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0.1 Mathematical Toolbox

0.1.1 The Binomial Distribution

The binomial distribution is a discrete probability distribution used for characterizing
the probability of binary events, such as a coin toss.

Here’s an example:

You are a basketball player and you want to see the probability that you will make 3 out
of 5 free throws in your practices. From your previous practices, you know roughly the
chance of making each free throw, p. Let’s assume that your skills are neither improving
nor declining such that p remains a constant and can be obtained from your previous
practices.

There are two concepts one must combine to answer this question:1) the individual
probability of making 3 out of 5 shots, m, and 2) the number of different ways that you
can get 3 successes and 2 failures exactly.

The first point can be calculated by

m = p3(1− p)2. (1)

The second point can be calculated by realizing that this is a combination problem. You
have to note that for combination problems, the sequence of events isn’t so specific so
the number of different sequences is always less than it would for permutation problems.
In other words, it doesn’t make a difference in our counting if you tell us you have made
the 1st, 2nd, and 3rd shots or you tell us that you made the 3rd, 2nd, and 1st shots. In
a permutation problem, this subtle difference would be accounted for. In this example,
it doesn’t even make any physical sense for you to make the 3rd, 2nd, and 1st shots in
this order unless you could reverse the passage of time.

Hence to reduce the number of possible outcomes, we have to divide by the redundant
counts, 3!, such that (

5

3

)
=

5!

(5− 3)!(3)!
. (2)

More generally,
(
N
n

)
denotes choosing n out of all possible N outcomes, namely,

(
N

n

)
=

N !

(N − n)!(n)!
. (3)

Now we can put the first and second part of our calculations together to arrive at the
probability, B(5, 3) that you will make 3 out of 5 shots. For this problem, let’s consider
the probability of making a shot is 0.2 for every shot. Hence, the total probability of you
making 3 out of 5 free throws is

B(5, 3) =
5!

(5− 3)!(3)!
(0.2)3(0.8)2. (4)
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And, if you were curious to get probability values for various numbers of successes out of
various number of trials, to help you in betting with your friends, then you would build
a probability distribution using this general formula

B(N, n) =
N !

(N − n)!(n)!
pn(1− p)N−n. (5)

0.1.2 Derivation of the Poisson Distribution From the Bino-
mial

The Poisson distribution, P (λ) is a great tool for characterizing low probability events
that occur in large sample sizes or in large number of trials. And it can be derived as an
approximation of the binomial distribution, when N is large and p is small. Let’s put p
in terms of λ,

p =
λ

N
, (6)

where λ is the average number of successes out of N trials.

Let’s substitute λ
N

in place of p so that

P (λ) =
N(N − 1) · · · (N − n+ 1)

n!

( λ
N

)n
(1− λ

N
)N−n. (7)

This is approximately

P (λ) ≈ λn

n!

(
1− λ

N

)N
, (8)

if n is small relative to N. When N is large,

P (λ) ≈ λn

n!
e−λ. (9)

Use

lim
N→∞

(1 +
1

N
)
N

= e, (10)

as the starting point for deriving the e−λ statement in the above equation

0.1.3 Expected Value

Let’s revisit the basketball example. Based on many rounds of practice, you have deter-
mined the probabilities of making 0/5,1/5, 2/5, 3/5, 4/5, and 5/5 shots. The probabilities
are 0, 0.15, 0.2, 0.25, 0.3 and 0.1, respectively. What is your expectation of the number
of shots you will make on average in a practice session? We multiply each outcome by
its probability and sum over all outcomes resulting in

0.0(0) + 0.15(1) + 0.2(2) + 0.25(3) + 0.3(4) + 0.1(5) = 3. (11)
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You should expect to make 3 out of 5 shots on average. Here, we’re essentially weighting
the contribution of each event by the probability of its occurrence to arrive at the expected
value.

More generally, the Expected Value can be calculated using:

E(X) =
∑
x∈ω

xm(x) (12)

where X is a discrete random variable found in the sample space ω with a probability
distribution function m(x). This equation applies only if the sum is convergent. How is
the expected value different from the mean? The limit of the sample mean converges to
the expected value as the sample size approaches ∞.

The expected value has a couple of interesting properties. For example, let’s reconsider
the basketball example, wherein every practice session constitutes 5 free-throws. Let’s say
that you now toss a die after every practice session and record both the number of shots
you made during that practice and the number of points you got in the die toss. You add
your score and the die score at the end of every practice session and develop an expected
value for the sum of these two variables at the end of many many practice sessions.
Alternatively you could simply add the expectation value of the number of basketball
shots, which you already calculated to be 3, to the expected value of the die toss which
can be calculated as follows: 1/6(1) + 1/6(2) + 1/6(3) + 1/6(4) + 1/6(5) + 1/6(6) = 3.5.
Hence, the expected value of the two scores is 3 + 3.5 = 6. This is also true if you were
to multiply the scores. This can be written more formally as

E(X + Y ) = E(X) + E(Y ), (13)

and
E(X · Y ) = E(X) · E(Y ), (14)

where Y is another random variable with a separate probability distribution. Note:
these properties hold true only when X and Y are independent of each other. Another
interesting property is that if you multiply your basketball score every time by a constant,
c, and calculate the expected value for the multiplied scores, you will see that you have
done more work than you had to. You could simply multiply your previous expected
value by the constant.

E(cX) = cE(X) (15)

This
E(φ(X)) =

∑
x∈ω

φ(X)m(X) (16)

represents a very useful property of the expected value which we will use in derivations
of the variance. Note that φ(X) represents a function of X.

For proof of these equations and more examples, click here.
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0.1.4 Variance

Variance V (X) is a measure of the deviation of a sample or many from a predicted,
expected value. Let’s say that you had 4 basketball practice sessions and in all practice
sessions you only got 1/5 shots. How much does the result of this set of practice sessions
deviate from the expected value of 3 shots per session?

V (X) =
∑

(X − µ)2︸ ︷︷ ︸
part 1

m(X)︸ ︷︷ ︸
part 2

(17)

Where µ is mean of a population and can be used as a proxy for the expected value when
dealing with large sample sizes. Use Figure 1 as a visual aid to understand part 1 of
the above equation. Note, the distance of each sample from the mean is squared because
we want a positive value, and this is represented as the area of the squares you see in
figure 1. Note, we have reduced the number of shots to two in the visual example, for
simplicity.

Figure 1: A visual representation of (X − µ)2. Orange dots X1 and X2 represent two
samples, and the vectors represent their distances from the mean. The areas of squares
represent (X − µ)2 for each sample.

You can use Figure 2, as a visual aid for the second part of the above equation, where the
variance of each event is scaled by the probability of its occurrence. In the event where
the probability of the events are equal, we simply divide the sum of the squares by the
number of samples included in our variance calculations.

Going back to our basketball player example, here’s how we can calculate the variance of
the distribution:

V (X) = (0−3)2(0)+(1−3)2(0.15)+(2−3)2(0.2)+(3−3)2(0.25)+(4−3)2(0.3)+(5−3)2(0.1)
(18)

The variance also has interesting properties:

V (cX) = c2V (X) (19)
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Figure 2: A visual representation of variance for samples X1 and X2. The squares
from the previous figure have been scaled by the probability of each sample P1 and P2

which together comprise the probability distribution m(x) in the variance equation.The
collective variance of these two samples is the sum of the scaled areas of these two squares.

V (X + c) = V (X) (20)

where c, is a constant.

Here is another property of variance,

V (X + Y ) = V (X) + V (Y ) (21)

where Y is another random variable, and X and Y are independent. For proof of these
properties, you can refer here.

Recall,

E(φ(X)) =
∑
x∈ω

φ(X)m(X) (22)

where φ(X) represents a function of X. By this property of the expected value, we can
rewrite our equation for variance, namely,

V (X) =
∑

(X − µ)2m(X) = E((X − µ)2). (23)

We can further simplify the expression for variance to

V (X) = E((X − µ)2) = E(X2 − 2µX + µ2). (24)
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In the case when dealing with large number of samples, E(X) = µ, the mean of the sample
as previously discussed. Here you can see the many but same faces of variance:

V (X) = E(X2)− 2µE(X) + µ2 = E(X2)− µ2 = E(X2)− [E(X)]2. (25)

Moreover, Standard Deviation, D(X), is simply
√
V (X).

0.1.5 Expected Value and Variance of the Poisson Distribu-
tion

Recall the Poisson Distribution is P (n, λ) = λne−λ

n!
. Now let’s calculate it’s expectation

value according to E(X) =
∑

x∈ω xm(x). Let’s get the expression for E(X) in a form
in which we can use the properties of ex when it’s expanded out as an infinite sum.
Specifically, we have

E(X) =
∞∑
n=0

nP (X = n, λ) =
∞∑
n=1

n
λne−λ

n!
(26)

=
∞∑
n=1

λ
λ(n−1)e−λ

(n− 1)!
(27)

= λ
∞∑
n=0

λne−λ

n!
. (28)

Now recall that
∞∑
n=0

λn

n!
= en. (29)

Hence, Equation 28 can be re-written as

E(X) = λ
∞∑
n=0

eλe−λ. (30)

Finally, the expected value of a Poisson distribution is simply

E(X) = λ. (31)

Now, let’s derive the variance for a poisson distribution. Recall variance is

V (X) = E(X2)︸ ︷︷ ︸
part 1

− [E(X)]2︸ ︷︷ ︸
part 2

. (32)

Let’s calculate the first portion of this equation as we already know the second part of
the equation based on our previous calculation of the expected value,

[E(X)]2 = λ2︸ ︷︷ ︸
part 2

. (33)
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E(X2)︸ ︷︷ ︸
part 1

=
∞∑
n=0

n2P (X = n, λ) =
∞∑
n=1

n2λ
ne−λ

n!
(34)

= λ
∞∑
n=1

n
λn−1e−λ

(n− 1)!
(35)

= λ
∞∑
n=0

(n+ 1)
λne−λ

n!
(36)

= λ
∞∑
n=0

(n
λne−λ

n!
+
λne−λ

n!
) (37)

= λ2 + λ. (38)

Thus, we have
V (X) = λ2 + λ︸ ︷︷ ︸

part 1

− λ2︸︷︷︸
part 2

= λ . (39)

Hence, in a Poisson distribution, variance
mean

= 1. This will become a critical concept for
understanding the Luria-Delbruck paper.
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