Luria-Delbruck Fluctuation Test

April 20, 2013



0.1 Pre-Lab

We want to introduce you to one of the most clever and intriguing experiments performed
in the last century in the field of biology, by Luria and Delbruck. It is a demonstration
of how potent the combination of theoretical and experimental approaches can be in the
study of living organisms. Also, this experiment is centered around a unifying theme
in biology, namely evolution. It is a test of two theories of genetic inheritance and it
offers clever methods for calculating the mutation rates of microorganisms. After many
decades, this experiment is still used in molecular biology labs.

To fully appreciate this experiment, you will need to spend some time to read the Ap-
pendix and to look up the following molecular biology terms and techniques if you are
not familiar with them:

1) Bacteria or yeast culturing methods, including plating techniques (selective plates,
agar plates, phage-agar plates, etc), cell counting (hemocytometers).

2) Biological Machineries involved in transcription, the cause of mutations, and mutation
correction mechanisms.

3) Molecular evolution. Jot down mutation rates for different organisms including bac-
teria, different viruses, yeast and other eukaryotes.

0.2 Background

When mutations occur in nature they are often deleterious to the organism. However,
mutations are a critical part of the genetic heritage of living organisms, arising in every
type of organism and allowing life to evolve and adapt to new environments. In 1943, the
question of how microorganisms acquire mutations was described in a famous article by
Salvador Luria and Max Delbruck [1]. At the time, two theories of genetic inheritance
existed. Scientists did not know if mutations arose randomly in the absence of an envi-
ronmental cue, the “mutation hypothesis”, or whether they occur as an adaptive response
to an environmental stimulus, the“acquired immunity hypothesis”. See Figure 1.

To test these two hypotheses, Luria and Delbruck grew many parallel cultures of bacteria
and then plated each culture on phage agar containing viruses known as phages (which
infect and kill nearly all of the bacteria). Although most bacteria are unable to survive
in the presence of phages, often mutations could enable a few survivors to give rise to
resistant mutant colonies. If the acquired immunity hypothesis is correct, mutations occur
only after bacteria come in contact with phages, thus only after plating the bacteria on
phage-agar plates. Under this hypothesis, we would expect a low variance in the number
of resistant colonies that appear on each plate.

However, if the mutations arose randomly prior to phage exposure as bacteria were grow-
ing in the liquid culture, the number of mutations in each culture would vary wildly
as mutations could occur at any time during the liquid culture phase and accumulate
exponentially. Mutations that arise early in the culture will give rise to an exponen-
tially growing population of mutant cells, which will result in large number of resistant
colonies after plating. In contrast, mutations that occur at later times will result in fewer



colony counts after plating. Hence, the mutation hypothesis makes the prediction that
there will be a large variance in the number of resistant colonies coming from different
cultures.
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Figure 1: Luria-Delbruck fluctuation experiment schematic.

0.3 Your Goal

Your task will be to test the two hypotheses of inheritance on cultures of the yeast S.
cerevisiae. Using the mean and variance obtained from number of mutant colonies in
each culture, you will be able to deduce which one of the two hypotheses more accurately
describes the mechanism underlying the rise of mutations. Additionally, we will calculate
the mutation rates in two types of yeast strains, Wild Type and mutator strain. The
mutator strain contains a deletion in one of its DNA repair genes. The logic is that
the mutator strain should have a higher mutation rate and hence should result in more
colonies reflecting a higher proportion of resistant cells.

However, before we delve into methods for calculating mutation rates, let’s take a theoret-
ical look at the two hypotheses (See Figure 2), adapted from Physical Biology of the Cell
by Rob Phillips, et al. The beauty of this approach is that using just three generations of
bacteria, we will be able to distinguish between the variance to mean ratio of mutation
events under these two different hypotheses. To calculate the expected value of muta-
tions, you simply have to note that there are a limited number of outcomes (5 outcomes
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Figure 21.30 Physical Biology of the Cell, 2ed. (© Garland Science 2013)

Figure 2: A theoretical approach to testing Luria-Delbruck mutation hypotheses, adapted
from Physical Biology of the Cell by Rob Phillips, et al.

for the mutation hypothesis, for example, looking at three generations of bacteria). You
also have to note that each outcome has a particular probability. In fact, the probability
of each event will be its weight in the calculation for the expected value (take a look at
the Appendix). So under the mutation hypothesis, the expected number of mutations,
Mmutation; 18

3a + 2a + 2a?

Mmutation = m )

(1)
where a is the probability of a mutation (and is very small). Moreover, the denominator
represents the summation of all the weights, and the numerator is the the number of
mutant cells in each outcome multiplied by the weight of each outcome. Looking at
the acquired immunity hypothesis, you can similarly calculate Mg immunity, the expected
number of mutations, as
2a + 2a? 5

1+2a+a? )
At this point, you can use what you learned about variance from the appendix to calculate
the variance. If you calculate the Fano Factor, the ratio of variance to mean, under both
hypotheses you will see that the mutation hypothesis yields a non-Poissonian Fano-Factor
with its variance greater than the mean whereas the Fano Factor under the opposing
hypothesis will be 1. In the following section, you will learn two different ways in which
Luria and Delbruck were able to obtain the mean, variance, and also the mutation rate of
E. coli. In the lab, you will be able to reproduce their results and test the two hypotheses
using your own data. You will also simulate this experiment using MATLAB as part of
your homework.

Maq.immunity -



0.4 Mutation Rate: Method 1

Bacteria divide into two at every cell division, which for E. coli takes roughly 20 minutes.
Hence, their growth is exponential. Convince yourself that their growth rate at time ¢ is
proportional to their population at time ¢ by a constant, k. Thus, we have

—L — kN, (3)

Now, integrate the above equation to arrive at

L dN,
o= / i = N, (4)
ts

an expression for the total number of bacteria as a function of time. Your integral should
go from t,, the time at which the cultures were inoculated with bacteria to ¢, any arbitrary
time after that. You should obtain an integration constant which you can determine by
noting that at ¢, the cultures are each inoculated with N, bacteria.

Let’s now talk about mutations. Let’s say that a is the mutation rate of a bacterium
during a small time element dt, such that the number of mutations that arise in one cell
during dt is equal to adt. Note a is an unknown. There are two methods by which a can
be derived. In this section we're covering the first method that Luria and Delbruck used,
which is different from the method you will use in class.

You can calculate the total number of mutations dm in dt that come about in a population
of cells by
dm = adtN;. (5)

The number of mutations that arise in a culture of bacteria over longer periods of time
can be obtained by integrating the above expression using ¢, and t as your lower bound
and upper bound, respectively, such that you obtain

my = a(N, — N,). (6)

The above expression should make intuitive sense: as time passes and the population of
bacteria grows, there will be a greater chance that mutations arise both within a cell and
within a culture of cells.

As you may recall from the appendix, the Poisson distribution is used for characterizing
the expectation and variance of rare events in large populations. Naturally, it can be
used here for modeling the number of mutations that arise in large population of cells,
since probability of a mutation is very small (as we will find out in this experiment!).
Hence, our observations of the number of mutations immediately after inoculation could
vary greatly from culture to culture. So Luria and Delbruck came up with a cool way of
excluding the early growth phase from their calculations.

They defined a time, t,, which occurs some time after ¢, at which the culture is large
enough but still not overwhelmed by mutations. Hence the average number of mutations



they expect to arise during the duration of ¢ — ¢, is given by

r=(t—t,)aN;. (7)

So, what is that magic time, ¢,7 Luria and Delbruck defined the time before which only
1 mutation on average has occurred in a group of C' similar cultures, and using

1 =aC(N,, — N), (8)
and the idea that Ny is negligible compared to N;, to arrive at

N, = —. 9)

We can also express V;, in terms of N; by
Nto = Ntei(tito), (10)

where N; is the final number of cells immediately before plating. When solving this
equation, we can substitute Ny, with the right hand side of Equation 9, such that

In(N:Ca) =t —t,. (11)
So, we can substitute ¢t — ¢, back into Equation 7 to obtain

r = aNt 1n<NtCU,). (12)

Note that r, C', and N, are all observables from the experiment. Hence, the value of a
can be calculated using the above equation. This is the first method of calculating the
mutation rate, a.

0.4.1 Mutation Rate: Method 2 (What is used in class)

The second method of obtaining a is equally clever. Luria and Delbruck used the fact that
the number of mutations in a series of C' similar cultures will be distributed according to
the Poisson distribution (See Appendix).

Hence, they used the proportion of plates bearing zero mutations, P,, to solve for A

as
zero-colony plates ~ \° _,

(13)

o — = €
total number of plates 0!

In summary, using this second method, they solved for the mutation rate per basepair
per bacterium, A = a.

Could they have used proportion of plates containing 4 or 5 or 100 colonies, for example?
The answer is no. This is because when you spot 100 colonies on a plate, you don’t
know whether that is due to 100 mutations or 1 that just gave rise to 100 daughter cells.
It’s ambiguous. However, when there are no colonies, we are sure that there were zero
mutations.



0.5 Materials and Methods

Parallel cultures of Wild Type and mutator strains of S. cerevisiae have already been
started for you. To begin the cultures the TAs grew each strain in 96-well plates and
incubated them. During this lab period, you will plate these cultures, and after two or
three days you will be able to count the number of mutant colonies that arise from each
culture. The culture conditions have already been optimized to ensure that a portion of
the plated cultures bear zero mutations, since this information will be used for calculating
mutation rates.

Day 1

You will be given a 96-well plate containing saturated cultures. In order to calculate
the mutation rate of each strain, you will need to determine the total number of cells.
You will count the yeast cells using a hemacytometer. This microscopy device contains
a specialized cell counting chamber which has a grid of known area and depth. Three
separate cultures of each strain of yeast will be counted to determine reproducibility of
the counting method.

Counting Yeast Cells:

Figure 3: Hemocytometer.

1. Sample preparation: Choose a culture and resuspend cells thoroughly by pipetting



up and down. Your cells will be too concentrated for counting so you will need to dilute
them. Your TAs will tell how much to dilute and what media to dilute with. Yeast cells
tend to clump together so you will have to be diligent with your mixing. Once you are
confident that you have a homogenous suspension, you are ready to inject the cells into
your hemacytometer (See Figure 3).

2. Sample injection: Have ready a hemacytometer and your diluted sample. Your goal is
to fill the counting chamber. With a steady hand, pipette 10 uL culture in the injection
area making sure to fill the chamber. This injection technique will be familiar to you from
last week’s single molecule digest when you pipetted fluids into a flow chamber.

3. Cell counting: When you are ready to view your yeast cells place the hemacytometer in
a microscope. Use the Brightfield setting with a 40X objective lens and appropriate phase
contrast. Adjust the focus so that you view a portion of the center square containing 100
small squares. Count cells in the small squares and calculate cells/mL for all 6 cultures.
Using the group data, determine an average cell count for each strain of S. cerevisiae.
The hemacytometer has a depth of 0.02mm. A small square measures 0.lmm x 0.1mm.
The large center square measures 1.0mm x 1.0mm.

Plating Cells: Once the yeast cells are counted, the next step will be to plate 27 cultures
of each strain on dry agar plates containing canavanine, a selective agent that is toxic
to yeast. The dry plates have a textured surface and reduced moisture content that will
provide a good surface for pipetting large-volume spots onto a plate. Begin by pipetting
all 100 pL of culture from a chamber onto a spot on one of the plates. Repeat for another
8 cultures to make a 3x3 grid on the plate. Do this again for 2 more plates, then repeat
for the other strain. You will have spotted a total of 6 plates. Allow the plates to dry
before inverting and placing in the 30 C incubator to grow overnight. Your plates will be
removed from the incubator after 2- 3 days and saved for future analysis.

Figure 4: Plating yeast cultures.

Day 2

Obtain your plates and count colonies for each culture. Record in your lab notebook.
Record the proportion of zero-colony spots, P,.

Time permitting:



Figure 5: Mutator yeast colonies after 17 hours of incubation. Note there are no zero-
colony spots in this figure, which means that this set of data could not be used for calcu-
lations.

Later analysis will include sequencing the CAN1 region of your mutated yeast colonies.
The CAN1 gene produces a protein that carries canavanine across the cell barrier. Mu-
tations in this gene are what allow yeast to survive on the selective media. The TAs will
isolate this gene from your colonies and send the CAN1 PCR product (amplified region
of DNA) for sequencing. You will prepare 3 colonies for the TAs to run PCR on. Label
3 eppendorf tubes and pipette 100 uLi of sterile water into each. Using a culture loop,
carefully pick a single colony and suspend in the water. Give your suspensions to your
TA. Sequence results will be emailed to you. Save for future analysis.

0.6 Post Lab Questions and Data Interpretation

1. Calculate P, and mutation rate for the two types of yeast strains.



2. Build a histogram of your data (number of colonies per spot) and calculate the mean
and variance of the distribution. Is it a Poissonian distribution?

3. What are some of the sources of error in this experiment?

0.6.1 Matlab Questions

In this section, you will explore the difference between two possible models of genetic
mutation: 1) mutations arise as a response to selective pressure (in our case, plating on
selective media), and 2) mutations occur spontaneously during cell division.

For case 2, your TAs have written a Matlab function to simulate a population of cells
starting from 1000 cells and undergoing 7 cell divisions. The function returns the number
of mutants in the population of cells after 7 divisions. Run the simulation 100 times and
compute the mean and variance of the number of mutants observed from each simulation
(hint: a For Loop will be useful here). Next, compute the Fano factor, which is equal
to the variance divided by the mean. This quantity gives a measure of how dispersed or
spread out a probability distribution is. Note that for a Poisson distribution, the variance
is equal to the mean, and thus the Fano factor equals 1 identically.

For case 1, you will write the function to simulate the number of mutants yourself. Say
you have 128000 cells (128000 = 1000 * 27 if you're wondering where that number came
from). Each cell undergoes a mutation with probability 107°. We aren’t dealing with
cell division or anything like that. For each cell in the population of 128000, there is a
10~? probability it will mutate, and a 1 — 1075 probability that it won’t mutate. Your
function should return the number of cells that mutated. Run this simulation 100 times
and compute the mean and variance of the number of mutants. Finally, compute the
Fano factor (variance divided by mean).

How does this Fano factor compare with what you calculated for case 27 Of the two cases
considered here, which is more similar to what your observed experimentally?



