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INTRODUCTION

In embryological development there ate many cells which acquire ‘posi-

tional information’ (see, for example, Wolpert, 1969) and it is plausible

that this is obtained from the concentration of certain unknowii chemicals

(called here morphogens) which are diffusing down concentration gradients

set up by sources and sinks at special places in the embryo. It is thetefore

important to be able to calculate how much time is needed to set tp 4 steady

concentration gradient. This problem has been discussed in a recent paper

(Crick, 1970) which suggests thdt the times available are roughly what might

be expected on theoretical grounds. Here we give the details of various-
calculations quoted in that paper.

The physics and mathematics of diffusion are fairly straight-forward.
The classic references are two books: The Conduction of Heat in Solids,
by Carslaw and Jaeger, 2nd edition, 1959 (here referred to as C. and J.)
and The Mathematics of Diffusion, by J. Crank, 1956. Results which could
not be obtained easily in an algebraical form were calculated by computer.

Although a tissue consists of discrete cells, we have often found it conven-
ient to treat it as a continuous medium, in which the morphogen has a diffu-
sion constant D cm?/s. On the other hand, in calculations on the computer,
this continuous medium has usually been approximated by a series of dis-
crete points. Details of these computations will be given later. Tor rcasons
explained in the earlier paper (Crick, 1970) it is reasonable to calculate
one-dimensional cases, at least in the first instance.

A SIMPLE LINEAR GRADIENT

Mathematically, the simplest model to consider is one having a source at
the origin, holding the concentration there to the value Cy, and a sink at the
point x = L, holding the concentration there to zero. If the diffusion con-
stant, D), is everywhere the same, then after an infinite time the concentra-
tion will tend to the value

C:COLI—_x (0> x> L) (1)
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(Note that this expression does not contain D. However, the flux per unit
area does depend on D, and is given by (DC,/L).)

The concentration will approach this final value asymptotically. To
calculate the amount by which the concentration at any time differs from its
final value we adapt the formula given in C. and J. p. 99, section 3-4, equa-
tion (1). The general value ¢ for the concentration at the point x at time ¢
isgiven by

C=C0

L-x 2Cy 2 1. (nmx s
13 —7n§1ns1n(L)exp( n?m2T)

nnx

e

=1
where c=flx) at t=o,
and thereafter c=C, at x=o0,
c=0 at x=0L.
We have expressed time in a convenient dimensionless form by putting
T = (Dt/L?).

In the first instance let us assume that the initial concentration is every-
where zero (i.e. f(x) = 0). Then at any given time the maximum value of
AC, the difference between the concentration and its final value, is at the
midpoint x = 3L, because of the symmetry of the problem. For this special
case the value of AC is given by

L2 S L T (P
AC = "nglnsmzexp( n*m®T). (3)

If we only consider cases in which AC is small, we need take no more than
the first two terms, so that

AC = =200 exp (— mT) ~Jexp(~9mT) .. )

and usually the first term alone will suffice. In Fig. 1 we plot the value of
|AC/Cy| against T (for the middle point). For example, if |AC/C| is taken
as 19, then 7 has the value of o-42.

We have also computed the whole course of the concentration curve
for certain selected values of T, using equation (2).

Linear gradient with initial constant background

A smaller value of T (for a chosen value of AC/C,) can be obtained if
we allow the tissue to have a uniform concentration of the morphogen at time
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zero. Let this be aCy. To be of any advantage @ must be less than unity.
In this case equation (z) becomes

_AC_ 2 & aft—cosnm)—1 si,,(ﬁz_x)exp(_,,z,,zr). (5)

Co 73y n
It is only necessary to take the first two terms of this series, since for the
particular times we are interested in, the third and higher terms are neglig-
ible (for T'= o1, n = 3, exp(—n?n2T) = 2 x 10~7). For the special case

0-00 L 1 L L R |
0-20 0-25 0-30 038 0-40 0-45 0-50 0-55 0-60 0-65 0-70
Time T

Fig. 1. AC/C, for the mid-point of the gradient as it approaches its final value.

a =} the term having n = 1 is zero, and the maximum value of |AC|
occurs at the points x/L = } or }. It turns out that for values of « less than
unity but not too close to a = } (that is, when « is between o and o4, or
06 and 1-0) we can neglect all but the first term. For |AC/C,| = o-o1 we
easily derive the explicit equations:

x { 200

= Yot T=Lbop, 21,
x

t - =

: =1 T=nizloge E?JZ_(Z&—-I)

or =}

where T'is, in this case, the time at which |[AC/Cy| is 1%, at the point under
consideration. By symmetry, 7' for x/L = } with initial background oC, will
be the same as T for x/L = § with initial background (1 —a) C,. The values
thus obtained are set out in Table 1.
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Fig. 2. Time taken for the concentration at all points to come within 1 % of their
final values, for different initial backgrounds (@Cy). ‘

Table 1

Values of T for |AC/C;| equal to o-o1 for the point specified, for various values of
the initial background aC,, calculated using only a single (non-zero) term in the
expansion. The value in brackets is inaccurate.

At At x/L = } (for o < & < 0°5)

a x/L =} or x/L = } (foro's < & < 1-0) a
005 o410 0375 095
o'10 0398 0363 o'go
o1 0'385 0350 o83
0-20 0-369 0°'334 o080
©°25 0351 0315 75
030 0328 0°293 070
035 0299 0264 065
0'40 0258 0223 o-60
045 o188 (o-15) 055

o'50 0000 0-088 0°'50
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For values of & outside the limits 0-45 to o-55 the last point to fall within
the 19 limit is always the mid-point. However, this is not true when
o =}, since AC at the mid-point is at all times zero (because of the sym-
metry), and the last point to fall within the 1 9%, limit is x/L = } or x/L = }.
For values of @ in between 0-45 and o-5 the last point will be somewhere

— — 42 tad T
between x/L = } and x/L = }, and can be roughly estimated. For example,

when a = 0-475 the last point is approximately x/L = 035, when T ~ 0-126.
We then adopt as a criterion the condition that all points on the gradient
must be within 1 %, of the final concentration difference between the ends
of the gradient from their final values, and define 7" as the time taken fot this
to occur. Fig. 2 shows the approximate value of T" for all values of a between
oand 1. The values near @ = }, shown dotted in the curve, have been roughly
estimated from computer calculations for & = 0-45 and & = 0-473.

It will be seen that although a rather small value of 7" can be obtained if
a is exactly 4, the value of 7" rapidly increases if « differs appreciably from
this special value. However, if the level of @ were within + 10%, of this
special value, T” would always be less than o-19.

Other initial conditions

We have shown that if there is zero concentration initially, the time taken to
set up an almost linear gradient is longer than for any other initial UNIFORM
concentration less than C,. By symmetry this time is the same as the time
when the initial concentration is C,, throughout.

We now prove that if the initial concentration has any arbitrary form,
but is always less than C, (and always positive), it takes a shorter time to set
up a nearly linear gradient than the simple case with zero initial background.

The time taken to set up the simple case is approximately 7' = o0-4.

When T = o4, exp(—n®T)=o00193 and exp(—472T)=17x 107"
Looking at the concentration equation (2), the second term is

2G § Zsin (mr ) exp (—n*m2T).
T p=1 1
Whenn = 2and T' & o-4 thisis always numerically less than (17 x 1077) C,/mr
and is clearly negligible.

Whenn > 3 and T » o-4 the terms are very much smaller. Looking at the

third term of the equation (2), since

o < f{x) < Cy by definition

nnx

L

ff(r)dx ff(x sm(I

and -1 <sm( )<+1 for all x and n,

)a’x < ’f(x) dx
0
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L
and f f(x)dx is clearly less than C, L,
0
L . (nmx
therefore —C,L < J-o f(x)sin (T) dx < CyL.
2 = . ’71_77_‘x\ e nwx' ,
So Ln};“,lsm( 12 )exp( nnT)J f(x)sm( T )dx

is also negligible for n > 2 when T is as great as 04.
So the concentration function ignoring # > 2 is

CO(LL X) 2sm(L)eXP( "ST)[__—_[ Sl )sln( ) ]

AC = 2sm(L)exp( m*T) [———I f(x)(sm—) dx] (6)
When f(x) = o, initially we get

thus

|AC| = —sm (ﬂ )exp( m2T),
as before, but o< flx') < Cy
and 0 < sin (%x) <1 forallxintherange o<x<L

therefore o<f f(x)sm(L)dx CJ sm( )dx\ (';TL.

Putting this in equation (6)

|AC| < == sm (Z}:’f) exp (—n2T)

and the equality is obviously the simple case f(x) = o initially. So no initial
conditions, subject to the restrictions o < f(x) < C, for o < x < L, will pro-
duce longer times to set up a linear gradient than the case of initial uniform
concentration of zero, provided that our criterion for setting up the gradient
is such that |AC/Cy| is a small percentage.
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SOME SPECIAL CASES

Qb Locnnndinas
L)LCIJ _’uncuuu

For times shorter than T = o4 the terms in n = 2 will not be negligible.
In particular, the term when n = 2 is

sin (2172 ) exp (—4m2T) [Lf f(x')sin (27rx ) A — ”]

Clearly the largest possible value this can have at any time, within the con-
ditions imposed on f{), will occur when

L '
Zz f f(x')sin (2—’1’}) dx’'
0

is as large, negatively as possible. ‘

As the function sin (277x'/L) is negative only for x/L > }, arid f(x) is always
positive, the function which would give the largest possible valie to this

term is the step function: '

fix)=o0 for o

flx)=C, for %

This integrates to give

< /L<§
<L

- !'E (cos nm —cos 4nm).
As far as n = 2 we get from equation (2)
= 3% (7%) exp (- amT
AC = 7T:%ln(L)exp( 4m2T)

(the term in 7 = 1 cancels to zero). When x/L = } clearly AC = o for all 7.
So we must examine the point x/L = }. When this is within o-01 C, of its
final value, we get

3%sm( )exp( 4mT) = VC—

100’

1 3oo
Tx -, log,
anilo8

X O 1l
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Reverse gradient
If we start with f{x) = (x/L) C, (that is an exact reverse of the final gradient)
and calculate concentration function as far as n = 2, from equation (2)

|AC| = 2—g"sin (Z—Z—"f) exp (—4mT).

Again the centre point is always 3C,, so we examine x/L = }:

Gy _ 2C,exp(—4n°T)

100 7r
I 200
Tr-——y5 log,—
4m m
I 0'105.

As we have shown, when T = o°1, exp (— 97%T) = 2 x 1077 so the third and
higher terms of equation (2) are negligible.

SUMMARY
Time to within
Initial concentration (Co/100)%, of Point No. of
function f(x) final value considered terms

f(x) =oall x 042 xL=1% 3
fx) = 3Cy all x 009 x/L =} 2
S@x) = #Co all x o041 x/L =} 1
Step function

fix) =0, 0< x/L <} o114 %/L =} 2

f) =Co, t < x/L <1

Reverse step function
f(x) = Cp,0 < x[L < } 009 x/L =} 2
Jix) =0, <x/L <1

Reverse gradient
f(x) = Co x/L 0105 x/L =} 2

Flux required to maintain the gradient

This can be expressed in a very simple manner. Once the gradient has been
established the amount of the morphogen in the tissue, provided the sink
holds the morphogen concentration at zero, is clearly $Cy LA, where A4 is
the area of the tissue perpendicular to the gradient. The flux needed to
maintain it is (4 DC,)/L. We now calculate the time, ¢;, needed for the source
to produce the amount of morphogen in the tissue at any moment. Since
ADC, 3C,LA
L =
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we obtain ¢, = $L?/D. Thus t, is roughly equal to the time needed to set up
the gradient from scratch to 1%, C, of its final value. In other words, if it
takes three hours to set up a linear gradient to 1 %, the source will need to
produce the amount of morphogen then in the tissue about every three hours.
This assumes that D does not change after the gradient has been set up.

MORE COMPLICATED MODELS

The models so far discussed although convenient for calculation, have the
disadvantage that the flux of the morphogen at the origin has to be very
high at small values of the time. It is therefore necessary to consider other
models in which the flux varies in a way which is biochemically more
realistic.

The obvious type of model to try has a ‘pump’ at the origin producing the
morphogen at a rate which varies with its concentration at that point. The
destruction of the morphogen at the sink is specified in a similar wdy.

We have tried two such models. In the first model the sink destroyed
the morphogen at a rate proportional to the concentration there, so that
the flux at sink was equal to C;, where Cy, is the concentration at the point
x = L and f is a constant. The source produced it according to the formula

flux at source = S(C' —¢,),

where ¢, is the concentration (not necessarily constant) at x = o and C’
is a constant. It is easy to show that under these conditions the final gradient
will run from C' —(f,/f) at x = o to the value f;/f at x = L, where f; is the
final steady flux. If we call the total difference Cp, then

. 2
CRSC ""—g—o»

We have carried out the calculations for various values of m, where m is
the maximum possible value of the ratio initial flux to final flux for the
flux at the origin, and expressed the result as the values of T” for each of
three values of |AC/Cg|, namely 2, 1 and } %, This is for the case of zero
initial background. We have also calculated 7" for the case with a uniform
background equal to the mid-point value of the final gradient and another
with go %, of this value (& = 0-50 and 0-45). All these results are presented in
Table 2. As can be seen, the times are considerably increased over those for
our simple model. (In the simple model Cy, and Cj are the same.) However,
we feel that Nature is quite likely to have evolved a more efficient pump,
with sigmoid rather than linear characteristics. This might be expected to
have the characteristics shown in Fig. 3. We have approximated to this by
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Table 2. Values of T' for the simple pump model

Final values of No Background Background
conen (x C") background o5 Cy 045 C,

r ) - Y r A} g )
m  Source Sink 3% 1% 2% 3% 1% 2% 3% 1% 2%
10 0'go o010 0795 068; 057 016 0135 011 0435 0325 021
25 0-g6 o004 0'58; 051 0'425 013 0'10; 008; 0315 023 0O°I5s
50 098 o002 053 0455 0385 o'115 0095 0°07; 0275 020 013
100 099 00l 0505 044 0365 o011 009 0075 0265 019 012

Table 3. Values of T’ for the sigmotd pump model

Final values of No Background Background
concn ( X Cp) background o5C, o045 C,
(4 A} r N I's ) I's A}

m Source Sink 3% 1% 2% 3% 1% 2% 1% 1% 2%
1'5 1’0 o0 obg; 062 o055 o016 o014y 0125 0365 029 022
20 10 00 058 052 045 013 0I5 0'I0 0315 025 O'I7s
36 10 00 053 046 039 o012 o010 008 028 022 o014
§0 I'0 00 ©°50; 044 036 o011 090 0075 0275 020 013

In both Tables 2 and 3 the value of T" is listed for four values of the pumping
constant, three different initial backgrounds and three values of the maximum
permitted percentage difference from the final value. (m is the maximum possible
value of the ratio of initial flux to final flux at the source.)

15

14

13
w2
%
3
w
12
11
10 t | 1 1
00 02 0-4 06 08 10
Concentration
co

Fig. 3. The flux at the point x = o for sigmoid type of pump. (f, is the final flux
required to maintain a linear gradient from C, to 0.) The dotted line shows the

approximation used.
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mposing a maximum value of the flux, both at the source and the sink,
which operates from time zero onwards. When either the source or the sink
reaches the final concentration (C, and o respectively), the concentration
there is held constant from then on. This is (roughly) equivalent to the dotted

109
® Simple pump model
O Sigmoid pump model

Flux/f,

00 01 0-2 03 0-4 0-5 0-6
Time T

Fig. 4. The flux at the point x = o for both pump models.

line shown in Fig. 3. As in the simple model Cy, = C,. The results for 77,
where |AC/Cyy| are 4,1 or 2%, are shown in Table 3 for @ = o (no back-
ground), @ = 0:50 and @ = 0°45.

Fig. 4 shows the variation of the flux at the origin with time for both the
simple and sigmoid pump models. The cases shown are initial flux equal to
10 times the final flux for the simple pump (m = 10), and a2 maximum value
of 1-5 for the sigmoid pump. These take comparable times to set up a linear
gradient.

29 SEHB 25
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A comparison of Tables 2 and 3 shows that, as expected, the sigmoid
pump is the more efficient; since it can reach a given value of 7" for a lower
value of the initial flux. However, the important point to notice is that for all
the cases considered, the time 7" is not increased grossly above the value for
the ‘mathematical’ model described first.

Table 4. Calculated concentrations for the simple model
At the point x/L = }

Algebraic Reiterative
method method
T = o05 011384 (Cp) 0°11446 (Cy)
o1 026276 026288
01§ 035515 0°35511
o2 0°'41157 0'41148
025 0°44601 0°44591
03 0°46704 046696
o35 047988 047981
o4 0°48762 0°48766
0'45 0'49250 0°49246
o5 049542 049540

With initial background o-5 C, at the point x/L = }

Algebraic Reiterative
method method
T = oo 070578 (Cy) o+70560 (C,)
o1 074386 074376
o015 074915 074912
o2 074988 074988
o-25 074988 074988
o3 075000 075000

The results presented in Tables 2 and 3 were calculated on a computer,
for a model with twenty cells between x = 0 and x = L. The diffusion
equation (dc/0t) = D(9%c/9x%) (where ¢ is concentration; D, diffusion con-
stant) was approximated as a finite difference equation:

c(x, t+0t) = c(x, 1)+ (—?%tz [e(x+ 0x, 2) + c(x — Ox, ) — 2¢(x, 1)) 7)

where ¢(x, t) is the concentration at time ¢ and the point x, ¢ is the time
interval between each step, and dx the distance between each point. We
took D = o-o1, 8x = 0-05L and & = o-01 (the conversion to dimensionless
time gave T = (Dt/L?%) = o-ort). '

The concentrations ¢(o, ) and ¢(L, t) at the source and sink were changed
according to the specifications for the flux of each model. In the simple
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diffusion model, where it was possible to calculate the concentration easily
algebraically, we compared the result with those obtained by the reiterative

" process using equation (7). These are shown in Table 4.

For the times we are interested in, the error is fairly small (although

10
09 -
08

07

Concentration

03+

0-2 -

o1 |

0-0 1 t | 1 L 1 ! 1
00 01 02 03 0-4 05 0-6 07 0-8 0-9 10
r (distance from centre of sphere)

Fig. 5. The final gradients for the 3D cases.

slightly larger for cases with initial background of o-5 C,) where the con-
centrations reached the required values at small values of 7.

So far our results have been for one-dimensional systems. However,
our general conclusion is likely to apply equally well to systems having two
or three dimensions. To illustrate this we have calculated the three-dimen-
sional case of a hollow sphere. The inner radius (r;) is held at concentration
Cyandtheouter (7,) at concentration zero. Computation was carried out for the
ratio outer/inner radius ( = r,/r;) either 5:1 or 10:1. The gradients obtained
after infinite time (which naturally are not linear) are graphed in Fig. 5.

29-2
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'The calculations (not reproduced here) show that by the time T' = 045
the concentration is everywhere very close to the final values. In this case we
define T = Dt/(r,—r;)% To compare our results with the linear one-
dimensional case we have arbitrarily considered the point midway between
the outer and inner radius, ¥(r,—7;), and have plotted the approach to
equilibrium with time in Fig. 6. The dotted line in each case shows the
point at which the concentration has the same value as the final value at
a point at a distance of one hundredth of the thickness away, i.e. at a distance

017 -

%/

Concentration
o
o
[~

015 |-
i 1 e —t o 1 J
030 035 0-40 0-45 0-50 0-55 060 0-65
r Time T
;’-: =5 Internal radius 0-2
010

Concentration

o
=)
0
T

-

=\l <o
o~

030 035 0-40 0-45 050 055  0-60
. Time T
;? =10 Internal radius 0-1.

Fig. 6. The chosen point approaches its final value for both cases
of the 3 spherical model.

of (r,—r,;)/100 from the chosen point, since this gives some measure of the
possible error of position which might be produced by an inaccurate
gradient, and corresponds to the criterion adopted for the one-dimensional
linear gradient. As can be seen, T, for this error is about o-35 in both cases.

Although any comparison between the three-dimensional case and the one-
dimensional case is necessarily inexact, these figures show that it takes a
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similar sort of time to set up a gradient whatever the number of dimensions
involved. This is, of course, exactly what one would expect from general
arguments based on the random nature of diffusion.

We thank the Computer Laboratory, Cambridge, for providing facilities
for us on their Titan computer.
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