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Abstract

Despite the central importance of transcriptional regulation in biology, it has proven difficult

to determine the regulatory mechanisms of individual genes, let alone entire gene networks.

It is particularly difficult to decipher the biophysical mechanisms of transcriptional regulation

in living cells and determine the energetic properties of binding sites for transcription factors

and RNA polymerase. In this work, we present a strategy for dissecting transcriptional regu-

latory sequences using in vivo methods (massively parallel reporter assays) to formulate

quantitative models that map a transcription factor binding site’s DNA sequence to transcrip-

tion factor-DNA binding energy. We use these models to predict the binding energies of

transcription factor binding sites to within 1 kBT of their measured values. We further explore

how such a sequence-energy mapping relates to the mechanisms of trancriptional regula-

tion in various promoter contexts. Specifically, we show that our models can be used to

design specific induction responses, analyze the effects of amino acid mutations on

DNA sequence preference, and determine how regulatory context affects a transcription

factor’s sequence specificity.

Author summary

It has been said that we live in the “genomic era,” a time where we can readily sequence

full genomes at will. However, it remains difficult to interpret much of the information

within a genome. This is especially true of non-coding sequences such as promoters,

which contain a number of features such as transcription factor binding sites that deter-

mine how genes are regulated. There is no straightforward regulatory “code” that tells us

how transcription factor binding sites are organized within a promoter. In this work we

examine how DNA sequence determines one of the most important features of a pro-

moter, the strength with which a transcription factor binds to its DNA binding site. We

discuss an approach to modeling DNA sequence-specific transcription factor binding

energies in vivo using a massively parellel reporter assay. We develop models that allow us

to predict the binding energy between a transcription factor and a mutated version of its
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binding site. We then show that this modeling technique can be used to address a number

of scientific and design questions, such as engineering the behavior of genetic circuit ele-

ments or examining how transcription factors and their binding sites co-evolve.

Introduction

High-throughput sequencing allows us to sequence the genome of nearly any species at will.

The amount of genomic data available is already enormous and will only continue to grow.

However, this mass of data is largely uninformative without appropriate methods of analyzing

it. Despite decades of research, much genomic data still defies our efforts to interpret it. It is

particularly challenging to interpret non-coding DNA such as intergenic regulatory regions.

We can infer the locations of some transcription start sites and transcription factor binding

sites, but these inferences tell us little about the functional role of these putative sites. In

order to better interpret these types of sequences, we need a better understanding of how

sequence elements control gene expression. A deep understanding of the relationship between

DNA sequence and gene expression would enable one to a) predict the binding strengths

of novel transcription factor binding sites and b) design regulatory sequences de novo for

synthetic biology applications. An important avenue for developing this level of understanding

is to propose models that map sequence to function and to perform experiments that test these

models.

One challenge that has made it difficult to develop quantitative sequence-function map-

pings is the fact that an extremely small portion of known regulatory sequences are understood

on a quantitative biophysical level. Over half of the genes in Escherichia coli, which is arguably

the best-understood model organism, lack any regulatory annotation (see RegulonDB [1]).

Those operons whose regulation is well described (e.g. the lac, rel, and mar operons [2–4])

required decades of study involving laborious genetic and biochemical experiments [5]. A

wide variety of new techniques have been proposed and implemented to simplify the process

of determining how a gene is regulated. Chromatin immunoprecipitation (ChIP) based meth-

ods such as ChIP-chip and ChIP-seq make it possible to determine the genome-wide binding

locations of individual transcription factors of interest. Massively parallel reporter assays

(MPRAs) have made it possible to read out transcription factor binding position and occu-

pancy in vivo with base-pair resolution, and provide a means for analyzing additional features

such as “insulator” sequences [6–8]. In vitro methods based on protein-binding microarrays

[9], SELEX [10–12], MITOMI [13–15], and binding assays performed in high-throughput

sequencing flow cells [16, 17] have made it possible to measure transcription factor affinity to

a broad array of possible binding sites and can also account for features such as flanking

sequences [15, 18, 19]. However, in vitro methods cannot fully account for the in vivo conse-

quences of binding site context and interactions with other proteins. Current in vivo methods

for measuring transcription factor binding affinities, such as bacterial one-hybrid [20, 21],

require a restructuring of the promoter so that it no longer resembles its genomic counterpart.

Additionally, efforts to computationally ascertain the locations of transcription factor binding

sites frequently produce false positives [22, 23]. Furthermore, a common assumption underly-

ing many of these methods is that transcription factor occupancy in the vicinity of a promoter

implies regulation, but it has been shown that occupancy cannot always accurately predict the

effect of a transcription factor on gene regulation [24, 25]. As these examples show, it remains

challenging to integrate multiple aspects of transcription factor binding into a cohesive

DNA sequence binding energy
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understanding of gene regulation that would allow for predictive models that map sequence to

function.

In previous work we showed how an MPRA called Sort-Seq can be used on virgin promot-

ers to identify regulatory architectures [26]. The current work takes the logical and critical

next step of rigorously examining how reliable the Sort-Seq results are as a foundation for pre-

dicting and controlling transcription with single-nucleotide resolution. In Ref. [27], we

showed that the MPRA Sort-Seq [28], combined with a simple linear model for protein-DNA

binding specificity, can be used to accurately predict the binding energies of multiple RNAP

binding site mutants, serving as a jumping off point for the use of such models as a quantitative

tool in synthetic biology. Here we apply this technique to transcription factor binding sites in

an effort to better understand how transcription factors interact with regulatory DNA under

different conditions. Specifically, we use Sort-Seq to map sequence to binding energy for a

repressor-operator interaction, and we rigorously characterize the variables that must be con-

sidered in order to obtain an accurate mapping between DNA sequence and binding energy.

We then use our sequence-energy mapping to design a series of operators with a hierarchy of

controlled binding energies measured in absolute energy units (kBT). To demonstrate our con-

trol over these operators and their associated regulatory logic, we use these characterized bind-

ing sites to design a wide range of induction responses with different phenotypic properties

such as leakiness, dynamic range and [EC50]. Next, we focus our attention on the synergy

between mutations in the amino acid sequence of transcription factors and their correspond-

ing binding sites. Finally, we show the broader reach of these results by exploring how binding

site position and regulatory context can change the DNA-protein sequence specificity for mul-

tiple different transcription factors.

Results

Obtaining energy matrices using Sort-Seq

A major goal of this study was to show that one can use Sort-Seq to precisely map DNA

sequence to binding energy for a transcription factor binding site, thus making it possible to

predict and manipulate transcriptional activity in vivo. While numerous in vitro studies have

successfully mapped sequence to affinity [9–17, 29, 30], and some in vivo studies have used

methods such as bacterial one-hybrid to provide such mappings as well [20, 21], these studies

are limited because they do not reflect the actual wild-type arrangement of regulatory ele-

ments, thus potentially missing vital regulatory information. Moreover, while position-weight

matrices (PWMs) derived from genomic data have traditionally been used to ascertain in vivo
sequence specificities, it can be difficult to convert these specificities into quantitative binding

energy mappings due to the relatively small number of sequences that are used to generate

these PWMs.

Sort-Seq has previously been shown to be a promising technique for mapping protein bind-

ing sequences to binding energies. In Ref. [27], binding energy predictions for RNAP were

made from an energy matrix generated in Ref. [28] that used the wild-type lac promoter as a

reference sequence (i.e. the sequence that was mutated to perform Sort-Seq). Here, we design

experiments that use the Sort-Seq technique described in [28] with the specific intent of creat-

ing energy matrices with maximum predictive power (see Fig 1), and we test the predictions

from these matrices against measured binding energies. We show that such predictive matrices

can be produced for multiple transcription factors (e.g. XylR, PurR, and LacI) implicated in an

array of regulatory architectures. To thoroughly test the accuracy of our predictive matrices,

we begin with promoters that employ “simple repression,” in which a repressor binds to an

operator such that it occludes RNAP binding, thereby preventing transcription and repressing

DNA sequence binding energy
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Fig 1. Using Sort-Seq to obtain energy matrices. To begin, we design a simple repression motif in which a repressor binding site is placed

immediately downstream of the RNAP site. When RNAP binds, it initiates transcription of the GFP reporter gene. We analyze simple repression

constructs using each of the three natural lac operators, O1, O2, and O3. Sort-Seq then proceeds as follows. 1. We create a mutant library in which

the RNAP and operator sequences are randomly mutated at a rate of approximately 10%, and transform this library into a cell population such that

each cell contains a different mutant operator sequence. 2. To measure gene expression, we sort the cell population into bins based on fluorescence

DNA sequence binding energy
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the gene [31]. As a model for how sequence-energy mappings might be used for transcription

factor binding sites in simple repression architectures, we interrogate the binding specificity of

the lac repressor (LacI). LacI was chosen for this role because it is well-characterized and has

known binding sites in only one operon within the genome, making it an ideal choice for this

kind of systematic and rigorous analysis. We create three distinct energy matrices in which

each of the natural lac operators (O1, O2, or O3 [2]) acts as the reference sequence. S1 Fig lists

the wild-type sequences for these simple repression constructs.

As described in Fig 1, to perform Sort-Seq we start by mutating the promoter at a rate

of * 10%. Here we mutate both the RNAP binding site and the operator, starting with either

O1, O2, or O3 for the operator sequence. While our analysis focuses on the operators them-

selves, mutating the RNAP site as well aids in model-fitting as described in S1 Text. We place

the promoters upstream of a fluorescent reporter gene and create a plasmid library of these

constructs. We transform this plasmid library into a population of E. coli in which lacI and

lacZYA have been deleted, but lacI has been reintroduced to the genome with a synthetic

RBS that allows us to precisely control the LacI copy number within the cell, as described in

Ref. [32]. We require at least 106 transformants for each plasmid library to ensure sufficient

library diversity. Then, we use fluorescence-activated cell sorting (FACS) to sort E. coli con-

taining these plasmids into four bins based on their expression levels. We perform high-

throughput sequencing on the libraries from each bin. For the majority of our analysis, we

split the sequencing results into three separate “replicates.” As discussed in S1 Text, this pro-

vides a level of variation that is comparable to multi-day biological replicates.

Once we have a set of promoter sequences with corresponding expression levels, we use

these data to infer an energy matrix for the transcription factor binding site that assigns energy

values (in arbitrary units) to each base at each sequence position. We use Markov Chain

Monte Carlo (MCMC) with a Metropolis-Hastings algorithm to infer a set of energy matrix

values that maximizes the mutual information between the predicted binding energies of our

sequences and their corresponding expression bins. Briefly, this algorithm proceeds as follows:

1) a set of energy matrix parameters is proposed for each base at each operator position, 2) the

proposed matrix is used to calculate the binding energies (in arbitrary units) of the set of bind-

ing site sequences, and 3) this set of energy parameters is accepted or rejected with some prob-

ability. If it is rejected, a new set of energy parameters is proposed, some distance away from

the previous parameter set. As discussed in detail in Ref. [33], the probability of accepting a

proposal is derived from the probability distribution p(data|model)/ 2NI(ε(σ);μ), where N is the

number of data points and I(ε(σ); μ) represents the mutual information between the energy

prediction ε(σ) for the promoter sequence σ and the expression bin μ. In other words, the set

of proposed values is accepted or rejected according to how well the associated binding energy

predictions explain the observed distribution of sequences in expression bins. After this algo-

rithm has been iterated 30000 times (after 10000 repeats for a “burn-in” period), the energy

matrix values are then determined by calculating the sample mean of the parameter values that

were accepted. Once an energy matrix has been inferred, the matrix is fixed such that the

matrix elements corresponding to the reference sequence are set at 0, and the other matrix ele-

ments at each sequence position are calculated relative to this reference element. The reference

sequence is the operator sequence that serves as the “wild-type” in each Sort-Seq experiment–

level. 3. We then sequence variant promoter sequences within each bin. The bin in which each promoter is found serves as a measure of that

promoter’s activity. 4. From this information, we can infer an energy matrix for the repressor binding site indicating which mutations result in a

higher or lower binding energy relative to the reference sequence. Energy matrices can either be inferred using all of the Sort-Seq data, or the Sort-

Seq data can be split into multiple “replicates” to obtain replicate energy matrices that can be used to estimate error.

https://doi.org/10.1371/journal.pcbi.1006226.g001

DNA sequence binding energy
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that is, the sequence away from which the library sequences are mutated. For more details on

this procedure, see S1 Text.

The energy matrices that result from the procedure described above are given in arbitrary

energy units. To convert these arbitrary units into absolute energy units, we also perform

Bayesian parameter estimation using MCMC to determine the scaling factor that should

be applied to the energy matrix to convert each position into kBT energy units (we note that

1 kBT� 0.62 kcal/mol at T = 37˚C). This inference procedure is highly similar to the procedure

outlined above, but where before we maximized the mutual information between predicted

binding energies and expression bin for a full set of energy matrix parameters, here we maxi-

mize the mutual information between predicted expression and expression bin for a single

parameter, which is the scaling factor that converts a matrix into absolute energy units. This

scaling factor is a “diffeomorphic mode” of the model that cannot be inferred by direct mutual

information maximization, but can be inferred when incorporated into a more complex

model in which other sequence elements are also varied [34]. We make use of the assumption

that gene expression will be proportional to the probability that RNAP is bound to the pro-

moter, pbound, which is given by

pbound ¼

P
NNS

e� bDεP

1þ
P
NNS

e� bDεP þ
2R
NNS

e� bDεR
; ð1Þ

where P is the number of RNAP in the cell, ΔεP is the RNAP binding energy, R is the repressor

copy number, NNS is the number of nonspecific binding sites in the genome, and ΔεR is the

repressor binding energy. As noted in S1 Text, our inference procedure also requires that we

infer an energy matrix and scaling factor for the RNAP binding site. We do not note these val-

ues in this work, as our focus is on sequence-energy mappings for transcription factor binding

sites. We note also that we can write the repressor binding energy as ΔεR = αεmat + Δεwt,

where εmat is the energy value obtained by summing the matrix elements associated with a

sequence, Δεwt is the binding energy associated with the reference sequence, and α is the

desired scaling factor that converts the matrix values into kBT units. To obtain a value for α, an

MCMC algorithm is used where we maximize the mutual information I(pbound, μ) between the

values of pbound calculated for each binding site sequence and the expression bin into which

that sequence was sorted. For more information on this process, see S1 Text. See S2 Text for a

comparison to other methods for obtaining the scaling factor.

Choice of reference sequence can alter the repressor’s apparent sequence

specificity

A reference sequence refers to the sequence which serves as the “wild-type” for each experi-

ment. For each library, the promoter is mutated relative to its reference sequence. Addition-

ally, when assigning binding energies to an energy matrix, all binding energies are calculated

relative to the reference sequence. One might assume that Sort-Seq experiments should

reveal the same binding specificity regardless of the reference sequence used to produce the

library, provided that the transcription factor does not change. To test this possibility, we

generated energy matrices using three different reference sequences, all of which are binding

sites for LacI. For our reference sequences we use the three natural E. coli lac operators

(O1 = AATTGTGAGCGGATAACAATT, O2 = AAATGTGAGCGAGTAACAACC, and

O3 = GGCAGTGAGCGCAACGCAATT).

DNA sequence binding energy
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For our primary analysis we use single-point energy matrix models. These models assume

that each nucleotide position within a binding site contributes independently to the binding

energy (see S3 Text for predictions using higher-order models). Each operator has a distinct

LacI binding energy, with O1 being the strongest at -15.3 kBT, O2 being the second strongest

at -13.9 kBT, and O3 being the weakest at -9.7 kBT [32]. The operator sequences are rather dis-

similar to each other, with O2 having 5 mutations relative to O1 and O3 having 8 mutations

relative to O1 (and 11 mutations relative to O2). For each library, the average operator

sequence has only 2 mutations relative to the reference sequence. As a result, a library gener-

ated with O1 as the reference sequence is unlikely to share any mutant sequences with a library

generated with O2 or O3 as the reference sequence. Here we assess whether dissimilar mutant

libraries generated from different reference sequences produce similar energy matrices and

sequence logos from their respective Sort-Seq data sets.

We obtain energy matrix models by following the Sort-Seq procedure outlined above, split-

ting our Sort-Seq data into three separate groups of nonoverlapping sequences to produce

matrix replicates, as discussed in S1 Text. We then infer an energy matrix for each replicate. In

Fig 2 we show energy matrices composed of the mean energy value at each matrix position,

and the corresponding sequence logos. As shown in Fig 2A, the three operators each produce

qualitatively similar energy matrices, with the left side of the binding site showing greater

sequence dependence than the right side, as evidenced by the larger magnitude of the binding

energies assigned to each matrix position. Note that we set the binding energy of the reference

sequence to 0 kBT for these energy matrices, so that the binding energies assigned to each pos-

sible mutation are calculated relative to the reference sequence. For all energy matrices, posi-

tions 4-10 show the greatest sequence preference. This preference is reflected in the natural lac
operator sequences themselves, as the bases from 4-10 are conserved in each of the operators.

Notably, the majority of mutations available to O1 incur a penalty to binding energy, while

many of the mutations available to O3 enhance the binding energy. This is consistent with the

observation that O1 has a strong binding energy while O3 has a weak binding energy.

When the energy matrices are used to produce sequence logos as in Fig 2B (see Ref. [35] for

an explanation of the mathematics used to relate binding energies to base-pair frequencies,

and Ref. [36] for a discussion of sequence logos themselves), we see a consistent preference for

a slightly asymmetric binding site, reflecting the fact that LacI is known to bind asymmetrically

to its operators [37]. Additionally, clear differences arise for the different operators. While the

sequence logos derived from O1 and O2 indicate very similar sequence preferences, the pre-

ferred sequence suggested by the O3 sequence logo differs in some prominent positions. In S4

Text we note that weaker binding sites exhibit a greater variation in the quality of their

sequence logos; thus it may be that the O3 binding site is simply too weak to provide an infor-

mative sequence logo.

In Fig 2C–2E we plot the energy values from each matrix against one another to show how

the energy matrices compare to one another quantitatively. For ease of comparison, here the

energy values are fixed so that the mean energy value at each sequence position is 0 kBT. We

see that replicates of energy matrices with an O1 reference sequence are highly similar to each

other with a Pearson’s correlation coefficient of r = 0.95, as calculated from the mean energy

matrix values (Fig 2C). However, this similarity deteriorates somewhat as the reference

sequence diverges from O1, with a value of r = 0.85 for an O2-derived matrix (Fig 2D) and

r = 0.48 for an O3-derived matrix (Fig 2E). Thus, while energy matrices derived from different

reference sequences may be qualitatively similar, there are notable quantitative dissimilarities

between these matrices.

In S2 Fig we also represent each matrix as an energy logo as introduced in Ref. [38] and

used in Ref. [30] to represent the sequence specificity of LacI determined from in vitro

DNA sequence binding energy
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experiments. In S3 Fig we show how energy matrix values inferred for O1 in this work

compare with the energy matrix values inferred for O1 using an in vitro technique in Ref. [30].

We find that the values from these two studies generally agree, particularly for lower energy

values. Any differences may be due to the different experimental procedures used in these

studies.

Fig 2. Energy matrices and sequence logos for the natural lac operators. A: Energy matrices show how mutations can be expected to affect binding energy.

Reference sequences for each energy matrix (either the O1, O2, or O3 sequence) have been set at 0 kBT (gray squares), and the energy values at all other positions of

the matrix are thus relative to the reference sequence. Red squares represent mutations that create a stronger binding energy than the reference sequence, and blue

squares represent mutations that create a weaker binding energy. In columns where multiple squares are gray, this indicates that there is no significant change in

binding energy relative to the reference sequence. B: While the energy matrices are qualitatively similar for all three operators, the sequence logos indicate clear

differences in the information that can be provided by each operator. The O1 and O2 operators produce similar sequence logos, but the O3 sequence logo

incorrectly predicts the preferred binding sequence for LacI. The O3 sequence logo also indicates a much lower information content than for O1 and O2. C: Two

separate biological replicates of a matrix derived from the O1 reference sequence (with repressor copy number R = 62) are plotted against one another. D: The O1

energy matrix is plotted against the O2 energy matrix, both derived from strains with R = 130. E: The O1 energy matrix is plotted against the O3 energy matrix,

both derived from strains with R = 130.

https://doi.org/10.1371/journal.pcbi.1006226.g002

DNA sequence binding energy
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Energy matrix models predict measured energy values

The energy matrices obtained via Sort-Seq should allow us to map sequence to phenotype. The

relevant phenotype for simple repression constructs is the degree to which the system is

repressed, which can be measured using the fold-change. We define fold-change as the ratio of

expression in a repressed system to expression in a system with no repressors, as described by

the equation

fold-change ¼
expressionðRÞ

expressionðR ¼ 0Þ
: ð2Þ

where R is the repressor copy number. As discussed in further detail elsewhere [31, 32], the

fold-change can also be computed using a thermodynamic model given by

fold-change ¼
1

1þ
2R
NNS

e� bDεR
;

ð3Þ

where the factor of 2 in “2R” indicates that for the case of LacI, each LacI tetramer has two

heads and can essentially be counted as two repressors. NNS is the number of nonspecific bind-

ing sites available in the genome (* 4.6 × 106 in E. coli) and ΔεR is the operator binding

energy. We note that this model makes the simplifying assumption that the RNAP binds

weakly to the promoter. We find that for the lacUV5 promoter, this assumption holds for

RNAP copy number P≲ 1000. From Ref. [39] we know that the relevant sigma factor, RpoD,

has a copy number of 650 ± 100 in the growth condition used here (M9 + 0.5% glucose at

37˚C).

In principle, the energy matrix models shown in Fig 2 can be used to predict the binding

energy of an operator mutant. To explore the ability of energy matrices to predict the effects of

mutations on operator binding strength, we designed a number of mutant operators with 1, 2,

or 3 mutations relative to the O1 operator. Experimentally-determined values for the binding

energies of these mutants could then be compared against values predicted by our LacI energy

matrices.

To obtain experimental values for mutant binding energies we start with chromosomally-

integrated simple repression constructs for each mutant, which were incorporated into strains

with LacI tetramer copy numbers of R = 11 ± 1, 30 ± 10, 62 ± 15, 130 ± 20, 610 ± 80, and

870 ± 170. These copy numbers were inferred from quantitative Western blot measurements

in Ref. [32], and the error in these copy numbers denotes the standard deviation of at least

three Western blot replicates. We determined the fold-change by measuring the YFP fluores-

cence levels of each strain by flow cytometry and substituting them into Eq 2. We determine

each mutant’s binding energy, ΔεR, by performing a single-parameter fit of Eq 3 to the result-

ing data via nonlinear regression. Fig 3A shows several fold-change values for 1 bp, 2 bp, and

3 bp mutants overlaid with these fitted curves (the remaining fold-change data are shown in

S2–S4 Figs).

The energy matrices derived from Sort-Seq can be used to predict the value of ΔεR associ-

ated with a given operator mutant, as discussed in detail in S1 Text. To make these predictions,

we use energy matrices produced using Sort-Seq data where O1 is the reference sequence and

repressor copy number R = 130. As before, we split the Sort-Seq data into three groups to pro-

duce three replicate energy matrices. We make our predictions using each of these replicate

matrices in order to obtain a mean value and standard deviation for the predicted ΔεR for each

operator mutant. We note that any error in the predictions can be caused by error in the

energy matrices themselves or in the inferred scaling factors. Fig 3B shows how binding energy

DNA sequence binding energy
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values measured by fitting to repressor titration data compare to values predicted using energy

matrices that were produced using O1 as a reference sequence. For single base pair mutations

most predictions perform well and are accurate to within 1 kBT, with many predictions differ-

ing from the measured values by less than 0.5 kBT. Predictions are less accurate for 2 bp or

3 bp mutations, although the majority of these predictions are still within 1.5 kBT of the mea-

sured value. To give a sense of the consequences of an incorrect energy prediction, a prediction

Fig 3. Energy matrix predictions compared to binding energies derived from fold-change data. A: Fold-change data were obtained by flow cytometry

for each of the mutant operators by measuring their respective fluorescence levels at multiple LacI copy numbers and normalizing by the fluorescence

when R = 0. The solid lines in each plot represent a fold-change curve that has been fitted to the data set to obtain a binding energy measurement. Each plot

shows data and fits for two operator mutants, one weak and one strong, for 1 bp (left), 2 bp (middle), and 3 bp (right) mutants. The fitted energy values are

shown for each mutant, where the superscripts and subscripts represent the 95% confidence interval for the fit. All remaining data is shown in S2–S4 Figs.

Approximately 30 operator mutants were measured in total. We note that lower expression measurements are less accurate than higher expression

measurements due to autofluorescence and limitations in the flow cytometer’s ability to measure weak signals. This adversely affects the accuracy of fold-

change values for strongly repressed strains. B: The measured binding energy values ΔεR (y axis) are plotted against binding energy values predicted from

an energy matrix derived from the O1 operator (x axis). The horizontal error bars represent the standard deviation of predictions made from three matrix

replicates obtained by splitting the Sort-Seq data into three groups. MCMC was used to obtain a scaling factor for each matrix to convert it into kBT units.

The vertical error bars represent the 95% confidence interval of the fitted ΔεR values (where not visible, these error bars are smaller than the marker). While

the quality of the binding energy predictions does appear to degrade as the number of mutations relative to O1 is increased, the O1 energy matrix is still

able to approximately predict the measured values. C: Binding energies for each mutant were predicted using both the O1 and O2 energy matrices and

compared against measured binding energy values. The prediction error, defined as the magnitude of the difference in kBT between a predicted binding

energy and the corresponding measured binding energy, is plotted here against the number of mutations relative to the reference sequence whose energy

matrix was used to make the prediction. Each data point is shown in purple, and box plots representing the data are overlaid to clearly show the median

error and variability in error. For sequences with 4 or fewer mutations, the median prediction error is consistently lower than 1.5 kBT. The dashed

horizontal line represents the point at which the error corresponds to an approximately 10-fold difference in fold-change.

https://doi.org/10.1371/journal.pcbi.1006226.g003
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error of ±1 kBT can alter the expected fold-change of a simple repression architecture by a

magnitude of approximately 0 − 0.25, depending on the binding site’s binding energy and the

repressor copy number R.

The quality of matrix predictions appears to degrade as mutants deviate farther from the

wild-type sequence used to generate the energy matrix. To evaluate predictions for a broader

range of deviations from the energy matrix, we made predictions from two energy matrices:

the mean energy matrix using O1 as a reference sequence with repressor copy number

R = 130, and the mean energy matrix using O2 as a reference sequence with R = 130. This

allowed us to access predictions for operators that are mutated by several base pairs relative to

the matrix. In Fig 3C we show how prediction error, defined as the discrepancy in kBT between

a predicted and measured energy value, varies depending on the number of mutations relative

to the wild-type binding site sequence. We find that predictions remain relatively accurate for

mutants that differ by up to 4 bp relative to the wild-type sequence, with median deviations

of * 1.0 kBT or less from the measured binding energy. Other studies have noted that energy

matrix models that don’t account for epistatic interactions fail to accurately predict binding

energies for mutants with multiple mutations relative to the reference sequence [29, 40]. Thus

we find that the relatively low errors depicted in Fig 3C exceed expectations for what a single-

point energy matrix model can achieve.

We note that energy matrix quality, as measured by the accuracy of its predictions, may be

affected by factors such as repressor copy number or wild-type transcription factor binding

energy. Changes in growth state can be expected to affect the number of transcription factors

present in the cell (although transcription factors appear to be less sensitive to growth state

than the general proteome [39]), so it is important to determine how sensitive our approach is

to changes in repressor copy number. Additionally, we expect that at some repressor copy

numbers and binding site strengths, the binding site may be either fully saturated with repres-

sor or entirely unbound by repressor, which may also affect energy matrix quality. In S4 Text,

we assess whether energy matrix quality is affected by the LacI copy number of the background

strain, and find that it has little effect on matrix quality. We also compare predictions made

from energy matrices with different reference sequences (i.e. O1, O2, or O3), and find that

using O1 as a reference sequence produces the most accurate energy matrices, while using O3

produces energy matrices that are almost entirely non-predictive. In S5 Text, we consider

whether better energy matrices are made using libraries in which the entire promoter is

mutated or only the operator is mutated. We find that mutating the operator alone can provide

more accurate energy matrices, though one must fit energy matrix predictions to binding

energy measurements in order to convert these matrices into kBT units.

Designed induction responses

Our predictive energy matrices suggest a promising strategy for addressing the challenge of

genetic circuit design, which has typically relied on trial and error to achieve specific outputs

[41, 42]. By contrast, previous studies have shown how thermodynamic models can be used to

predict gene outputs given a set of inputs [31, 32], which can suggest appropriate inputs to pro-

duce a desired output. For example, the key inputs for the fold-change Eq 3 are repressor copy

number R and repressor-operator binding energy ΔεR, and one can use Eq 3 to determine a set

of R and ΔεR values that can be used to target a desired fold-change response. Energy matrix

predictions can be used to design operator sequences with a particular value of ΔεR, thereby

making it possible to tune genetic circuits and target specific phenotypes. As shown in Fig 3B,

mutating an operator by as little as one base pair can provide a broad range of ΔεR values that

can be predicted accurately.
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One particularly useful class of simple genetic circuit, which can be layered with other

genetic components to create complex logic [43], is inducible simple repression [44–47]. In

such a system, an allosteric repressor can switch between an active form, which binds to an

operator with high affinity, and an inactive form, which has a low affinity to the operator. An

inducer may bind to the repressor and stabilize the repressor’s inactive form, thereby reducing

the probability that the repressor will bind to the operator and increasing the probability that

RNAP will bind and initiate transcription. The result is that an inducible system can access a

broad range of fold-change values simply by tuning the concentration of inducer. As discussed

in Ref. [48], the fold-change of an inducible simple repression circuit can be described by the

equation

fold-changeðcÞ ¼ 1þ

1þ
c
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� �n
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where c is the concentration of inducer, n is the number of inducer binding sites on the repres-

sor, KA and KI are the dissociation constants of the inducer and repressor when the repressor

is in its active or inactive state, respectively, and ΔεAI is the difference in free energy between

the repressor’s active and inactive states. In Ref. [48] we determined that these values are

KA ¼ 139þ29

� 22
mM, KI ¼ 0:53þ0:04

� 0:04
mM, and ΔεAI = 4.5 kBT for LacI with the inducer IPTG.

Where noted, superscripts and subscripts indicate the upper and lower bounds for the 95th

percentile of the parameter value distributions. There are n = 2 inducer binding sites on each

LacI dimer. We note that while we use Eq 4 here to represent induction of LacI by IPTG, this

equation is general and can be used for any inducible system that utilizes simple repression.

We can use these parameter values for the lac-based system considered here to explore how

tuning the operator-repressor binding energy ΔεR can alter the induction response when an

effector (i.e. IPTG) is introduced to the system. Importantly, our sequence-energy mapping

provides a straightforward avenue for tuning ΔεR by altering the binding sequence rather than

mutating the repressor itself, which is much more difficult to characterize. We note that an

induction response can be described by a number of key phenotypic parameters. The leakiness

is the minimum fold-change when no inducer is present, given by fold- change(c! 0) (Eq 1

in S6 Text). The saturation is the maximum fold-change when inducer is present at saturating

concentrations, given by fold- change(c!1) (Eq 2 in S6 Text). The dynamic range is the dif-

ference between the saturation and leakiness, and represents the magnitude of the induction

response (Eq 4 in S6 Text). The [EC50] is the inducer concentration at which the fold-change is

equal to the midpoint of the induction response (Eq 6 in S6 Text). Full expressions for these

parameters are shown in S6 Text. Fig 4A and 4B show how these phenotypic parameters vary

with ΔεR given the values of KA, KI, and ΔεAI listed above and the repressor copy number

R = 130. We can see that there are inherent trade-offs between phenotypic parameter values.

For instance, in this particular system one cannot tune ΔεR to obtain a small dynamic range

(e.g. a dynamic range of 0.1) while also having an intermediate leakiness value (e.g. a leakiness

of 0.4). Rather, one must design an induction response by choosing from the available pheno-

types, or else alter the system by tuning additional parameters such as KA and KI, which

requires mutating the protein itself or using a different transcription factor altogether as in

Ref. [41].

To show how energy matrices can be used to design specific induction responses, we chose

six of our single base-pair mutants with a range of predicted binding energies, which we could

expect to exhibit a range of phenotypic properties as shown in Fig 4A and 4B. Induction
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responses for each of these mutants were measured by growing cultures in the presence of

varying IPTG concentrations and measuring the fold-change at each concentration. Fig 4C–

4H shows how the induction data compare against theory curves plotted using the mean ΔεR
values predicted from the energy matrices derived from Sort-Seq data with the O1 reference

sequence and repressor copy number R = 130. In general the predicted induction curves

match well with the data, though the predicted induction curves in Fig 4C and 4H are notice-

ably dissimilar to the data. Theory curves plotted using the measured binding energy (rather

than the predicted binding energy) describe the data well, indicating that any mis-match

Fig 4. Energy matrix predictions can be used to design phenotypic responses. Phenotypic parameters exhibit trade-offs as ΔεR is varied. A: The values of the

leakiness, saturation, and dynamic range are plotted as a function of transcription factor binding energy, ΔεR, for a strain with repressor copy number R = 130.

Different values of ΔεR exhibit combinations of different phenotypic properties. Several operators were chosen whose predicted binding energies (squares) result in a

range of phenotypes. B: The value of the [EC50] is plotted as a function of ΔεR for a strain with R = 130. The [EC50] decreases as the value of ΔεR increases. C-H:

Operators with different values of ΔεR were chosen to have varying induction responses based on the phenotypic trade-offs shown in (A) and (B). The fold-change is

shown for each operator as IPTG concentrations are varied. The fold-change data are overlaid with the predicted induction curve (solid) and an induction curve plotted

using the measured binding energy for the operator (dashed). Shown are the predicted binding energy (where the error represents the standard deviation of

predictions) and the fitted binding energy (where the superscripts and subscripts represent the 95% confidence intervals of the fits).

https://doi.org/10.1371/journal.pcbi.1006226.g004
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between the data and the predicted theory curve is due to error in the predicted binding

energy, which may arise from errors in the matrices themselves or the inferred scaling factor.

Analysis of amino acid-nucleotide interactions

Predictive energy matrices offer a simple way of analyzing direct interactions between amino

acids and nucleotides. Mutating individual amino acids in the repressor’s DNA-binding

domain and then observing changes in the energy matrix makes it possible to determine how

changing the amino acid composition of the DNA-binding domain alters sequence preference.

If sequence specificity is altered only for specific base pairs when an amino acid is mutated,

this may indicate that the amino acid interacts directly with those base pairs. While it is possi-

ble to obtain such information using binding assays [49] or labor-intensive structural biology

approaches, Sort-Seq makes it possible to efficiently sample protein-DNA interactions. To ana-

lyze the effects of amino acid mutations on sequence specificity, we chose mutations which

had previously been found to alter LacI-DNA binding properties without entirely disrupting

the repressor’s ability to bind DNA [49, 50]. We performed Sort-Seq using strains containing

one of three LacI mutants, Y20I, Q21A, or Q21M, where the first letter indicates the wild-type

amino acid, the number indicates the amino acid position, and the last letter indicates the

identity of the mutated amino acid. Here we used matrices derived from libraries in which

only the operator was mutated; each matrix was scaled such that the average mutation carried

a binding penalty equal to the average binding penalty for wild-type LacI, measured in kBT
energy units.

Sequence logos derived from the mean energy matrices for each LacI mutant are shown in

Fig 5, along with the wild-type sequence logo for comparison. As with the wild-type repressor,

for each of the mutant repressors we find that the left half-site of the sequence logo has a stron-

ger sequence preference. For both Y20I and Q21M, the same sequence is preferred in the left

half-site as for the wild-type LacI. This contrasts with the results from Ref. [49], in which it was

found that Y20I prefers an adenine at sequence position 6, rather than the guanine preferred at

this position by the wild-type repressor. As in Ref. [49], we find that an adenine is preferred at

sequence position 6 for the Q21A mutant. Additionally, when comparing the left and right

half-sites of each energy matrix, we find that for each mutant the preferred sequence is not

entirely symmetric. This is especially notable at positions 8 and 12, in which symmetry is bro-

ken in each of the sequence logos shown in Fig 5. For wild-type LacI, we see that G is preferred

at position 8 with a probability of 0.75 ± 0.05, where the error represents the standard devia-

tion of probabilities derived from each replicate matrix. At position 12, A is preferred with a

probability of 0.49 ± 0.06. We see this trend repeated for Y20I, where G is 0.79 ± 0.09 probable

at position 8 and T is 0.63 ± 0.10 probable at position 12, Q21A where G is 0.86 ± 0.06 probable

at position 8 and A is 0.63 ± 0.05 probable at position 12, and Q21M where G is 0.61 ± 0.07

probable at position 8 and A is 0.50 ± 0.11 probable at position 12. For each mutant, these sites

are found to prefer asymmetrical bases with p-value< 0.05. Thus we see that the lac repressor’s

notable preference for a pseudo-symmetric operator is preserved in each of the mutants we

tested [29, 30, 37].

Binding site context can influence a transcription factor’s binding

specificity

In this work we have used the lac system to demonstrate how Sort-Seq can be used to map

binding site sequence to binding energy, and we used these mappings to rationally design

novel genetic circuit elements and identify the effects of amino acid mutations on LacI’s

sequence specificity. Importantly, this approach is not specific to the lac system and can be
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applied to any system in which transcription factors alter gene expression by binding to DNA

within the promoter region. In Ref. [26] we showed how Sort-Seq could be used alongside

mass spectrometry to determine the locations of transcription factor binding sites in a pro-

moter of interest and identify which transcription factors bind to these sites. We generated

energy matrices for a number of transcription factors (e.g. RelBE, MarA, PurR, XylR, and oth-

ers). Here we analyze selected energy matrices from Ref. [26] to show how energy matrices can

be used to understand transcriptional activity in promoters with varied architectures beyond

simple repression.

One of the questions we wish to answer is to what extent altering the context of a binding

site within a regulatory architecture will alter sequence specificity. One hypothesis is that a

transcription factor’s preferred binding sequence will remain the same regardless of how its

binding site is positioned within the regulatory architecture. However, it is known that factors

beyond the core operator sequence, such as flanking sequences and DNA shape, can affect

sequence specificity [19, 51, 52]. Additionally, interactions with other proteins may alter the

way a transcription factor contacts the DNA, which could affect sequence specificity as well

[53]. It is important to know whether a transcription factor’s specificity is sensitive to the con-

text of the binding site within the promoter architecture, as this determines the extent to

which an energy matrix can be used to analyze binding sites throughout the genome. Addi-

tionally, observing how sequence specificities change with binding site context may alert us to

Fig 5. Mutations to LacI DNA-binding domain cause subtle changes to sequence specificity. Mutations were made

to residues 20 and 21 of LacI, both of which lie within the DNA-binding domain. The mutations Y20I and Q21A

weaken the repressor-operator binding energy, while the mutation Q21M strengthens the binding energy [50]. The

sequence preferences of each mutant are represented as sequence logos. Y20I exhibits minor changes to specificity in

low-information regions of the binding site, and Q21A experiences a change to specificity within a high-information

region of the binding site (see arrows). Specifically, Q21A prefers A at operator position 6 while the wild-type repressor

prefers G at this position.

https://doi.org/10.1371/journal.pcbi.1006226.g005
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changes in regulatory mechanisms as the operator is moved to different positions in the

promoter.

In Ref. [26], we used Sort-Seq to obtain energy matrices and sequence logos for the tran-

scription factors XylR and PurR in the context of the natural promoters for xylE and purT,

respectively. The xylE promoter has two XylR binding sites directly adjacent to one another,

allowing us to compare these two energy matrices against each other. In this context, we find

that XylR appears to act as an activator in tandem with a CRP binding site. Sequence logos for

the two XylR binding sites are shown in Fig 6A, obtained from mean energy matrix values for

each site. The energy matrices and sequence logos for these binding sites have some significant

dissimilarities. Dissimilarities are particularly notable at positions 6-8, where the left-hand site

prefers “TTT” with probabilities 0.89 ± 0.03, 0.54 ± 0.01, and 0.65 ± 0.03 respectively, and the

right-hand site prefers “AAA” with probabilities 0.58 ± 0.01, 0.79 ± 0.01, and 0.47 ± 0.01. We

can say that the sequence preferences at each of these positions differ between the two binding

sites with p-value < 0.0001. These changes in sequence specificity may be due to interactions

with neighboring DNA-binding proteins. We note that in the xylE promoter the left-hand

XylR site is adjacent to a CRP site, while the right-hand XylR site is adjacent to the RNAP site.

The close proximity of these binding sites suggests that there may be direct interactions

between proteins. Such interactions could constrain the binding conformations of each XylR

copy and thus alter how each XylR interacts with its DNA binding site. The Pearson’s correla-

tion coefficient r between the mean values of the two energy matrices is r = 0.73.

In Ref. [26] we find that PurR acts as a repressor in the purT promoter, with a single bind-

ing site between the -10 and -35 sites. In order to compare the associated energy matrix with a

Fig 6. Regulatory context can alter sequence preference. Sequence logos were obtained for the same transcription factors in different regulatory contexts and

compared against one another. The Pearson’s correlation coefficient r between energy matrices is noted for each pair of binding sites. A: Sequence logos are shown for

the two adjacent binding sites for the activator XylR in the xylE promoter, shown schematically at top. The sequence logos for the two binding sites indicate that they

have significantly different sequence preferences. B: Sequence logos are shown for the PurR binding site in the purT promoter and a PurR binding site for a synthetic

simple repression promoter in which the binding site is positioned differently, shown schematically at top. The sequence logos for the two binding sites indicate nearly

identical sequence preferences. C: Sequence logos are shown for a LacI binding site upstream of the RNAP binding site and a LacI binding site downstream of the

RNAP. Although regulatory mechanisms differ between these two binding sites, their sequence logos are nearly identical.

https://doi.org/10.1371/journal.pcbi.1006226.g006
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PurR energy matrix from a different regulatory context, here we create a synthetic promoter in

which the PurR binding site has been moved directly downstream of the RNAP site. This

should continue to be a simple repression architecture in which repressor binding occludes

RNAP binding, but the change in operator position may alter the repressor’s interaction with

the DNA. Sequence logos for both PurR binding sites are shown in Fig 6B. The two PurR

sequence logos are very similar to one another, indicating no significant changes in the inter-

actions between the repressor and the DNA. We calculate the Pearson’s correlation coefficient

between the two energy matrices to be r = 0.90, which is significantly higher than the value cal-

culated for the two XylR energy matrices.

We additionally performed Sort-Seq on a LacI simple repression construct in which the lac
operator was placed upstream of the RNAP binding site rather than downstream. In Ref. [27]

it is shown that LacI binding to an upstream operator still represses, but whereas a downstream

operator represses by preventing RNAP from binding, an upstream operator appears to

directly contact a bound RNAP and prevent it from escaping the promoter. Moreover, an

upstream operator’s binding strength does not directly correspond with the level of repression

associated with the promoter. These factors make repression by an upstream lac operator an

interesting architecture to compare with repression by a downstream lac operator. Sequence

logos for the upstream and downstream LacI binding sites are shown in Fig 6C. These logos

are very similar to one another, despite the fact that the repression mechanisms and protein

interactions differ for these two architectures. The Pearson’s correlation coefficient between

the two matrices is r = 0.96.

For the above analysis we note that the energy matrices used to make these sequence logos

were scaled using a theoretical “average” binding penalty derived from a statistical mechanical

analysis of transcriptional regulation (see S2 Text). This is because a number of the necessary

parameters for some of these architectures, such as repressor copy number or wild-type bind-

ing energies, still remain poorly characterized. In order to confidently infer scaling factors for

transcription factor binding sites, it is necessary to have a thermodynamic model that is

known to accurately describe the architecture and contains a minimum of unknown parame-

ter values. For the example of simple lac repression, our thermodynamic model has been

shown repeatedly to accurately describe the key mechanisms of simple repression architectures

[24, 32, 48, 54, 55]. We have performed our Sort-Seq experiments in strains which are known

to lack any additional LacI binding sites in the chromosome, in which we know the repressor

copy number R, and which we know do not contain any known inducers of LacI. These factors

allow us to confidently infer energy matrix scaling factors.

If we consider the case of simple repression by PurR, we know that the promoter is under

co-repression through concerted binding of the ligand hypoxanthine to PurR [56]. While

Eq (4) provides a rational model for a simple allosteric architecture of this type, the allosteric

parameters KA, KI, and εAI are uncharacterized; moreover, the concentration of inducer in the

system is uncharacterized. While the PurR repressor copy number has been measured to be

about 400 dimers per cell under the growth conditions considered here [39], attempting to fit

the remaining parameters with our Sort-Seq expression data is not possible due to significant

degeneracy in the parameter space [48].

Note that in the case of the XylR architecture, we are hesitant to suggest a new thermody-

namic model for pbound without further work to understand the specific mechanism of regula-

tion and identify all of the relevant parameters. For example, it is unclear whether a single

bound copy of XylR is capable of activating the promoter, or whether it must bind in a com-

plex with another copy of XylR. Additionally, there are likely to be physical interactions

between CRP, the two copies of XylR, and RNAP that would be represented by effective inter-

action energy parameters. This would add a significant number of parameters to the
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thermodynamic model, all with unknown values, which would make it difficult to make accu-

rate estimates of any parameter value in the model. This prevents us from inferring scaling fac-

tors for the XylR binding sites using MCMC.

Discussion

In this work, we apply quantitative modeling to in vivo experimental data to analyze interac-

tions between transcription factors and their binding sites under multiple conditions. As an

example of how our approach might be used to analyze a transcription factor’s sequence-spe-

cific binding energy, we used Sort-Seq to create energy matrices that map DNA sequence to

binding energy for the lac repressor (Fig 2). We performed this work in the context of a simple

repression architecture, which is widespread among bacterial promoters [57] and is frequently

used in synthetic biology [47, 58, 59]. We test our model’s predictions against binding energies

inferred from fold-change measurements of roughly 30 lac operator mutants (Fig 3). These

predictions proved to be accurate to within * 1.0 kBT for binding sites with up to four muta-

tions relative to the reference sequence. We note, however, that our energy matrices cannot be

used to predict the binding energies of operator mutants containing insertions or deletions,

such as the synthetic operator Oid.

Because we are able to accurately predict operator binding energies, our sequence-energy

mappings can be used to design specific regulatory responses, which is of great utility to syn-

thetic biology. We combine energy matrices with a thermodynamic model of inducible simple

repression to design induction curves, as demonstrated in Fig 4 [48]. We note that in spite of

the overall success of our predictions, there remain some predictions that are significantly dif-

ferent from the measured values (see the outliers in Fig 3C). Such inaccuracies are particularly

problematic when using energy matrices for design applications, as discrepancies between a

system’s expected and actual response may render a designed system unsuitable for its

intended application. We can see examples of this in Fig 4F–4H, where inaccuracies in binding

energy predictions are reflected in the predicted titration curves. Two of the six prediction

curves do not accurately describe the data, with the data exhibiting mis-matches in either satu-

ration or leakiness. If the saturation or leakiness are vital parameters in the designed system,

then such a mis-match could cause the system to fail. Importantly, the error associated with

binding energy predictions varies depending on the method used to obtain a scaling factor to

convert the energy matrix to absolute energy units. As discussed in S2 Text, inferring the scal-

ing factor using MCMC, as we do for our predictions in the main text, introduces a source of

error related to uncertainties in the inference procedure. Error can be reduced by using an

alternative scaling procedure such as fitting to sequences with known binding energies.

We also explore how sequence specificity is altered when transcription factor amino acids

are mutated. To do this, we repeat our Sort-Seq experiments in bacterial strains expressing

LacI mutants in which the DNA-binding domain has been altered (Fig 5). Because all nucleo-

tides in the binding site are mutated with some frequency in Sort-Seq experiments, we are able

to identify changes in specificity throughout the entire binding site. Other methods for analyz-

ing the sequence preference of transcription factor mutants tend to be more laborious and less

fine-grained, often focusing on a small set of nucleotides within the binding site. These include

binding experiments between DNA mutants and protein mutants [49], gene expression exper-

iments using chimeric transcription factor proteins [60], and comparative genomics [61].

We further explore how regulatory context alters sequence specificity. We generate

sequence logos from energy matrices obtained for the transcription factors XylR, PurR, and

LacI in different regulatory contexts, as shown in Fig 6. We find that the two adjacent XylR

binding sites exhibit significantly different binding specificities, possibly due to interactions

DNA sequence binding energy
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between transcription factors. In contrast, the simple repression constructs analyzed for PurR

and LacI have nearly identical sequence specificities. By itself, our method is unable to deter-

mine the causes of context-dependent changes in sequence specificity, though it is known that

DNA shape or binding to cofactors can alter a transcription factor’s specificity [51–53]. Rather,

our approach can be used to determine whether a given binding site’s sequence preferences

diverge from the “standard” sequence specificity for the relevant transcription factor, and fur-

ther experiments (such as SELEX-seq in the presence of a transcription factor and possible

cofactors [53]) can be performed to determine the cause of the change in sequence specificity.

A major advantage of our in vivo approach is that it allows us to analyze transcription fac-

tors in their natural context, in the presence of interacting proteins, small molecules, and DNA

shape effects. This is especially important when analyzing regulatory regions that have not

been previously annotated, as was the case for the XylR and PurR matrices obtained in

Ref. [26]. However, a clear advantage of in vitro approaches is that they can accurately measure

low-affinity binding sites [12, 13, 15]. When using our in vivo approach, weaker reference

sequences produce energy matrices with variable quality and are more likely to make poor pre-

dictions (see S4 Text). However, accuracy may be improved by investigating ways to reduce

the experimental noise associated with in vivo systems, for instance by incorporating promoter

constructs as single copies in the chromosome rather than multiple copies on plasmid, for

example using the “landing pad” technique described in Ref. [62]. We further note that the pri-

mary methodology used here, in which an energy matrix scaling factor is inferred via MCMC,

offers an indirect readout of transcription factor binding energies that relies on the assumption

that transcription will always be initiated (at some rate) if the promoter is occupied by RNAP.

While this assumption often provides a valid approximation of the mechanisms of transcrip-

tion, previous work has shown that this is not always an appropriate model [24, 25]. More

detailed models of transcription would be required in order to apply this methodology to sys-

tems in which RNAP occupancy does not reliably predict transcription initiation. When such

models are not available, energy matrix scaling factors can be inferred using a theoretical bind-

ing energy penalty for mutations as detailed in S2 Text.

This work provides a foundation for further studies that would benefit from sequence-

energy mappings. For example, our analysis of three LacI amino acid mutants could be

expanded to include a full array of LacI DNA-binding mutants, which would allow one to

make inferences regarding repressor-operator coevolution. Additionally, while we make

extensive use of LacI in the present work, similar analyses could be performed with any tran-

scription factor, making it possible to improve upon the genomically-inferred sequence logos

presently available for many transcription factors. We demonstrate this capability in Fig 6,

where we identify the sequence specificities of two additional transcription factors, XylR

and PurR. The data shown in Fig 6 further demonstrate that we can assess effects on sequence

specificity that result from factors such as binding site positioning or protein-protein interac-

tions. Thus, for cases in which it is known that sequence specificity is affected by DNA

shape, flanking sequences, cofactor binding, or other factors outside of the operator binding

sequence, our approach can be used to obtain a base-pair resolution map of the effects on

sequence specificity.

Finally, we note that one of the primary strengths of our approach is that it can be used to

elucidate the transcriptional regulation of a gene with a previously-unknown regulatory archi-

tecture. As shown in Ref. [26], Sort-Seq can be combined with mass spectrometry to identify

transcription factor binding sites and those sites’ regulatory roles for any gene of interest. Here

we show that data sets obtained in this manner can also be used to map sequence to binding

energy, thus showing that a single experiment can be used to characterize multiple aspects of a

previously-unannotated regulatory sequence. Currently, we convert our energy matrices to

DNA sequence binding energy
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absolute energy units using a theoretical scaling factor for cases where thermodynamic models

for the regulatory architecture are unknown, but future work may improve our ability to iden-

tify thermodynamic models and thus infer more accurate scaling factors. Furthermore, our

approach does not rely specifically on the Sort-Seq technique used here, but can be adapted to

multiple experimental designs, such as RNA-seq based MPRAs that have been demonstrated

in multiple model systems [7, 63–65]. Over time, we envision incorporating high-throughput

synthesis and analysis techniques to adapt our approach for genome-wide studies in both pro-

karyotes and eukaryotes.

Methods

Sort-Seq libraries

To generate promoter libraries for Sort-Seq, mutagenized oligonucleotide pools were pur-

chased from Integrated DNA Technologies (Coralville, IA). These consisted of single-stranded

DNA containing the lacUV5 promoter and LacI operator plus 20 bp on each end for PCR

amplification and Gibson Assembly. Either both the lacUV5 promoter and LacI binding

site or only the LacI binding site was mutated with a ten percent mutation rate per nucleotide.

These oligonucleotides were amplified by PCR and inserted back into a pUA66-operator-GFP

construct using Gibson Assembly. To achieve high transformation efficiency, reaction buffer

components from the Gibson Assembly reaction were removed by drop dialysis for 90 minutes

and cells were transformed by electroporation of freshly prepared electrocompetent cells. Fol-

lowing an initial outgrowth in SOC media, cells were diluted with 50 mL LB media and grown

overnight under kanamycin selection. Transformation typically yielded 106 − 107 transfor-

mants as assessed by plating 100 μL of cells diluted 1:104 onto an LB plate containing kanamy-

cin and counting the resulting colonies.

DNA constructs for fold-change measurements of mutant operators

Simple repression motifs used in fold-change measurements were adapted from those in Gar-

cia et al. [32]. Briefly, a simple repression construct with the O1 operator sequence was cloned

into a pZS25 plasmid background directly downstream of a lacUV5 promoter, driving expres-

sion of a YFP gene when the operator is not bound by LacI. This plasmid contains a kanamy-

cin resistance gene for selection. Mutant LacI operator constructs (listed in Table 1) were

generated by PCR amplification of the lacUV5 O1-YFP plasmid using primers containing the

point mutations as well as sufficient overlap for re-circularizing the amplified DNA by one-

piece Gibson Assembly.

A second construct was generated to express LacI at a specified copy number. Specifically,

lacI was cloned into a pZS3�1 background that provides constitutive expression of LacI from a

PLtetO−1 promoter [66]. This plasmid contains a chloramphenicol resistance gene for selection.

The LacI copy number is controlled by mutating the ribosomal binding site (RBS) for the lacI
gene as described in [67] using site-directed mutagenesis (Quickchange II; Stratagene, San

Diego, CA) and further detailed in [32]. Here, we mutated the RBS such that it would produce

a LacI copy number of *130 tetramers once the construct had been integrated into the

chromosome.

Once the plasmids had been generated, the promoter and lacI constructs were each ampli-

fied by PCR and integrated into the chromosome by lambda-red recombineering using the

pSIM6 expression plasmid [68]. The promoter construct and YFP gene were inserted into the

galK locus in the E. coli genome and the lacI construct was inserted into the ybcN locus.
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Construction of LacI amino acid mutants

As previously mentioned, wild-type lacI was cloned into a pZS3�1 background providing con-

stitutive expression of LacI, with the LacI copy number mediated by a mutated RBS. We used

the RBS corresponding to a LacI tetramer copy number of *130 for each mutant. To create

DNA-binding mutants for LacI we used site-directed mutagenesis (Quickchange II; Strata-

gene, San Diego, CA) using the mutagenesis primers listed in Table 2. We mutated the amino

acid Y to I at position 20 and Q to A or M at position 21. We chose these mutations based on

data from previous studies [49, 50], though we note that our amino acid numbering system is

shifted by +3 relative to the mutants in these previous studies since we use a slightly different

version of lacI. As with the wild-type lacI, we integrate the mutants into the genome at the

ybcN locus by lambda-red recombineering using the pSIM6 expression plasmid.

Bacterial strains

E. coli strains used in this work were derived from K12 MG1655. To generate strains with dif-

ferent LacI copy number, the lacI constructs were integrated into a strain that additionally has

Table 1. Mutant operator sequences. The listed operator sequences were used to evaluate energy matrix predictions. They are mutated relative to the O1 lac operator. The

predicted binding energy was generated using the matrix with an O1 reference sequence with R = 130 LacI tetramers in the background strain.

Sequence Predicted ΔεR (kBT) Measured ΔεR (kBT)

1 bp mutants:

AATTGTGAGCGGAGAACAATT -12.63 -12.24

AATTGTGAGCGCATAACAATT -15.71 -15.30

AATTGTGAGCGGATCACAATT -15.22 -14.99

AATTGTGAGCGGAAAACAATT -12.91 -12.50

AATTGCGAGCGGATAACAATT -12.14 -11.30

AATTGTGAGGGGATAACAATT -13.16 -12.35

AATTGTGAGCGGATATCAATT -13.66 -13.29

AATTGTGAGCAGATAACAATT -11.11 -10.25

AATTGTGAGAGGATAACAATT -8.89 -10.00

2 bp mutants:

AATTGTGAGCGGGTAACAACT -13.82 -14.79

AAATGTGAGCGGATAACAACT -13.61 -14.40

AATTGTGAGCGAGTAACAATT -14.36 -15.12

ATTTGTGAGCGGAGAACAATT -12.55 -11.52

CATTGTGAGCGCATAACAATT -15.34 -14.80

AATTGTGAGCGGAACACAATT -12.83 -13.31

AATTGTGAGCGGAATACAATT -11.70 -12.03

AATTGCGAGCGGATAACAAAT -12.06 -10.78

AATTGTGAGGGGATAACAATC -14.13 -12.15

3 bp mutants:

AAATGTGAGCGAGTAACAATT -13.84 -14.57

AATTGTGAGCGAGTAACAACT -13.19 -14.67

ATTTGTGAGCGAAGAACAATT -11.92 -10.83

CATTGTGAGCGCATAACATTT -15.39 -14.18

AATTGTGAGCGGAACACAATG -13.72 -12.17

AATTGTGAGCGGGATACAATT -11.39 -11.86

AATTGCGAGCGGATAACAAAG -12.96 -10.62

AATTGTGAGGGTATAACAATC -14.10 -11.79

https://doi.org/10.1371/journal.pcbi.1006226.t001
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the entire lacI and lacZYA operons removed from the chromosome. These constructs were

integrated at the ybcN chromosomal location. This resulted in strains containing mean LacI

tetramer copy numbers of R = 11 ± 2, 30 ± 10, 62 ± 15, 130 ± 20, 610 ± 80, and 870 ± 170,

where the error denotes the standard deviation of at least three replicates as measured by quan-

titative western blots in Ref. [32].

For Sort-Seq experiments, plasmid promoter libraries were constructed as described above

and then transformed into the strains with R = 30, 62, 130 or 610. For fold-change measure-

ments, each O1 operator mutant was integrated into strains containing each of the listed LacI

copy numbers. These simple repression constructs were chromosomally integrated at the galK
chromosomal location via lambda red recombineering. Generation of the final strains contain-

ing a simple repression motif and a specific LacI copy number was achieved by P1 transduc-

tion. For each LacI titration experiment, we also generated a strain in which the operator-YFP

construct had been integrated, but the lacI and lacZYA operons had been removed entirely.

This provided us with a fluorescence expression measurement corresponding to R = 0, which

is necessary for calculation of fold-change.

Sort-Seq fluorescence sorting

For each Sort-Seq experiment, cells were grown to saturation in lysogeny broth (LB) and then

diluted 1:10,000 into minimal M9 + 0.5% glucose for overnight growth. Once these cultures

reached an OD of 0.2-0.3 the cells were washed three times with PBS by centrifugation at

4000 rpm for 10 minutes at 4˚C. They were then diluted two-fold with PBS to reach an approx-

imate OD of 0.1-0.15. These cells were then passed through a 40 μm cell strainer to eliminate

any large clumps of cells.

A Beckman Coulter MoFlo XDP cell sorter was used to obtain initial fluorescence histo-

grams of 500,000 events per library in the FL1 fluorescence channel with a PMT voltage of

800 V and a gain of 10. The histograms were used to set four binning gates that each cov-

ered * 15% of the histogram. 500,000 cells were collected into each of the four bins. Finally,

sorted cells were regrown overnight in 10 mL of LB media, under kanamycin selection.

Sort-Seq sequencing and data analysis

Overnight cultures from each sorted bin were miniprepped (Qiagen, Germany), and PCR was

used to amplify the mutated region from each plasmid for Illumina sequencing. The primers

contained Illumina adapter sequences as well as barcode sequences that were unique to each

fluorescence bin, enabling pooling of the sorted samples. Sequencing was performed by either

Table 2. Primers used in this work. The listed primer sequences were used to generate plasmids for Sort-Seq experiments or for use in creating strains with mutated oper-

ators or LacI.

Name Sequence Comments

lac_ins_fwd CCCTTTCGTCTTCAC Used to amplify lac promoter insert for Gibson

lac_ins_rev CCTTTACTCATATGTATATCTCCTTTTAAATCTAGAGGAT Used to amplify lac promoter insert for Gibson

pUA66_frameshift_fwd GATATACATATGAGTAAAGGAGAAGAACTT Used to amplify pUA66 vector for Gibson

pUA66_rev TCGAGGTGAAGACGAAAG Used to amplify pUA66 vector for Gibson

GCMWC-001_Q21_rev CCGGCATACTCTGCGACA Mutagenesis primer for LacI residue 21

GCMWC-002_Q21M GTGTCTCTTATATGACCGTTTCCCGC Mutagenesis primer for LacI residue 21 Q!M

GCMWC-003_Q21A TGTCTCTTATGCGACCGTTTCCCGC Mutagenesis primer for LacI residue 21 Q! A

GCMWC-009_Y20_rev GCATACTCTGCGACATCGTATAAC Mutagenesis primer for LacI residue 20

GCMWC-010_Y20I CGGTGTCTCTATTCAGACCGTTTC Mutagenesis primer for LacI residue 20 Y! I

https://doi.org/10.1371/journal.pcbi.1006226.t002
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the Millard and Muriel Jacobs Genetics and Genomics Laboratory at Caltech or NGX Bio (San

Fransisco, CA). Single-end 100bp or paired-end 150bp flow cells were used, with about

500,000 non-unique sequences collected per library bin. After performing a quality check and

filtering for sequences whose PHRED score was greater than 20 for each base pair, the total

number of useful reads per bin was approximately 300,000 to 500,000 per million reads

requested. Energy weight matrices for binding by LacI and RNAP were inferred using Bayes-

ian parameter estimation with a error-model-averaged likelihood as previously described

[28, 69] and further detailed in S1 Text. Unless otherwise specified, replicates were formed by

randomly splitting the Sort-Seq data sets into three groups containing equal numbers of

sequences. Each of these groups was used to create a separate energy matrix. These matrices

were either used to create a “mean” energy matrix, as when a matrix heat-map or sequence

logo is displayed, or were used individually to create replicate binding energy predictions.

Where p-values are noted for sequence preference, the probabilities of each base at a given

position were first calculated for each replicate matrix using the equation

probN ¼
e� εN

e� εA þ e� εC þ e� εG þ e� εT
; ð5Þ

where N represents a given base, and εN is the binding energy associated with that base at the

given sequence position. With these probabilities in hand, we used a one-way Welch’s

ANOVA test implemented in R to determine if there was a statistically significant difference in

mean probability values. If a statistical difference (p-value < 0.01) was found between the

means, we confirmed that the most probable base was statistically distinct from all other bases

using a Games-Howell post-hoc analysis implemented in R.

Fold-change measurements by flow cytometry

Fold-change measurements were collected as previously described in Ref. [48] on a MACS-

quant Analyzer 10 Flow Cytometer (Miltenyi Biotec, Germany). Briefly, YFP fluorescence

measurements were collected using 488nm laser excitation, with a 525/50 nm emission filter.

Settings in the instrument panel for the laser were as follows: trigger on FSC (linear, 423V),

SSC (linear, 537 V), and B1 laser (hlog, 790V). Before each experiment the MACSquant was

calibrated using MACSQuant Calibration Beads (Miltenyi Biotec, CAT NO. 130-093-607).

Cells were grown to OD 0.2-0.3 and then diluted tenfold into ice-cold minimal M9 + 0.5%

glucose. Cells were then automatically sampled from a 96-well plate kept at approximately

4˚–10˚C using a MACS Chill 96 Rack (Miltenyi Biotec, CAT NO. 130-094-459) at a flow rate

of 2,000–6,000 measurements per second.

For those measurements that were taken for IPTG induction curves, cells were grown as

above with the addition of an appropriate concentration of IPTG (Isopropyl β-D-1 thiogalac-

topyranoside Dioxane Free, Research Products International). For each IPTG concentration, a

stock of 100-fold concentrated IPTG in MilliQ-purified water was prepared and partitioned

into 100 μL aliquots. The same parent stock was used for all induction experiments described

in this work.

The fold-change in gene expression was calculated by taking the ratio of the mean YFP

expression of the population of cells in the presence of LacI to that in the absence of LacI.

Since the measured fluorescence intensity of each cell also includes autofluorescence which is

present even in the absence of YFP, we account for this background by computing the fold

change as

fold-change ¼
hIR>0i � hIautoi
hIR¼0i � hIautoi

; ð6Þ
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where hIR>0i is the average cell YFP intensity in the presence of repressor, hIR=0i is the average

cell YFP intensity in the absence of repressor, and hIautoi is the average cell autofluorescence

intensity as determined by measuring the fluorescence of cells in which R = 0 and there is no

fluorescent reporter.
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S1 Fig. List of wild-type reporter constructs. A: Wild-type versions of reporter constructs

that were used either for Sort-Seq (all) or for measuring operator mutant binding energies
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XylR in Ref. [26].
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S2 Fig. Energy logos for O1, O2, and O3. Energy logos are shown for O1, O2, and O3 energy
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position relative to the mean binding energy at each sequence position.
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S3 Fig. Comparison of O1 energy values from the present work and Zuo et. al (2015).

Energy values were inferred for all bases in each position of the O1 lac promoter using in vivo
methods in the present work (with reference sequence O1 and repressor copy number

R = 130) and in vitro methods in Zuo et. al (2015). The corresponding values from each matrix

are plotted against one another. We show comparisons in which our matrix is scaled using two

different methods to determine the scaling factor: (A) MCMC inference and (B) least-squares

fitting. Because there is some error associated with the MCMC inference procedure, we see

that the error bars are larger and the comparison is somewhat worse than for the matrix scaled

using least-squares fitting. Note that the values from the Zuo matrix were transformed to

match the convention of our matrix by setting the wild-type sequence to 0 kBT and giving any
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S4 Fig. Fold-change measurements for 1 bp mutants. Fold-change measurements are shown

for nine 1 bp operator mutants in strains with R = 11, 30, 62, 130, 610, or 870. These measure-

ments are overlaid with the measured (fitted) binding energy measurements for each mutant

and the predicted measurements as listed in the main text. Predicted energy values are listed

along with the standard deviation in predictions, and measured energy values are listed along

with the 95% confidence intervals for the fitted energies. Note that the bottom three plots do

not display data points for R = 62, as the data for these strains were outliers.

(PDF)

S5 Fig. Fold-change measurements for 2 bp mutants. Fold-change measurements are shown

for nine 2 bp operator mutants in strains with R = 11, 30, 62, 130, 610, or 870. These measure-

ments are overlaid with the measured (fitted) binding energy measurements for each mutant

and the predicted measurements as listed in the main text. Predicted energy values are listed

along with the standard deviation in predictions, and measured energy values are listed along

with the 95% confidence intervals for the fitted energies.

(PDF)

S6 Fig. Fold-change measurements for 3 bp mutants. Fold-change measurements are shown

for seven 3 bp operator mutants in strains with R = 11, 30, 62, 130, 610, or 870. These measure-

ments are overlaid with the measured (fitted) binding energy measurements for each mutant
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