Gene Expression Matlab Tutorial

Daniel Jones

May 4, 2011

1 Introduction

In this tutorial, we will demonstrate how to make quantitative gene expression
measurements in E. coli using fluorescence microscopy. In other words, how to
analyze that data you just acquired. Recall that the particular E. coli we're
looking at have been genetically engineered to express yellow fluorescence pro-
tein (YFP). Our assumption is that the brightness of our cells in the fluorescence
channel is proportional to the level of YFP expression in the cell.

The analysis can be broken into two major parts:

1. Segmentation of cells using the phase contrast image.

2. Cross-referencing the resulting mask with the fluorescence image to quan-
tify the fluorescence intensity of each cell.

2 Segmentation Using Phase Contrast

The approach outlined in this section should look awfully familiar, since it’s
basically the same approach that we used for TPM segmentation. First, we’ll
load the phase contrast image:

im_phase = imread(’phase.tif’);

As before, we will perform threshold by binary thresholding. In this case, the
cells are darker than the background. We can use imtool to explore the pixel
values of our image, in order to find an intermediate value between the dark cell
and bright background:

imtool (im_phase, [1)

It looks like 700 is a reasonable cutoff. We’'ll set all pixels below 700 to 1, and
all pixels above 500 to 0.

Just like last time, we’ll label the mask and use the output of regionprops
to perform quality control on the segmented cells. Recall that regionprops is
a function that take a labeled image and computes properties of the labeled
regions, such as area, centroid, major/minor axes, and many more. For our

purposes, we’ll be content just to look at the areas of detected cells. We’ll want
to get rid of “cells” that are too small, and are hence junk, and “cells” that
are too large, which most likely correspond to cell clumps that were segmented
together.

maskL = bwlabel (mask) ;
props = regionprops(maskL,’Area’);
areas = [props.Area];

The variable areas is a vector whose elements are the areas of each of the
detected cells. We can use Matlab’s hist command to explore the distribution
of areas of detected cells. From doing so, it appears that the sweet spot for cells
areas is between 250 and 550 pixels. So next, we will implement a filter that
deletes all detected cells outside of this range. In addition, we’ll use Matlab’s
imclearborder

area_ub = 500; % upper bound
area_lb = 250; % lower bound
for i=1:length(areas)
if areas(i)<area_lb || areas(i)>area_ub
mask (maskL==i) = 0; % what does this do?
end
end
% While we’re at it, clear any cells on the border (so we don’t have ones
% that are half cut off)
mask = imclearborder (mask) ;
figure; imshow(mask) 7% much better!

Finally, relabel the mask. We’ll use this in the next section.
maskL = bwlabel (mask);

Now we have a pretty good looking mask. It’s time to use it to compute
integrated fluorescence intensities of our cells.

3 Computing Fluorescence Intensities

First, we need to load our fluorescence image.
im_fluo = imread(’fluorescence.tif’);

The developers of Matlab, in their wisdom, anticipated the situation in which
a labeled mask is cross-referenced to some other image. The syntax

STATS = regionprops(L, I,properties)

will compute properties of the image I using the label matrix L. Which proper-
ties are we interested in? Recall that we are looking for the integrated intensities
(i.e., sum of all the pixels) of each of the detected cells. So if we know the mean
fluorescence intensity of each cell, and the area of each cell, we can simply
multiply the two to get the total (integrated) intensity.

% get regionprops of fluorescence image, using previously generated labeled
% mask

fluo_props = regionprops(maskL,im_fluo,’Area’,’MeanIntensity’);

areas = [fluo_props.Areal;

means = [fluo_props.MeanIntensity];

integrated_intensities = areas.*means;

Why did we write “areas.*means” instead of simply “areas*means”?

The vector integrated_intensities essentially quantifies the level of gene ex-
pression in each detected cell. It is a single-cell level measurement of gene
expression. In the end, however, we’ll only be using the mean level of gene
expression in all cells from a given pad. To get that, we simply do:

mean_intensity = mean(integrated_intensities);

There’s one important point that we’ve neglected so far. We’ve pretended
that the fluorescence value of a pixel comes entirely from YFP. But even cells
with no YFP are not completely dark in the fluorescence channel. Instead, they
exhibit what we call cellular autofluorescence. Let I be the fluorescence
intensity of a pixel inside a cell. Then

I= Iautoﬂuo + IYFP

where I utofiue 18 the contribution due to autofluorescence, and Iygp is the
contribution due to YFP.

In order to correctly compute YFP expression, we need to subtract out this
cellular autofluorescence. How do we know what value to subtract? This is what
your control sample is for. You can use it to compute the average contribution
from autofluorescence by finding the average fluorescence value of pixels inside
your control cells. Once you know this autofluorescence value, you can replace
the line

integrated_intensities = areas.*means;
with

integrated_intensities = areas.*(means-mean_autofluo);

where mean_autofluo is a variable containing the mean pixel value for autoflu-
orescence (how does this work?).

