Single-cell transcription dynamics

In experiments on single cells Golding and Co. measured the number of RNAs produced from a single gene:

![Graphs showing RNA production over time](image)

Are these observations consistent with the simple model of RNA production, where RNA is produced at rate \(r \)? In this experiment RNA is not degraded. Given that the rate of production is \(r \), how many RNAs are produced in a generation time \(T_g \) (\(T_g = 70 \text{ min} \) in Jodo's experiment)

\[
0 \quad at \quad 2r \quad at \quad 3r \quad at \quad 4r \quad \quad (N) \quad at \quad T_g = N = T_g / \Delta t : \# \text{ of time intervals}
\]

\(\frac{r}{\Delta t} \quad \frac{r}{\Delta t} \quad \frac{r}{\Delta t} \quad \frac{r}{\Delta t} \quad \text{probability that an RNA is produced} \)

To produce a single cell trajectory, for every time interval pick a random number between 0 and 1. If this number is less than \(r \), add one RNA. → Write Python code and visually compose trajectories...
To compose our model of RNA production to Jolo's experiments, we expect the probability distribution of m, the number of RNAs produced in time T_g.

\[p(m) = \frac{N!}{m!(N-m)!} \left(\frac{rT_g}{N} \right)^m \left(1 - \frac{rT_g}{N} \right)^{N-m} \]

For $rT_g \ll 1$, $N = \frac{t}{rT_g} \gg m$, since m is of order rT_g (≈ 10 in Jolo's experiment), and these limits the Binomial distribution becomes (it works too!!) Poisson.

\[p(m) = \frac{(rT_g)^m}{m!} e^{-rT_g} \]

\[\langle m \rangle \approx \frac{N}{rT_g} \]

\[\langle m \rangle = e^{-\mu} \sum_{m=1}^{\infty} \frac{\mu^m}{(m-1)!} \]

To compare to Jolo's data we can compute the mean and variance which he measures. (Could also compare the distributions directly as they do in the Zenzkleine et al. paper).
\[
\langle m \rangle = e^{-\mu} \sum_{m=0}^{\infty} \frac{\mu^m}{m!} \left\{ m = m+1; \text{ change of variables} \right. \\
\langle m \rangle = e^{-\mu} \sum_{m=1}^{\infty} \frac{\mu^m}{m!-1} = \mu \\
\]

Mean of the Poisson distribution \(P(m) = \frac{\mu^m}{m!} e^{-\mu} \) is \(\mu \).

Variance

\[
\text{Var } m = \langle m^2 \rangle - \langle m \rangle^2 \\
\langle m^2 \rangle = \sum_{m=0}^{\infty} m^2 \frac{\mu^m}{m!} e^{-\mu} \\
= \sum_{m=0}^{\infty} m^2 \left(m+1 \right) \frac{\mu^{m+1}}{(m+1)!} e^{-\mu} \\
= \sum_{m=0}^{\infty} m^2 \left(m+1 \right) \frac{\mu^{m+1}}{m!} e^{-\mu} \\
= \mu \left(\sum_{m=0}^{\infty} m^2 \frac{\mu^m}{m!} e^{-\mu} + \sum_{m=0}^{\infty} \frac{\mu^m}{m!} e^{-\mu} \right) \\
= \mu \left(\text{from the Mean calculation} \right) \\
\langle m^2 \rangle = \mu (\mu+1) \\
\]

With this result \(m \) hand we compute the variance.

\[
\text{Var } m = \langle m^2 \rangle - \langle m \rangle^2 = \mu (\mu+1) - \mu^2 = \mu! \\
\]

Variance is equal to the mean! This is a key feature of the Poisson distribution.

Odo varies the mean by using different levels of monochin and finds \(\text{Var } m = 4.1 \langle m \rangle \) which disagrees with the prediction of the model. Therefore, transcription is not described as production of RNA at a constant rate. It is bursty!