
Calibrating a microscope using a calibration target

Hernan G. Garcia

March 30, 2009

1 Introduction

When we take an image using a CCD all distances are given in pixels, the
fundamental spatial unit of a digital camera. Of course, we can guess the size
of what we’re looking at from the supposed magnification of the scope (the
magnification of the objective that was chosen). This tutorial will walk you
through calibrating a microscope such that you can include a scale bar on all
your images. Unfortunately, even though widespread, this is not common
practice in all biology. You’ll often find images on text books without any
scale bars.

2 Taking a good image

You will take an image of your calibration target using Micro-Manager (refer
to the Micro-Manager manual and the TAs!). The calibration target is a
cross with lines spaced every 10 µm. Notice that the targets we have already
come with a coverslip on top of the slide. We will always image through the
coverslip. For 100x imaging we’ll have to put oil on it. When you’re done
imaging make sure you wipe the oil off using a cotton swab and isopropanol.
You can find both of these cleaning supplies in the drawers underneath the
microscopes.

Fig. 2.1 shows two representative images of the same calibration target.
Both images are good enough for the purposes of calibration. On the one
hand, there’s a clear aesthetic difference between the two of them. On the
other hand, the one that looks “nicer” is a little bit crooked. The image on
the left presents some “bubbles” which could be due to the coverslip being
dirty.

1

(B)(A)

Figure 2.1: Brighfield images of a calibration target at 100x magnification.
Both images are acceptable for calibration purposes. (B) just looks a little
bit nicer than (A), probably because the coverslip in (A) wasn’t cleaned
properly. However, (A) is clearly a little bit crooked.

3 Loading the images in Matlab

As you have seen already in the microscopy tutorial, images can come in
different bit depths. Most of the digital cameras you will use throughout
the course have a native bit depth of 16 bits. This means that Windows
won’t be able to display them using the standard viewers. However, ImageJ
and Matlab won’t have any problems.

We start in Matlab by going to the folder where you have your image.
This can be done by clicking on the “...” to the right of the white bar and
just browsing for the folder. First, we load the image using the command
imread and put it in the variable Im

Im = imread(’100xTarget.tif’);

Now, remember that a 16 bit image has 216 = 65536 levels of grey, but that
your screen has only 28 = 256 levels. If we want to display the image on the
screen we’ll have to tell Matlab how to scale the image down to the screen
bit depth. For example, if you type

imshow(Im);

2

you’ll just see a black image. The command imshow has a way of inputting
the bit depth scaling. One option, for example, is to do

imshow(Im,[]);

This tells Matlab to grab the brightest pixel in the image and assign it a
brightness of 1 and to grab the darkest one and assign it a brightness of
0. Matlab uses the [0, 1] range for displaying images. Alternatively, one
can specify the scaling by giving the thresholds between the [] in imshow.
Please, refer to the help in order to learn a little bit more about it.

4 Measuring distances and calibrating

Now that we have successfully displayed the image we want to measure dis-
tances. We could write a really fancy algorithm for automatically finding
the position of the bars. However, sometimes it’s easier to do things man-
ually. Matlab has a function called ginput, which allows you to click on
different parts of the image and which returns the coordinates of where the
clicks where made. We ask for two clicks and put the information in the
variable Pos

Pos = ginput(2);

An example of where to click is shown in fig. 4.1. You want to click on the
two bars that are the farthest apart from each other. This should decrease
the error in finding the position of the edge of each mark.

The variable Pos is a matrix. Each row corresponds to a click of the
mouse. The first column gives the x-coordinate and the second column
gives the y-coordinate. Calculating the distance between the two points is
just a matter of geometry

sqrt((Pos(1,1)-Pos(2,1))^2+(Pos(1,2)-Pos(2,2))^2);

In this particular case we get 928 pixels. This corresponds to six divisions
or 60 µm. Therefore, the calibration factor is 0.065 µm/pixel. Now you
can go back to your images and do a sanity check. For example, given this
calibration factor, do the images you took of E. coli make sense?

5 Adding a scale bar

Adding a scale bar is relatively easy. One approach is to just set some pixels
to 1, which is white. In the case of our image, its size in pixels is 1024x1344.
This can be found out using the command

3

First mouse click

Second mouse click

6 divisions

Figure 4.1: Using ginput to measure the distance between marks on the
calibration slide. ginput is used to click on two different marks. The func-
tion outputs the coordinates of the clicks allowing us to compare distances
in pixels with distances in µm.

4

size(Im)

This command gives the size of the matrix with the image. The first number
corresponds to the number of rows (y-coordinate) and the second one is the
number of columns (x-coordinate). Let’s make a 10 µm scale bar, which
corresponds to 154 pixels. First, we copy the image to a new variable. We
also use the command mat2gray to convert the image directly to the [0, 1]
range

ImScale=mat2gray(Im);

Notice that if you do

imshow(ImScale)

you don’t need to add the [] as an option of imshow. This is because
mat2gray has already rescaled the image for the [0, 1] range.

Now, let’s make a bar that is 154 pixels wide and 10 pixels in height and
locate it on the lower-right edge of the image

ImScale(950:959,1100:1253)=ones(10,154);
imshow(ImScale)

Finally, we can save our newly generated image to a new TIF file

imwrite(ImScale,’ImageScalebar.TIF’,’TIF’);

ImageJ can also add scale bars to images. This can be done by loading
the image and then going to Analyze → Tools → Scale Bar.... From
there everything is pretty self-explanatory.

5

