in lacZ_data.csv
from the course website and load it using pandas. As in the tutorial,
treat all the strains with O1 and any R as a dataset and perform
least-squares to infer a ∆εr for O1. Then repeat this process for O2
and O3. Note that since fold-change is a multiplicative quantity, you
should do least-squares fitting on the log of the fold-change, rather than
fold-change itself. This is because fractional — not absolute — changes
are what matter when discussing fold-changes.

How do the ∆εr values compare to the values you obtained by merely
fitting a single point? Comment briefly.

Question 1i

The relationship between bulk lacZ measurements and single-cell mi-
croscopy experiments is not one-way. In this problem, reverse your
analysis from the preceding question. In other words, use least-squares
fitting to infer a binding energy for each operator from the microscopy
fold-change data, and compare it to the lacZ numbers. How different
are the inferred binding energies this time around? Can you explain any
discrepancies?

14



Question 1j

This is it — the grand finale! It’s time to plot everything you’ve
calculated so far in one masterful graph.a

Plot the fold-change theory curves for each operator using your ∆εr’s
from Questions 1h and 1i. Also plot all the lacZ data points from the
datafile, and all of the microscopy results from 1f. Now that you have
everything in one place, comment on the agreement — or lack thereof —
between the two experimental approaches (fluorescence versus LacZ). If
there is disagreement, can you hypothesize whether it indicates a fault
in the theory or in the measurements?

aTo keep things visually clear, choose a different color for each operator, a different
line style for the two theory curves, and a different dot style for the two experiment
types. If you’re using matplotlib, all of these options can be set with keyword
arguments, e.g. color=‘r’ will make that command’s output red, marker=‘v’ will
make the datapoints into triangles, and linestyle=‘–’ will connect points with a
dashed line.
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