Bi 1X, Spring 2011

Assignment 3: PCR and Restriction Enzymes

Polymerase Chain Reaction (PCR)

One of the key steps in our experiment is amplifying the environmental genomic DNA that we have extracted from the Caltech ponds. We will achieve this amplification using the ubiquitous process of Polymerase Chain Reaction (PCR). PCR is a powerful technique that, along with restriction enzymes and a couple of other "tools," has transformed modern molecular biology through its ability to amplify specific pieces of DNA, even if there is only a small amount of "template" DNA to start with. As shown in Fig. 1 below, through a repetitive series of temperature cycles, DNA polymerase acts as a molecular Xerox machine copying molecules again and again. The questions of this problem set will familiarize you with the basic breakthrough concept of PCR as well as the restriction enzymes.

References on PCR:

- http://www.idtdna.com/support/technical/TechnicalBulletinPDF/Polymerase Chain Reaction.pdf
- http://www.idtdna.com/support/technical/TechnicalBulletinPDF/A Basic PCR Protocol.pdf

Problem 1: Understanding PCR

A. Templates, amplicons and anchored products in a PCR

While it is true that the total number of molecules in a PCR reaction increases exponentially as a function of the cycle number, closer inspection reveals that this population is actually the sum of three distinct populations at any given moment in the PCR tube: there is the "original template", the "amplicons" and the "anchored products", all of which are targets for further amplification. The original template is simply the original molecule(s) from which we are trying to amplify a certain sequence. The amplicon is the double stranded DNA that stretches from the sequence of the forward primer to the sequence of the reverse primer; this is the desired end product. The anchored product is different from the amplicon in that only one side is bounded by the forward or reverse primers-there is no cue to tell the DNA polymerase when to stop replicating on the other side. Therefore, anchored products have an undetermined length that will be longer than the amplicon length. Note that anchored products are amplified off of the original template, whereas amplicons are actually formed from replication of either anchored products or other amplicons and not of the original template. Figure 1 below depicts the PCR amplification for the first three cycles and shows the original template, the anchored products and the amplicons.
i. How many original templates, anchored products, amplicons and total molecules exist in the PCR tube at the start of the reaction and at the end of the first, second and third cycles (i.e. $\mathbf{n}=\mathbf{0 , 1 , 2}$ and $\mathbf{3}$) in Figure 1? For example, for $n=1$ (at the end of the first
cycle) there is one original (double stranded) template molecule, one anchored product (comprised of two single stranded DNAs) and zero amplicons, for a total of two molecules. You may assume that the amplification efficiency is 100%, i.e., at the end of every cycle the number of molecules exactly doubles (as depicted in Figure 1) and that we start out with one original template molecule and primers in excess.
ii. How many molecules of the various classes exist at the end of the fourth ($n=4$) cycle? Can you write down a general formula for the number of various molecules (template, amplicon, anchored product and total number of molecules) as a function of the cycle number n ? (You can make the same assumptions as in part i)
iii. What is the percent of anchored products out of the total number of molecules after $\mathrm{n}=35$ cycles? Given your result, can anchored products be neglected after $\mathbf{3 5}$ cycles?

Figure $10-27$ part 2 of 2 Essential Cell Biology, 2/e. (© 2004 Garland Science)

Figure 1. The first three cycles in a PCR reaction.

B. The PCR program

Each cycle in the PCR consists of three precisely timed phases that are executed at certain carefully chosen temperatures. Figure 2 is a graph of the imposed reaction temperature as a function of time for any given cycle.
i. Based on Figure 2, draw a schematic diagram of the temperature profile imposed on the PCR reaction as a function of time for the first two cycles.
ii. Briefly explain the purpose of each of the three phases and why the specific temperature was chosen for each phase (you may consult the references listed at the beginning of this problem set).

Figure 2. A typical imposed temperature profile during one cycle of a PCR reaction.

Problem 2: Exponential amplification

PCR is an exponential process: for an ideal reaction, the total number of molecules doubles every cycle. Exponential amplification adds up very quickly and allows us to amplify and detect a minute quantity of template, even a single molecule.
A. Assuming you start out with a single copy of the template, compute the minimum number of cycles required to generate at least 100 ng of amplicon DNA, which is the minimum amount of DNA needed in order to detect the product on an agarose gel. Assume that the template is 1000 base pairs long (1 base pair has a mass of 650 daltons; 1 dalton $=1.66 \cdot 10^{-24} \mathrm{~g}$). You may also assume that the amplification is ideal, i.e., the number of molecules doubles every cycle.
B. Plot a graph of the total mass of amplified molecules (in units of ng) at the end of cycle 35 as a function of the number of initial template molecules for $1,2,3$... 10 initial template molecules. How many template molecules are required to pass the threshold for detection on an agarose gel? (You can make the same assumptions as in part A)

Problem 3: Restriction Enzymes

A. Restriction enzymes are proteins that recognize specific sequences at which they cut the DNA. Two commonly-used restriction enzymes are HindIII and EcoRI.
i. Look up the recognition sequences that these enzymes cut and make a sketch of the pattern of cutting they carry out.

To answer this question go to the Enzyme Finder in the New England Biolabs (NEB) website (http://www.neb.com/nebecomm/EnzymeFinderSearchByName.asp) and enter the name of the restriction enzyme you are interested in (make sure you search by "name"). Find the double-stranded (two rows) sequence; the forward slashes indicate where the backbone of the DNA is cleaved.
ii. Consider the roughly $48,000 \mathrm{bp}$ genome of λ (lambda) phage (a bacterial virus) and make an estimate, based on simple probability arguments, of the lengths of the fragments that you would get if the DNA is cut by either HindIII or EcoRI (remember that lambda DNA is linear). There is a precise mathematical way to do this that you should derive, and it depends upon the length of the recognition sequence. Based on your derivation, explain why a 5 cutter (i.e. a restriction enzyme that recognizes a 5 base pair sequence) will have shorter fragments than an 8 cutter.
B. We did this digestion experiment with lambda DNA in class. In preparation for viewing the digested results next week, find the actual fragment lengths obtained after the lambda genome is treated ("digested") with these restriction enzymes by going to the New England Biolabs website:
http://www.neb.com/nebecomm/tech_reference/restriction_enzymes/sites/Lambda_sites.pdf
Look up the tables that they have for identifying the sites on the lambda genome that are cut by these different enzymes. Calculate the fragment sizes for:
a. a single digestion with Hind III
b. a single digestion with EcoRI
c. a double digestion with both HindIII and EcoRI simultaneously
C. Based on the fragment sizes you found in part B (a. and b.) is the prediction that you made in part A, ii. a good one?
D. Below is an image of a gel electrophoresis sample showing the following (from the left):

Lane 1: a double digestion of λ DNA with HindIII and EcoRI simultaneously.
Lane 2: a single digestion of λ DNA with HindIII
Lane 3: 1kb NEB ladder.

Each horizontal band in the gel corresponds to a fragment of a different size. You can estimate the size of the fragments by comparing them to the fragments in the right most lane (lane 3), which is a sequence of fragments of known size, called a ladder. To obtain the fragment sizes for this ladder (called a 1 kb NEB) look up the following NEB site:
http://www.neb.com/nebecomm/products/productN3232.asp
i. Match the fragment lengths for the ladder based on the website above with the actual pattern of fragments in the right most lane.
ii. Now use the ladder as a reference and try to match the fragment lengths you calculated in part B with the actual bands that appear in the remaining two lanes. Note that for experimental reasons, some of the bands may be too faint to make out. These have been boxed in red on the diagram below. When referring to the gel, make sure you explicitly identify the fragments that you think correspond to your expected results.

