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Abstract

One of the paramount goals of synthetic biology is to have the ability to tune transcriptional networks to targeted levels of
expression at will. As a step in that direction, we have constructed a set of 18 unique binding sites for E. coli RNA Polymerase

(RNAP) s70 holoenzyme, designed using a model of sequence-dependent binding energy combined with a thermodynamic
model of transcription to produce a targeted level of gene expression. This promoter set allows us to determine the
correspondence between the absolute numbers of mRNA molecules or protein products and the predicted promoter
binding energies measured in kBT energy units. These binding sites adhere on average to the predicted level of gene
expression over 3 orders of magnitude in constitutive gene expression, to within a factor of 3 in both protein and mRNA
copy number. With these promoters in hand, we then place them under the regulatory control of a bacterial repressor and
show that again there is a strict correspondence between the measured and predicted levels of expression, demonstrating
the transferability of the promoters to an alternate regulatory context. In particular, our thermodynamic model predicts the
expression from our promoters under a range of repressor concentrations between several per cell up to over 100 per cell.
After correcting the predicted polymerase binding strength using the data from the unregulated promoter, the
thermodynamic model accurately predicts the expression for the simple repression strains to within 30%. Demonstration of
modular promoter design, where parts of the circuit (such as RNAP/TF binding strength and transcription factor copy
number) can be independently chosen from a stock list and combined to give a predictable result, has important
implications as an engineering tool for use in synthetic biology.
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Introduction

The regulation of gene expression is one of the primary ways

that cells respond to their environments. The quantitative

dissection of the networks that control such expression as well as

the construction of designed networks has been a central

preoccupation of regulatory biology. As sketched in Figure 1, the

level of gene expression exhibited by a cell can be targeted at

multiple levels along the path from DNA to protein. Key biological

tuning variables include the copy number of the transcription

factors that act on a gene of interest, the strength of their binding

sites, the strength of RNA polymerase binding, the strength of

ribosomal binding sites and the degradation rates of the protein

products of the gene of interest. Many of these tuning parameters

have been studied in quantitative detail. For instance, Salis et al.

[1] developed a model to describe the interaction energy between

the ribosomal binding site (RBS) of an mRNA transcript and the

30S ribosomal subunit, which they relate to translation initiation

rate using statistical thermodynamics. Using this model, gene

expression can be predictively tuned over 5 orders of magnitude

by modulating translation efficiency for a given gene [1,2].

Translation initiation (and hence protein expression) is thus tuned

by choosing an RBS sequence with the desired interaction energy.

The rate of protein degradation is another key determinant of

intracellular protein concentration. Protein degradation can be

modulated by the use of degradation tags appended to the C-

terminal domain of a given protein. The ssrA tag [3], for instance,

targets proteins for destruction by the E. coli degradation

machinery, which includes proteases ClpXP, ClpAP and SspB

[4]. This degradation system has been artificially implemented in

yeast, where ClpXP is expressed from an inducible promoter, and

degradation rates of ssrA-tagged proteins can be tuned over a

factor of &5 by controlling the ClpXP concentration in the cell

[5]. Similarly, manipulating the decay rate of the protein’s

transcript allows for modulation of the steady-state protein copy

number [6,7].

In this paper, we focus on two sets of these transcriptional

parameters: namely, the strength with which polymerase binds the

promoter, and the number of transcription factors present when

that promoter is controlled by simple repression. We begin by

focusing on the simplest case where there are no repressor proteins

present in the cell. Our interest in such ‘‘constitutive’’ promoters
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(those not regulated by transcription factors) stems from the goal of

creating a set of promoters in which we can systematically vary

both the mean and the noise to test recent models of

transcriptional kinetics [8]. These experiments are further

motivated by measurements which question our understanding

of how the mean and noise in transcription depend on the

architecture of the promoter [9]. To test these ideas on noise in

transcription, we must know how to predictively tune the binding

strength of RNAP to the promoter.

Precise physical modelling of protein-DNA interaction energies

is a difficult problem involving many degrees of freedom. Such

binding energies are at the heart of the molecular interactions

which result in (or, in the case of repressor transcription factors,

prevent) transcription events. Hence, precise control of protein-

DNA binding is an essential prerequisite for quantitative control of

transcription. Despite the complexity of protein-DNA interactions

and numerous molecular mechanisms involved in transcription

initiation [10–14], simple linear models of sequence-dependent

binding energies are often sufficient to describe the interactions of

transcription factors (TFs) or RNAP with DNA [15–20]. A ‘‘linear

model’’ treats each base along the binding site as independently

contributing a defined amount to the total binding energy. The

total binding energy is then the sum of the contributions from each

base along the binding site. In one recent study, the authors

inferred the 4|41 parameters describing the interaction of RNAP

s70 holoenzyme with DNA [20]. This matrix is shown pictorially

in Figure 2 and the numerical values are provided in Supporting

Information (SI) Text S2. Mathematically, the binding energy of

RNAP to a specific sequence is calculated using a matrix Mi,j of

4|41 energy values where i represents the base identity

(A,C,T,G), and j represents the base pair position along the

binding site. For instance, M2,8 represents the contribution from

having a ‘‘C’’ present at position 8 along the binding site. We

represent a particular promoter sequence by a 41|4 matrix Sj,i

which is unity if the jth base pair has identity i and zero otherwise.

The total energy of the sequence in question is the inner product

of these matrices, namely,

E(S)~
X

ij

Mi,jSj,i: ð1Þ

For convenience, we have added a constant offset to the matrix

such that the average value of E(S) across the E. coli genome is

zero (see SI Text S1 for the original matrix from ref. [20], SI Text

S2 for the adapted matrix, and SI Text S3 for the Python source

code to perform the adaptation). Since only differences in energy

(such as between two different promoter sequences) are physically

meaningful, we can add the same constant value to each element

of the matrix without affecting its physical interpretation.

We use this correspondence between promoter sequence and

RNAP binding affinity to generate a suite of promoters with a wide

range of binding affinities. We then show how a simple

thermodynamic model of transcription, which postulates that

transcriptional activity is proportional to the probability of finding

the RNAP bound at the promoter, accurately predicts the scaling

of the expression with RNAP binding energy. In addition, these

measurements allow us to determine the proportionality between

RNAP binding probability and transcriptional output for our

gene. With this information, we can make absolute predictions for

the transcriptional output of our designed promoters under other

regulatory conditions. We test and confirm these predictions by

measuring the transcriptional output of some of our promoters in

the architectural context of simple repression (similar to Ref. [2])

and show we are able to make accurate, absolute predictions of the

transcription as a function of average repressor copy number.

Figure 1. Regulatory control knobs. A schematic view of the available knobs which can be systematically tuned to change the mRNA and protein
distributions. In this work we begin by studying constitutive expression, eliminating the extra layer of complexity associated with transcription
factors, and systematically control the RNAP binding affinity through control of the promoter sequence. These results are then generalized to the
case in which these same promoters are subjected to regulation by repressor binding, with the level of repressor (i.e. TF copy number) controlled
systematically.
doi:10.1371/journal.pcbi.1002811.g001

Author Summary

One of the most fundamental tuning parameters govern-
ing expression of a given gene is the strength of its
promoter. But what are the sequence rules that govern
promoter strength? Recent high throughput mutagenesis
experiments present an improved method for constructing
an energy function that maps sequence to protein-DNA
binding energy. We use this energy function combined
with a thermodynamic model to deliberately design
different promoters with over three orders of magnitude
difference in their mean expression, and measure the
resulting level of expression at both the mRNA and protein
level to test this design strategy. The designed promoters
are used in an alternate regulatory architecture and can
now serve as the basis for the systematic examination of
how both the mean and noise in gene expression depend
upon the regulatory parameters that have been subject to
evolutionary and/or human change.

Tuning Gene Expression by RNAP Binding Site Design
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Results

We set out to design sets of unique RNAP sites with specific

binding energies separated by &0:5 kBT steps. Taking as a

starting point the wild-type lac and lacUV5 promoters, we used the

RNAP binding energy model in Figure 2 to choose appropriate

base pair mutations (concentrated in the 210 and 235 boxes,

where mutations carry the most weight) which result in our desired

energy levels. The 18 strains designed by this process have binding

energies spanning roughly 6kBT and levels of constitutive gene

expression from roughly 50 times less to 10 times greater than that

of the wild-type lac operon. The specific sequences of these 18

promoters are listed in the table shown in Figure 3 along with their

predicted ‘‘model’’ RNAP binding energy for that sequence. Four

promoters are marked with a colored dot; this color coding will be

preserved throughout every figure. While the lacO2 site is present

in our reporter construct, the strain used to measure constitutive

expression does not produce LacI, the repressor which specifically

binds to this site (see methods). In addition, the CRP binding site

which would otherwise serve to activate the lac promoter has been

removed. Based on intuition from thermodynamic models of

transcription regulation [21–25], we expect that the expression

level of a given promoter will scale with the probability that RNAP

is bound at that promoter. A derivation of this probability as a

function of RNAP binding energy for our promoter architecture is

shown below. To test the predictive power of our design process in

conjunction with the thermodynamic model, we used single-cell

mRNA fluorescence in-situ hybridization (mRNA FISH) and a

colorimetric enzymatic assay to measure, for each construct, the

average mRNA and protein copy number per cell of LacZ

reporter. We then compared these results with those predicted by

the calculated RNAP binding energy of that promoter. Finally, we

use this same strategy to examine simple repression in the context

of our designed promoters.

Thermodynamic Model for Constitutive Expression
To construct promoters with a targeted level of gene expression,

we compute the RNAP binding probability using a simple

thermodynamic model based upon the RNAP binding energy

matrix from the work of Kinney et al [20] (shown in Figure 2). A

schematic of the allowed microscopic states of the promoter in the

constitutive expression system, along with their thermodynamic

weights, is shown in Figure 4. This model treats all non-specific

binding sites (i.e., binding sites other than the promoter of interest)

as binding RNAP with a fixed energy ENS . More nuanced

treatments of the non-specific background can be found in Refs.

[19,26,27], for example. Consider a cell with P RNAP molecules

which can bind non-specifically with energy ENS to NNS non-specific

RNAP binding sites and with energy ES to the promoter of interest

[21–25]. The energy of the state in which the promoter is

unoccupied is P ENS which can occur in NNS !
P!(NNS{P)! unique

configurations. Similarly, the energy of the state in which RNAP

is specifically bound is given by ESz(P{1) ENS, and its multiplicity

is given by NNS !
(P{1)!(NNS{P{1)!. The probability that RNAP is bound is

the Boltzmann factor of the bound state normalized by the partition

function of the system, which simplifies to

Pbound~

P
NNS

e{D E=kBT

1z P
NNS

e{D E =kBT
, ð2Þ

Figure 2. Energy matrix for RNAP binding. Figure adapted from Kinney et al [20]. The contribution of each basepair to the total binding energy
is represented by color. The total binding energy of a particular sequence can be calculated by summing the contribution from each base pair.
Positive values indicate disfavorable contributions to binding energy. As expected, the most influential base pairs are those in the {10 and {35

region which interact directly with the binding domains of RNAP s70. Numeric matrix entries are available in SI Text S2. The sequence displayed above
the energy matrix corresponds to the wild-type lac promoter; the bold bases mark 10 base pair increments. x{axis coordinates are with respect to
the transcription start site.
doi:10.1371/journal.pcbi.1002811.g002

Tuning Gene Expression by RNAP Binding Site Design
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where DE~(ES{ENS) and where we have used the fact that
NNS !

(NNS{P)!&NP
NS for NNSwwP. In the simplifying case of a ‘‘weak

promoter’’, where P
NNS

e{DE=kBT
vv1, this expression reduces to

Pbound~
P

NNS

e{D E =kBT : ð3Þ

Note that the microscopic language used to make these derivations

is convenient for interpreting binding energies and the dependence

on number of polymerases. However, all of these results can be

naturally derived and written in the alternative language of

dissociation constants without ever making reference to the

nonspecific background [23]. For example, we can write

Pbound~

½P�
Kd

1z
½P�
Kd

, ð4Þ

where Kd is the in vivo dissociation constant for RNAP from the

promoter of interest.

With these results, we can now explore the connection between

the measured and the corresponding predicted level of expression.

Since gene expression is (by assumption) proportional to Pbound ,

we can use equation 3 to conclude that

log Gene Expressionð Þ~log(n0){
D E

kBT
, ð5Þ

where n0 is an unknown constant of proportionality related to the

number of mRNA or proteins expected from a promoter with

DE~0. With this relation in hand, we are now equipped to take

the predicted energy for each RNAP binding site and compare the

resulting expression to that predicted from equation 5.

Constitutive Gene Expression Measurements: mRNA and
Protein

To test the predictive power of the binding energy model, we

measured protein expression and mRNA copy numbers for

constitutive expression from each of our unique promoters. Based

on equation 5, a semi-log plot of these data against their respective

predicted binding energies in units of kBT should fall along a

straight line with slope equal to 21, consistent with Boltzmann

scaling. Indeed, with the unknown constant n0 as our single fit

parameter, we find that gene expression follows the exponential

relation predicted from the thermodynamic model in equation 5,

as seen in Figure 5. In this figure, we have taken the zero of energy

to be the average energy of RNAP binding across the whole E. coli

genome calculated from the energy matrix of Figure 2, as detailed

in the Methods section below. The root-mean-square deviations of

our fits are 1.02 for mRNA and 1.06 for protein. Since these

values are the deviations of the natural logarithm of gene

expression, we must exponentiate them to get a sense of the

deviation in physical units. We conclude that our design process

accurately predicts expression to within a factor of e1&3 over

nearly three orders of magnitude. In addition, the table in Figure 3

shows the predicted energy for each promoter (the column labelled

‘‘Model’’), calculated using the matrix in Figure 2, as well as the

experimentally measured energies of each promoter. To compute

these measured energies, we solve equation 5 for D E, yielding

DE~log n0=Gene Expressionð Þ|kBT . We then plug in the

measured expression for each promoter and the inferred value

Figure 3. Schematic of DNA construct inserted in the galK region. The area between the promoter and the LacZ start codon is shown in more
detail below along with a table displaying the specific RNAP binding sites (promoters) listed in order of descending binding affinity. The wild-type
binding sequence is shown in red text, the lacUV5 sequence is shown in magenta text, and two additional promoters are marked by blue text and
green text. The data points involving these four promoters will maintain this color coding throughout every figure. The {35 and {10 RNAP
recognition sequences are highlighted in a green box and a red box, respectively. The bases in these regions carry the most weight in the energy
matrix. Sequences are available in text format in SI Text S4.
doi:10.1371/journal.pcbi.1002811.g003

Tuning Gene Expression by RNAP Binding Site Design
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for n0 (the y{intercept of the black line in Figure 5) to compute

D E for each promoter. The measured values for the RNAP

binding energies for the LacZ and mRNA data are listed in

Figure 3. The promoters with colored entries will be further

examined in the context of simple repression later in this work.

The direct correlation between these two measurements of gene

expression are shown in SI Figure S1 where protein expression is

plotted vs average mRNA copy number for every promoter

strength, exhibiting an excellent linear relation between these two

readouts of expression.

Fitting the data in Figure 5 to the full form for Pbound in

equation 2, allowing both P=NNS and the unknown proportion-

ality constant between Pbound to vary, we find P=NNS&10{4 for

both the mRNA and the protein data. This is consistent with

typical values for RNA polymerase copy number and the length of

the E. coli genome (1{3|103 [28–31] and 107, respectively), and

thus the weak promoter limit appears to hold over the range of

promoter strengths tested.

Protein Burst Size
Since mRNA and protein are linked by translation, their levels

for a given promoter should be related. Individual mRNAs can be

translated multiple times and it has been shown that the number of

translations per mRNA is well described by an exponential

distribution with mean b, known as the protein burst size, which is

the average number of proteins produced per mRNA [8,32,33].

Figure 4. States and weights of the unregulated promoter. In the thermodynamic model, the promoter can be in one of two configurations:
unoccupied by RNA polymerase (top) or occupied by RNA polymerase (bottom). The remaining polymerases are bound nonspecifically on the E. coli
genome. The total energy is the sum of all the nonspecific binding energies and the specific energy of binding at the promoter (when occupied). The
multiplicity factor accounts for the number of different ways of arranging polymerases on the genome.
doi:10.1371/journal.pcbi.1002811.g004

Figure 5. Gene expression as a function of RNAP binding energy. (A) LacZ activity measured in Miller units and (B) average mRNA per cell vs.
promoter binding energy in units of kBT (with the zero of energy set to be the average interaction energy between RNAP and the the entire E. coli
chromosome). To illustrate the reproducibility of our measurements, the translucent points represent individual measurements and the solid points

represent the averaged value over repeated experiments. The solid black line in each plot is the Boltzmann factor scaling, !e({D E =kBT). The red data
points correspond to the wild-type lac promoter, which was used to calibrate the arbitrary units of our energy matrix to (physical) kBT units. The
magenta, red, blue, and green data points represent promoters which we examine in the context of simple repression.
doi:10.1371/journal.pcbi.1002811.g005

Tuning Gene Expression by RNAP Binding Site Design
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Using the data described above, we can extract the burst size,

defined as the ratio of protein production rate and the mRNA

production rate, b~vrproteinw=vrmRNAw [8,34]. The quantity

we measure, however, is the steady-state copy number

n~vrw=c, where vrw is the average rate of mRNA or protein

production and c is the associated decay rate. Figures 5A and B

demonstrate that the copy number n is well described by

Boltzmann scaling with n~n0 exp({DE=kBT). Using this knowl-

edge, we rewrite the burst size as

b~(nLacZ
0 =nmRNA

0 )(cLacZ=cmRNA), ð6Þ

with cmRNA~1=1:5 minutes{1 [35] and cLacZ~1=60 minutes{1

(equal to the inverse of the cell division time). This gives us a

measurement of the LacZ activity (measured in Miller units,

described in the methods section) per mRNA; from available

biochemical data we convert from Miller units to number of LacZ

tetramers [36–39] (1 Miller unit& 0:5 LacZ tetramers=cell
[39]). Plugging these values into equation 6 we find the protein

burst size, b, for the particular RBS we have used is roughly 5{6
LacZ tetramers or 20{24 individual LacZ proteins per mRNA.

Thermodynamic Model for Simple Repression
Our discussion so far has focused on the behavior of the

designed promoters in the absence of any regulatory interventions.

We were interested in examining the portability of these promoters

to other contexts such as when they are regulated by transcription

factor binding. In the E. coli genome, there are hundreds of genes

that are regulated by motifs involving simple repression [40]. For

these architectures, there is a single binding site for a repressor

protein which reduces the expression from the gene of interest.

Addition of a repressor which binds to a proximal binding site

necessitates the addition of a term to the partition function of the

RNAP binding probability given by equation 2. This additional

term corresponds to the probability of repressor binding and

making the promoter unavailable to polymerase. The resulting

expression level in the context of thermodynamic models is then

given by

Pbound~

P
NNS

e{DE =kBT

1z P
NNS

e{DE =kBTz 2R
NNS

e{DER=kBT
, ð7Þ

where R is the number of repressors (the factor of 2 originates

from the fact that LacI has two binding heads) and DER is the

binding strength of that repressor to the specific binding site

[2,25]. In the weak promoter limit the expression can be simplified

to,

LacZ expression~nLacZ

0
e{D E =kBT (1z

2R

NNS

e{D ER=kBT ){1, ð8Þ

where, nLacZ
0 , was determined in the previous section by fitting

equation 5 to the constitutive expression data in Figure 5A. We

therefore have an absolute prediction for the level of gene

expression in our LacZ measurements. The prefactor

nLacZ

0
exp({D E =kBT) is the constitutive (R = 0) prediction for

expression. It is a constant prefactor for all values of R (at a given

promoter strength) and thus the model predicts that any

discrepancies between predicted and measured RNAP binding

energies will be inherited through all repressor concentrations.

This point is illustrated in Figure 6 where we show how the

repressor titration predictions depend upon how well the original

constitutive promoters follow the simple Boltzmann scaling. In

particular, we show the level of expression for three hypothetical

promoters, one whose constitutive properties are underestimated,

one whose constitutive properties are overestimated and one for

which the Boltzmann scaling is obeyed precisely. What we see is

that the repressor titration (Figure 6B) inherits the error already

present in the constitutive promoters from incorrectly predicting

the RNAP binding energy.

Gene Expression in Simple Repression
In each of our strains, the LacI O2 binding site is present near

the promoter (see Figure 3). We reintroduce the repressor into our

strains by integrating a cassette into the genome which expresses

Figure 6. Expected relation between predictions and measurement for simple repressor titration. Figure (A) shows three hypothetical
promoters for which the predictions of the promoter design are either numerically correct (?), underestimated (.) or overestimated (%). The three
smaller figures in (B) show the expected result as repressors are added in a simple repression architecture. The predicted theory line and the data
points differ on average by the same percent as they do at R~0.
doi:10.1371/journal.pcbi.1002811.g006

Tuning Gene Expression by RNAP Binding Site Design
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LacI. Specific LacI concentrations are obtained through modula-

tion of the ribosomal binding sequence of the LacI gene. Using this

process we create 5 unique strains with average LacI copy

numbers between 10 and 140 repressors per cell. Using equation

8, we can make parameter-free predictions for the overall level of

gene expression as a function of promoter strength, repressor

binding strength and repressor copy number for the simple

repression architecture. In Figure 7A, we show a comparison

between predicted and measured protein expression in the case of

simple repression, as a function of repressor copy number and of

predicted promoter binding strength (using D E from the ‘‘model’’

column of Figure 3, and DER~{14:3kBT as found in Ref. [2]).

Our measurements (using the same LacZ assay as for the

constitutive data above) for three distinct promoters along with

data from the lacUV5 promoter (from Ref. [2]) are shown as points

color coded by expression level; Figure 7B shows the same

comparison between theory and experiment collapsed along the

promoter-strength axis. Each color represents a different promoter

strength, with points representing measurements and the solid line

representing the theoretical prediction for that promoter.

The data in Figure 7B show a clear trend, for any one promoter,

to either over or under predict the expression as was sketched in

Figure 6. We attribute this to imperfect predictive powers of the

RNAP binding energy model from Kinney et al (shown in Figure 2)

[20]: if the thermodynamic theory underpredicts the measured

expression at R = 0 using the model value for the RNAP binding

energy (for instance, the magenta point in Figure 5A), the theory

will continue to underpredict the measured expression as

repressors are added (as seen for the magenta points in

Figure 7B). In Figure 7(C) we show the result of using the

measured RNAP binding energies (from the column labelled

‘‘LacZ’’ in Figure 3) for the promoter binding strength and the

accordance between theory and experimental data is evident. It is

clear from these measurements that our promoter library exhibits

the kind of ‘‘transferability’’ required in order to use them in

different regulatory contexts. In particular, the comparison

between theory and experiment is very favorable even for the

repressed architectures and the imperfect agreement is actually

primarily an inheritance of the imperfect accord between theory

and experiment for the unregulated promoters themselves.

Discussion

In this paper, we have shown how high throughput data

obtained from experiments like those in Ref. [20] provide a

foundation that, together with quantitative predictions from simple

thermodynamic models [21–25], can be used to predictively tune

protein-DNA interactions to produce a desired output from a gene

with high precision. This approach contrasts with previous

promoter engineering efforts, which have typically relied upon

generating promoter libraries using random mutagenesis, followed

by selection for mutants with desired expression levels [41–43].

We believe that predictive, model-based engineering of promoters

represents a significant technical improvement over random

mutagenesis, and moreover points the way to simultaneously

engineering multiple aspects of promoter function (such as

repressor or activator binding strengths) in a scalable way. We

demonstrate the validity of our approach by simultaneously

varying RNAP-promoter binding strength and the copy number of

a transcription factor that represses these promoters. In this case,

we can predict the absolute level of gene expression (once the

conversion constant between binding probability and expression

units, n0, is known) as a function of transcription factor

concentration.

While the binding site design procedure described here focused

on alterations to the 210 and 235 region of promoters, we have

made preliminary studies in which promoters are subjected to

more severe perturbations, which indicate that the energy function

does not describe these situations nearly so well. It is clear that

changes in the linker region can have subtle effects on the twist

Figure 7. Gene expression in the simple repression case. (A) Solid surface: predicted gene expression of equation 7 as a function of repressor
copy number R and RNAP binding energy D E. Data points represent measurements of gene expression in a strain with a given promoter and
repressor copy number. (B) Data from part (A) collapsed onto the RNAP binding energy axis. The solid lines are the zero parameter predictions from
the theory in equation 7 using D E predicted from the position-weight matrix in Figure 2 (numerical values listed in Figure 3 under ‘‘model’’). There is a
systematic deviation between the theory and the experimental data which is inherited from the imperfect prediction of D E by the RNAP binding
strength model (illustrated schematically in Figure 6. In (c) the same data are shown after we have corrected D E to fall on the theory fit line based on
the constitutive expression (numerical values listed in Figure 3 under ‘‘LacZ’’). Here we see that by correcting for the initial uncertainty in the binding
energy prediction we observe good agreement between the theory and experimental data which indicates that our designed promoters function as
expected even in a different regulatory context.
doi:10.1371/journal.pcbi.1002811.g007

Tuning Gene Expression by RNAP Binding Site Design
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registry and absolute spacing of the 210 and 235 binding sites

that are not well accounted for by a linear weight matrix, which

ignores correlations in multiple basepair changes [44]. Despite

these challenges, constitutive expression from promoters designed

in this study agrees well with the scaling predicted from the simple

thermodynamic model presented here, and we have shown that

our knowledge of simple repression can be applied on top of our

understanding of constitutive expression to accurately predict the

absolute expression from a gene when repression is introduced.

Methods

Energy Matrix
The energy matrix from [20] is given in arbitrary energy units

(AU). To calibrate these arbitrary units to physical units, we need

two known reference energies, since only differences in energy are

physically significant. From [45], we know that RNAP binds the

wild-type (WT) lac promoter with a binding energy 5:35kBT more

favorable than the non-specific background. Using the matrix from

[20], we find that the wild-type lac promoter has a binding energy of

53:4 AU, while the average binding energy of all 41 bp segments in

the E. coli strain MG1655 is 91.3 AU (recall that the more positive

the energy value, the less favorable the binding interaction). To

obtain this value, we began at the chromosomal origin of replication

and applied the matrix sequentially to each 41 bp segment (both

forward and reverse strands) around the chromosome, and

computed the mean of the resulting *107 energy values. Thus,

we find that a difference of 91:3{53:4~37:9 AU is equivalent to a

difference of 5:35 kBT , providing us with a conversion factor of

37:9=5:35~7:08 AU per kBT .

To see how this plays out in practice, consider a hypothetical

sequence whose binding energy is computed to be 60:0 AU. The

number we are actually interested in is D E~(ES{ENS). For this

promoter sequence, we find that D E~(60:0{91:3)=7:08~
{4:42 kBT . We used the same approach to convert from AU

to the kBT units on the x{axis of Figure 5 for each of our distinct

promoter sequences.

Strains
All strains used are wild-type E.coli (MG1655) with a complete

deletion of the lacIZYA genes [39]. Modified promoters are created

through site-directed mutagenesis of plasmid pZS2502+11-lacz

[2,46], which has the lacUV5 promoter expressing LacZ (our

reporter gene). These constructs are then integrated into the galK

region using recombineering [47]. A schematic of the integrated

region is shown in Figure 3. The end result is a strain with a

desired, multi-basepair change to the lacUV5 promoter which

expresses LacZ and a complete deletion of the LacI protein. Our

designed promoters span roughly 3 orders of magnitude in

constitutive expression and vary from the wild-type promoter by as

few as 1 or as many as 9 individual basepair changes. The site

labelled ‘‘O2’’ is a binding site for the LacI repressor protein.

For the strains involving simple repression, we took our

constitutive expression strains and created as many as 8 different

strains with the LacI cassettes from Ref. [2] integrated at the ybcN

site. The cassettes contain LacI expressed from an unregulated tet

promoter with unique ribosomal binding sequences to produce

varying LacI copy numbers. The exception is the data point at

average LacI copy number of 11, which corresponds to the native

wild-type LacI gene. The measurements for repressors per cell are

from quantitative immunoblots in Ref [2]. One of our strains, the

one with 10 repressors/cells, has not been characterized this way,

but instead the repressors/cell has been inferred from the

measured expression of the lacUV5 promoter.

Growth
Cultures were grown overnight (at least 8 hours) in LB and

diluted 1:4000 into 30 mL of M9 minimal media supplemented

with 0.5% glucose in a 125mL baffled flask. Cells were grown

approximately 8 hours and harvested in exponential phase when

OD600~0:3{0:5 was reached.

LacZ Assay
Our assay for measuring LacZ activity is the same as described

in Ref. [2], which is a slightly modified version of that described in

Ref [36]. A volume of cells from each sample between 5 mL and

200 mL was added to Z-buffer (60mM Na2HPO4, 40 mM
NaH2PO4, 10 mM KCl, 1 mM MgSO4, 50 mM
b{mercaptoethanol, pH 7.0) to reach a total of 1 mL. This

volume is chosen to minimize the uncertainty in measuring the

time of reaction (*1{100s of hours) and the yellow color is easily

distinguishable from a blank sample of 1 mL of Z-buffer. The

assay was performed in 1:5 mL Eppendorf tubes. The cells were

lysed by addition of 25 mL of 0:1% SDS followed by 50 mL of

chloroform, mixed by a 10 s vortex. The reaction was started with

the addition of 200 mL of 4mg=mL 2-nitrophenyl

b{D-galactopyranoside (ONPG) in Z-buffer. The developing

yellow color (proportional to the concentration of the product

ONP) was monitored visually. Once sufficient yellow had

developed in a tube (easily measurable by OD550 and OD420,

without saturating the reading), the reaction was stopped by

adding 200 mL of 2:5 M Na2CO3. (Typically 500 mL of a 1 M

solution is added in other protocols, but this change allows for the

entire reaction to take place in a 1:5 mL Eppendorf tube.) Once

all samples were stopped, the tubes were spun at w13,000 g for

3 min in order to reduce the contribution of cell debris to the

measurement. 200 mL of each sample were loaded into a 96 well

plate and OD420 and OD550 measurements were taken on a

Tecan Safire2 with the Z-buffer sample as a blank. In addition, the

OD600 of 200 mL of each culture was taken with the same

instrument. The absolute activity of LacZ is measured in Miller

units,

MU~1000
OD420{1:75|OD550

t|v|OD600
0:826, ð9Þ

where t is the reaction time in minutes, v is the volume of cells used

in milliliters and OD refers to the optical density measurements

obtained from the plate reader. The factor of 0:826 accounts for

the use of 200 muL Na2CO3 as opposed to 500 mL which changes

the concentration of ONP in the final solution.

Single Cell mRNA FISH
Our assay is based on that used in Ref. [9]. Once a culture

reaches OD600~0:3{0:5, it is immersed in ice for 15 minutes

before being harvested in a large centrifuge chilled to 40C for 5
minutes at 4500 g. The cells are then fixed by resuspending in

1 mL of 3:7% formaldehyde in 1x PBS which is then allowed to

mix gently at room temperature for 30 minutes. Next, they are

centrifuged (8 minutes at 400 g) and washed twice in 1 mL of 1x
PBS twice. The cells are permeabilized by resuspension in 70%
Ethanol which proceeds, with mixing, for 1 hour at room

temperature. The cells are then pelleted (centrifuge at 600 g for

7 minutes) and resuspended in 1 mL of 20% wash solution

(200 mL formamide, 100 mL 206 SSC, 700 mL water) and

resuspended in 50 mL of DNA probes (consisting of an mix of

72 unique DNA probes, individual oligo sequences available as SI

Text S5) labelled with ATTO532 dye (Atto-tec) in hybridization

Tuning Gene Expression by RNAP Binding Site Design

PLOS Computational Biology | www.ploscompbiol.org 8 December 2012 | Volume 8 | Issue 12 | e1002811



solution (0:1 g dextran sulfate, 0:2 mL formamide, 1 mg E.coli

tRNA, 0:1 mL 206 SSC, 0:2 mg BSA, 10 mL of 200 mM
Ribonucleoside vanadyl complex). This hybridization reaction is

allowed to proceed overnight. The hybridized product is then

washed four times in 20% wash solution before imaging in 2x
SSC.

FISH Data Acquisition
Samples are imaged on a 1:5% agarose pad made from PBS

buffer. Each field of view is imaged with phase contrast at the focal

plane and with 532 nm epifluorescence (Verdi V2 laser, Coherent

Inc.) both at the focal plane and in 8 z-slices spaced 200 nm above

and below the focal plane, sufficient to cover the entire depth of

the E. coli. The images are taken with an EMCCD camera (Andor

Ixon2). The phase image is used for cell segmentation and the

fluorescence images are used in mRNA detection. A total of 100
unique fields of view are imaged in each sample and a typical field

of view has between 5 and 15 viable cells (cells which are touching

and cells that have visibly begun to divide are ignored) resulting in

roughly 1000 individual cells per sample.

FISH Analysis
The FISH data is analyzed in a series of Matlab (The

Mathworks) routines. The overview of the workflow is as follows:

identifying individual cells, segmenting the fluorescence to identify

possible mRNA, quantifying the mRNA which are found (because

of the small size of E. coli, at high copy number mRNA can be

difficult to distinguish and count by eye).

Cell identification and segmentation. In phase contrast

imaging, E. coli are easily distinguishable from the background and

automated programs can identify, segment and label cells with

high fidelity. The results of the phase segmentation are manually

checked for accuracy and bad segmentations are rejected. Cells

which are touching or overlapping other cells, misidentification of

cells or their boundaries or cells which have visibly begun to

undergo division, etc are all discarded manually.

Fluorescence segmentation. First we perform several steps

to process the raw intensity images. The images are flattened, a

process to correct for any uneven elements in the illumination

profile, using a fluorescence image of an agarose pad coated with a

small drop of fluorescein (such that the drop spreads evenly across

most of the pad), each pixel of every fluorescence image is scaled

such that the corresponding pixel in the flattening image would be

a uniform brightness (typically each pixel is scaled up to the level of

the brightest pixel). This can be achieved by renormalizing each

pixel in the data images and dividing by the ratio of the intensity of

the corresponding pixel in the flattening image to the intensity of

the brightest pixel. For instance, if one pixel in the flattening image

was half as bright as the brightest pixel, the signal at that pixel’s

position in the raw intensity images would be doubled. We then

subtract from every pixel the contribution to our signal associated

with autofluorescence. The value for the autofluorescence is

obtained by averaging over the fluorescence of every pixel in a

control sample (one which underwent the entire FISH protocol

but did not possess the LacZ gene). Finally, all local 3D maxima

(where x{y is the image plane) in fluorescence are identified. We

require that the maxima be above a threshold in fluorescence

(typically 300{400% above the background autofluorescence

signal). This threshold eliminates all fluorescence maxima in the

control sample, which does not contain the LacZ gene.

mRNA quantification. Each identified maximum pixel is

dilated in the image plane to a 5|5 box of surrounding pixels. If

this causes maxima (herein called ‘‘spots’’ to avoid confusion) to

overlap, the pixels which make up each overlapping spot are

merged into one larger spot to avoid double counting the signal

from any one pixel. Since, due to the small size of the E. coli we can

not guarantee that every spot corresponds to exactly one mRNA,

we must divide the total summed intensity of each spot by the

average intensity produced from a single mRNA. This value can

be found by taking the average of the unmerged spots in very low

expression samples (where the mean %1 and mRNA are

statistically very unlikely to overlap). We use several of our low

expression strains to ensure that as we increase the mean

expression it simply increases the frequency of spots with the

single mRNA intensity but does not increase the mean intensity of

each spot. The mean mRNA copy number can then be calculated

by dividing each spot by the single mRNA intensity and averaging

the total number of such mRNA in the entire collection of cells for

each sample.

Supporting Information

Figure S1 mRNA vs. protein expression. Scatter plot of

mRNA vs. protein expression for each of our designed promoters.

Each data point represents mRNA and protein expression

measurements for a particular promoter. To obtain these values,

expression of a LacZ reporter was measured at both the mRNA

level (using mRNA FISH) and protein level (using the Miller assay

of LacZ activity described in the methods). As would be expected

from a simple model in which each mRNA produces a ‘‘burst’’ of

translated protein molecules characterized by a fixed ‘‘burst size’’

b, these dual measurements display a linear relationship. The inset

pictures are representative mRNA FISH images from the

indicated strains. The scale bar is 5 mm.

(EPS)

Text S1 Energy matrix for RNAP s70 binding affinity.

Energy matrix for RNAP s70 in arbitrary energy units. The energy

matrix is determined from experiments in strain TK310 with no

supplemental cAMP which means that these cells have no CRP.

The matrix covers base pairs [241:21] where 0 denotes the

transcription start site. Each row corresponds to a given position;

each column corresponds to a value for that base pair. The

columns are ordered [A,C,G,T].

(TXT)

Text S2 Energy matrix for RNAP s70 binding affinity.

Energy matrix for RNAP s70 in units of kBT . The numerical

values here are shown pictorially in Figure 2. The matrix covers

base pairs [241:21] where 0 denotes the transcription start site.

Each row corresponds to a given position; each column

corresponds to a value for that base pair. The columns are

ordered [A,C,G,T].

(TXT)

Text S3 Source code to adapt energy matrix from
Kinney et. al [20]. This code converts from the arbitrary units

of SI text S1 to the values in units of kBT as in SI text S2. This

code adds a constant offset to the matrix such that the average

value of E(S) across the E. coli genome is zero. The basis for this

conversion is the reference of {5:35kBT [45] for the binding

energy of the wild-type promoter.

(TXT)

Text S4 Promoter sequence for constitutive expression
strains. This spreadsheet contains the colloquial name and

promoter sequence for each of the unique constitutive expression

strains generated for this study. The following column contains the

calculated energy for each promoter using the energy matrix in SI

text S1 (from [20]). The final column is the result for the binding
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affinity of each promoter in units of kBT and zeroed to the E. coli

chromosome using the energy matrix given in Figure 2 and SI text

S2, as described in the methods section.

(TXT)

Text S5 List of FISH probe sequences. A list of all 72

probes and their sequences used in the mRNA FISH protocol.

(TXT)
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