
Matlab Tutorial: Basic Matrix Manipulation;

Merging Fluorescence Channels

Hernan G. Garcia, Daniel L. Jones

April 4, 2013

1 Matrix Manipulations: A Brief Introduction

1.1 Creating a matrix; Accessing Matrix Elements

Let’s create a 5x4 (i.e., 5 rows, 4 columns) matrix consisting of 1’s every-
where:

a = ones(5,4,’uint8’)

a =

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

To refer to the i, jth element of the matrix, use the expression

a(i,j)

For instance, let’s say we want to change the number in the 2nd row, 3rd
column to 4. We would type the following:

a(2,3) = 4

a =

1 1 1 1

1 1 4 1

1

1 1 1 1

1 1 1 1

1 1 1 1

If we didn’t want Matlab to print the updated version of “a” to the screen,
we would have typed

a(2,3) = 4;

where the semicolon at the end of the line tells Matlab to suppress output
to the screen. This becomes important when you’re dealing with images
that have approximately one million matrix elements! You don’t want to sit
there waiting while they are all printed to the screen. Let’s set the element
in row 5, column 2 to 10:

a(5,2) = 10;

1.2 Slice Notation

Matlab also has a convenient “slice” notation that allows us to select ranges
from within a matrix. In general, the expression

a(i:j,s:t)

selects the part of the matrix ranging from rows i to j and columns s to t.
To make this a little more concrete, let’s say we wanted to select the first
two rows of our matrix a. We would type

a(1:2,1:4)

ans =

1 1 1 1

1 1 4 1

Now let’s say we wanted to select the 4th and 5th rows, from the 2nd to the
4th columns:

a(4:5,2:4)

ans =

1 1 1

10 1 1

2

Finally, let’s say we wanted to select the third column of the matrix.
Technically, we would type

a(1:5,3:3)

ans =

1

4

1

1

1

But Matlab has a couple notational shortcuts to make this easier. In prac-
tice, we would probably type

a(:,3)

ans =

1

4

1

1

1

where the “:” in the rows position tells Matlab that we want ALL rows, and
the “3” in the columns position tells Matlab we want column 3 only.

For more one Matlab’s slice notation, see (for instance) http://www.math.ufl.edu/help/matlab-
tutorial/matlab-tutorial.html#SEC11. It is quite flexible and powerful and
frequently allows one to replace what would be nested “for” loops in other
languages with a single line of code.

1.3 The image is a matrix of numbers

In this section we will explore the idea that an image is really just a matrix.
We will create a matrix and learn how to view it as an image using Matlab’s
“imshow” command.

Let’s first create a 500x500 matrix of zeros (don’t forget the semicolon).

img = zeros(500,500,’uint8’);

3

For this “image”, every pixel is equal to zero. So if we look at it, we’d expect
it to be black everywhere:

imshow(img)

which is exactly what we see. To make a more interesting image, let’s create
a bright region by setting some pixels to 15:

img(250:350,250:350) = 15;

Now if we look at our “image”, we can barely see a region of dark grey
pixels:

imshow(img).

Why are our “bright” pixels so dim? Well, because this is an 8 bit image,
our pixels values can range from 0 to 255 (where 255 = 28 - 1). By default,
Matlab takes the brightest possible pixel value of 255 to be white, and
the darkest possible value of 0 to be black, while pixels from 1 to 254 are
progressively brighter shades of gray. 15 is still pretty small compared to
255, and so pixels set to 15 appear quite dark.

The “imshow” command has a convenient syntax to force the brightest
pixel in the current image to display as white, and the darkest pixel to
display as black:

imshow(img,[])

Now the contrast is much improved. Let’s set the upper left corner of the
matrix to an even brighter value:

img(:100,:100) = 30;

Try viewing the image both with and without the automatic contrast ad-
justment:

imshow(img)

figure; imshow(img,[])

2 Scale Bar Calibration

When we take an image using a CCD all distances are given in pixels, the
fundamental spatial unit of a digital camera. Of course, we can guess the size
of what we’re looking at from the supposed magnification of the scope (the
magnification of the objective that was chosen). This tutorial will walk you

4

through calibrating a microscope such that you can include a scale bar on all
your images. Unfortunately, even though widespread, this is not common
practice in all biology. You’ll often find images on text books without any
scale bars.

2.1 Taking a good image

You will take an image of your calibration target using Micro-Manager (refer
to the Micro-Manager manual and the TAs!). The calibration target is a
cross with lines spaced every 10 µm. Notice that the targets we have already
come with a coverslip on top of the slide. We will always image through the
coverslip. For 100x imaging we’ll have to put oil on it. When you’re done
imaging make sure you wipe the oil off using a cotton swab and isopropanol.
You can find both of these cleaning supplies in the drawers underneath the
microscopes.

Fig. 2.1 shows two representative images of the same calibration target.
Both images are good enough for the purposes of calibration. On the one
hand, there’s a clear aesthetic difference between the two of them. On the
other hand, the one that looks “nicer” is a little bit crooked. The image on
the left presents some “bubbles” which could be due to the coverslip being
dirty.

2.2 Loading the images in Matlab

As you have seen already in the microscopy tutorial, images can come in
different bit depths. Most of the digital cameras you will use throughout
the course have a native bit depth of 16 bits. This means that Windows
won’t be able to display them using the standard viewers. However, ImageJ
and Matlab won’t have any problems.

We start in Matlab by going to the folder where you have your image.
This can be done by clicking on the “...” to the right of the white bar and
just browsing for the folder. First, we load the image using the command
imread and put it in the variable Im

Im = imread(’100xTarget.tif’);

Now, remember that a 16 bit image has 216 = 65536 levels of grey, but that
your screen has only 28 = 256 levels. If we want to display the image on the
screen we’ll have to tell Matlab how to scale the image down to the screen
bit depth. For example, if you type

imshow(Im);

5

(B)(A)

Figure 2.1: Brightfield images of a calibration target at 100x magnification.
Both images are acceptable for calibration purposes. (B) just looks a little
bit nicer than (A), probably because the coverslip in (A) wasn’t cleaned
properly. However, (B) is clearly a little bit crooked.

you’ll just see a black image. The command imshow has a way of inputting
the bit depth scaling. One option, for example, is to do

imshow(Im,[]);

This tells Matlab to grab the brightest pixel in the image and assign it a
brightness of 1 and to grab the darkest one and assign it a brightness of
0. Matlab uses the [0, 1] range for displaying images. Alternatively, one
can specify the scaling by giving the thresholds between the [] in imshow.
Please, refer to the help in order to learn a little bit more about it.

2.3 Measuring distances and calibrating

2.3.1 Mouse clicks

Now that we have successfully displayed the image we want to measure dis-
tances. We could write a really fancy algorithm for automatically finding
the position of the bars. However, sometimes it’s easier to do things man-
ually. Matlab has a function called ginput, which allows you to click on
different parts of the image and which returns the coordinates of where the

6

First mouse click

Second mouse click

6 divisions

Figure 2.2: Using ginput to measure the distance between marks on the
calibration slide. ginput is used to click on two different marks. The func-
tion outputs the coordinates of the clicks allowing us to compare distances
in pixels with distances in µm.

clicks where made. We ask for two clicks and put the information in the
variable Pos

Pos = ginput(2);

An example of where to click is shown in fig. 2.2. You want to click on the
two bars that are the farthest apart from each other. This should decrease
the error in finding the position of the edge of each mark.

The variable Pos is a matrix. Each row corresponds to a click of the
mouse. The first column gives the x-coordinate and the second column
gives the y-coordinate. Calculating the distance between the two points is
just a matter of geometry

sqrt((Pos(1,1)-Pos(2,1))^2+(Pos(1,2)-Pos(2,2))^2);

In this particular case we get 386 pixels. This corresponds to five divisions
or 50 µm. Therefore, the calibration factor is 0.13 µm/pixel. Now you can
go back to your images and do a sanity check.

7

Figure 2.3: Pixel intensity vs row number along column number 336 of our
scalebar image.

2.3.2 Plotting a line

Remember that an image is just a matrix. To see how pixel values change as
we traverse an image vertically, we can use Matlab’s slice notation to look
at pixel values in a given column of the matrix. The image is 672 pixels
wide, so let’s look at the column in the middle of the image:

col = Im(:,336);

plot(col)

where the “:” tells Matlab that we want to slice across all rows of the
matrix. As shown in the figure, we can use Matlab’s “Data Cursor” to
select the positions of various troughs in the plots. For instance, we find

8

that there are troughs at 47 pixels and 436 pixels corresponding to marks
that are 50 µm apart. We can thus compute the scale as

x_1 = 47;

x_2 = 436;

scale2 = 50/(x_2-x_1);

This yields a scale of 0.13 µm per pixel, just as we found before.

2.4 Adding a scale bar

Adding a scale bar is relatively easy. One approach is to just set some pixels
to 1, which is white. In the case of our image, its size in pixels is 512x672.
This can be found out using the command

size(Im)

This command gives the size of the matrix with the image. The first number
corresponds to the number of rows (y-coordinate) and the second one is the
number of columns (x-coordinate). Let’s make a 10 µm scale bar, which
corresponds to 10/0.13 = 77 pixels. First, we copy the image to a new
variable. We also use the command mat2gray to convert the image directly
to the [0, 1] range

ImScale=mat2gray(Im);

Notice that if you do

imshow(ImScale)

you don’t need to add the [] as an option of imshow. This is because
mat2gray has already rescaled the image for the [0, 1] range.

Now, let’s make a bar that is 154 pixels wide and 10 pixels in height and
locate it on the lower-right edge of the image

ImScale(950:959,1100:1253) = zeros(10,154);

imshow(ImScale)

Finally, we can save our newly generated image to a new TIF file

imwrite(ImScale,’ImageScalebar.TIF’,’TIF’);

ImageJ can also add scale bars to images. This can be done by loading
the image and then going to Analyze → Tools → Scale Bar.... From
there everything is pretty self-explanatory.

9

2.5 Introduction

In this tutorial we will show how to merge the images of a fluorescent sample
taken using different channels into one composite color image. When quan-
tifying images it is usually better to work with the independent channels.
However, it useful to be able to display all channels at once. Combining dif-
ferent channels can also be useful when looking for colocalization of different
floruophores.

2.6 Loading and setting up the images

We start by loading the images corresponding to the three fluorescent chan-
nels. You’ll be most likely working with a DAPI, FITC, and TRITC snaphots
of the same cell. We’ll assign DAPI to the blue channel, FITC to the green
channel, and TRITC to the red channel. This assignment is related to the
actual wavelengths of the emission of the fluorophores.

ImR=imread(’brain_60x_700ms_TRITC_wheels.tif’);

ImG=imread(’brain_60x_400ms_FITC_wheels.tif’);

ImB=imread(’brain_60x_200ms_DAPI_wheels.tif’);

Remember that these images have a bit depth of 16 bits and that the range
of each pixel goes between 0 and 65535. First, we convert this range to the
[0, 1] range that Matlab uses by applying the function mat2gray

ImR=mat2gray(ImR);

ImG=mat2gray(ImG);

ImB=mat2gray(ImB);

Note that applying this function rescaled each one of the images based on
their minimum and maximum pixel values. After applying this function
we’ve lost the quantitative information stored in the absolute value of each
pixel in each channel. We’ll assume that we’re making an image for display-
ing purposes (in your notebook, for example) so that this rescaling is not of
importance.

2.7 Combining the different images

In order to combine them we’ll use the Matlab function cat. This creates a
structure that can be directly interpreted by imshow as a color image.

ImRGB=cat(3,ImR,ImG,ImB);

Where the “3” in the command is an option to set the dimension of this con-
catenated structure. Finally, we can show the whole image using imshow(ImRGB).

10

