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Storage and retrieval of the genetic information in cells is
a dynamic process that requires the DNA to undergo dramatic
structural rearrangements. DNA looping is a prominent example of
such a structural rearrangement that is essential for transcriptional
regulation in both prokaryotes and eukaryotes, and the speed
of such regulations affects the fitness of individuals. Here, we
examine the in vitro looping dynamics of the classic Lac repressor
gene-regulatory motif. We show that both loop association and
loop dissociation at the DNA-repressor junctions depend on the
elastic deformation of the DNA and protein, and that both looping
and unlooping rates approximately scale with the looping J factor,
which reflects the system’s deformation free energy. We explain
this observation by transition state theory and model the DNA–
protein complex as an effective worm-like chain with twist. We
introduce a finite protein–DNA binding interaction length, in com-
petition with the characteristic DNA deformation length scale, as
the physical origin of the previously unidentified loop dissociation
dynamics observed here, and discuss the robustness of this behav-
ior to perturbations in several polymer parameters.
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Many key cellular processes, from gene regulation to me-
tabolism, require the coordinated physical interaction of

biological macromolecules. A classic example is the coordination
of DNA and proteins in DNA loop formation, which is a re-
curring design principle from viruses (1) to animals (2). Despite
their prevalence, many questions remain about how these loops
form and function in vitro and in vivo (3, 4). Here, we ask how
the mechanics of the protein and DNA in a protein-mediated
loop govern looping and unlooping dynamics, an issue that has
only recently begun to be explored (5).
Recent advances in single-molecule techniques have allowed

precise quantification and deeper understanding of the physical
properties of DNA (6, 7), and we have taken advantage of one
such technique here, in combination with a classic bacterial
looping protein. The polymer physics implications of this work,
however, are more general than the particular system we focus
on. The looping protein we examine here, the Lac repressor, so
named because of its role in repressing transcription at the lac
promoter in the bacterium Escherichia coli, was one of the first-
described examples of a genetic regulator that acts through
specific DNA–protein interactions. Looping is accomplished by
means of two DNA binding domains per Lac repressor molecule,
allowing it to bind two of its specific DNA sites (“operators”)
simultaneously, with the intervening DNA adopting a looped
conformation (8), as shown schematically in Fig. 1A. To measure
loop formation and breakdown, we make use of the in vitro
single-molecule tethered particle motion (TPM) assay (9–12),
a simple but powerful technique for investigating DNA–protein
interactions. In TPM, a micrometer-sized bead is tethered to one
end of a linear DNA, with the other end attached to a micro-
scope coverslip (Fig. 1B). The motion of the bead gives a readout
of the effective length of the bead’s DNA “tether,” such that
loop formation induced by the binding of the Lac repressor to its

two operators results in a quantifiable reduction of the bead’s motion.
We record the trajectory of looping and unlooping for each DNA
molecule as a function of time in thermal equilibrium (Fig. 1C).
These trajectories contain a wealth of information about the

DNA–protein interactions in our system. One such quantity that
we will focus on here is the looping J factor, Jloop = ð1 MÞe−βΔF ,
which encapsulates the thermodynamic cost ΔF to deform the
DNA (and possibly the protein) into the looped conformation,
related to the cyclization J factor often used to measure the
flexibility of DNA in vitro (13). We previously measured Jloop for
looping constructs generated by a library of DNAs with different
loop lengths and sequences (Fig. 1C and SI Appendix, Fig. S1), to
examine how DNA mechanics affect the energetics of loop for-
mation (12, 14). We showed that this library of constructs
allowed us to tune Jloop over two orders of magnitude.
Here, we will instead focus on the looping and unlooping

“lifetimes” (durations; Fig. 1C) for this same library of DNAs.
We find that the loop breakdown process at the DNA–protein
interface is sensitive to the whole loop’s deformation, with both
looping and unlooping kinetics exhibiting rather simple forms of
scaling with the looping free energy. Such a dependence has not,
to our knowledge, been previously reported experimentally (10,
15) or considered in standard physical models for DNA looping
(16–20), and suggests DNA looping as a member of a broader
class of phenomena where applied force (21–25) or internal
stress stored in polymers (5, 7, 26, 27) modulates biochemical
reaction rates. Moreover, this result implies possible influence of
DNA mechanics on evolution, because both the speeds of
turning gene regulation “on” and “off” may be critical for fitness.
We provide an explanation for the molecular origins of this
dependence and develop a theory of looping kinetics, allowing us
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to probe experimentally inaccessible details of the looping pathway
and the looping transition state.

Results and Discussion
In this work, we use the common single-molecule analysis technique
of half-amplitude thresholding (see details in SI Appendix, section
S1) to obtain distributions of the amount of time each TPM tether
spends in the looped or unlooped state, called looped or unlooped
lifetimes. We begin by developing a simple kinetic framework for
understanding what the measured state lifetimes tell us about the
underlying physics of the system, with the basic elements given in
Fig. 2. As discussed in more detail in SI Appendix, section S2.1.2–4,
using standard kinetic analyses we can express the mean unlooped
state lifetime, hτunloopedi, in terms of the repressor concentration [R]
and the rate constants diagrammed in Fig. 2, as follows:

�
τunlooped

�
=

 
1+

kAoff
½R�kAon

! 
1+

kBoff
½R�kBon

!

kαon
kAoff

½R�kAon
+ kβon

kBoff
½R�kBon

: [1]

Note that hτunloopedi contains two different kinds of rates: fkAon=off ;
kBon=offg, for the binding/unbinding of the first repressor head to
the DNA (we are distinguishing between binding and unbinding
to operator A versus operator B, because several operators with
different affinities for repressor have been described), as well as
fkαon; kβong for the binding of a second operator when the repres-
sor has already bound the first one, which we here allow to differ
from the rates for the initial binding event (Fig. 2). On the other
hand, hτloopedi= 1=ðkαoff + kβoff Þ contains only the loop-affected
dissociation rates fkαoff ; kβoffg, which we made no a priori assump-
tions and allow to differ from the simple unbinding events
fkAoff ; kBoffg. Experimental measurements of the unlooped and

looped lifetimes then tell us how looping affects kα=βon and kα=βoff ,
respectively. Regulation of association rates by flexible linkers
and polymer ring closure rates have been discussed in the frame-
work of confined diffusion (16–20), and the effect of confined
diffusion from the elastic DNA-repressor loop is likely to dom-
inate fkαon; kβong in our case as well. However, dissociation rates
are usually thought of as local phenomena and dependent only
on the interaction strength at the molecular interface, a hypoth-
esis implicitly used in previous works on DNA looping kinetics
(5, 10, 15, 28). In contrast, in force spectroscopy experiments, an
applied force changes a reaction free energy profile by adding a
linear term to it. As a result, the equilibrium constant of the re-
action, as well as both the on and off rates (e.g., association and
dissociation of chemical bonds, folding and unfolding of RNA or
nucleosomes), depend on the pulling force (21–25). With our
kinetic measurements, we can address the question of to what
degree the dissociation process (i.e., the looped lifetime) is sim-
ply a local interaction and to what degree it is affected by the
elastic deformation energies of the protein and DNA chain.
As exemplified by Fig. 3A for sequence dA (Fig. 1B), the

unlooped and looped state lifetimes extracted from our TPM
data show a modulation with loop length, just as the J factor
(equivalently, the deformation free energy of the system) does.
The other sequences are similarly plotted in SI Appendix, Fig.
S11, and exhibit more complex behavior when loop length varies
more than one helical repeat. Although the unlooped and looped
state lifetimes are complicated functions of the loop length and
DNA sequence, they are approximately monotonic when plotted
versus the J factor, as shown in Fig. 3B. Moreover, this behavior
is roughly independent of both loop sequence and, within the
range of lengths examined here, loop length, as shown in Fig. 3 C
and D: unlooped and looped state lifetimes for five different
sequences spanning one to two helical periods of DNA all follow
the same trend with J. Because J is known to be a function of
loop length and DNA sequence, it can be viewed as encom-
passing the effects of the polymer parameters (within the range
examined here) on the looping dynamics.
In contrast to the common view that dissociation rates are

local phenomena only, these data suggest that the loop dissoci-
ation and association kinetics are both regulated by Jloop. We
note that the looping J factor is sometimes interpreted as ef-
fective cohesive-end concentration or effective repressor con-
centration, and increasing effective concentration is thought to
facilitate association kinetics (29, 30). However, this concept
does not explain how the dissociation kinetics is modulated by an
effective concentration: according to the simple kinetic frame-
work discussed above, the looped-state lifetime should not de-
pend on repressor concentration [R]. If we take the effective
concentration interpretation of Jloop literally, the fact that the
dissociation kinetics, i.e., the looped lifetime shown in Fig. 3,
depends on Jloop is inconsistent with this framework. Explaining
the dependence of the dissociation kinetics on Jloop requires
a different interpretation of Jloop beyond effective concentration
and more akin to how applied force distorts bonding free energy
in force spectroscopy experiments (21–25). We first apply tran-
sition state theory to obtain some intuition about how Jloop can
modulate loop formation and breakdown rates, and then turn to
a more sophisticated framework that more explicitly models the
polymer mechanics. We note that our analysis based on free-
energy landscapes is theoretically equivalent to expressing the
effect of polymer deformation in terms of force and torque
acting on the bond (5, 26, 27), and we used the free-energy
treatment because of its conceptual simplicity.
The magenta curve in Fig. 2C shows a pathway between one

unlooped state, where operator A is bound, and the looped
state with both operators bound. The transition state on this path
has an unknown structure and a total free energy Ftransition. The
activation energies for the forward and reverse transitions are
given by ΔF‡

unloop = ðFtransition −FunloopedÞ and ΔF‡
loop = ðFtransition −

FloopedÞ= ðΔF‡

unloop −ΔF +EBÞ, where ΔF is the free energy of

C

B

A

Fig. 1. DNA looping dynamics measured by tethered particle motion. (A)
Loop formation requires the DNA chain to bend and twist to bring the
binding sites together and properly orient them. (B) The TPM setup, in which
single DNAmolecules tether microscopic beads to a slide. Looping due to the
Lac repressor binding the two operators on the DNA reduces the bead’s
motion. (C) Sample TPM trajectory, hRi versus time, recorded from a single
tether and segmented into unlooped (blue) and looped (red) states. The
lifetime of a state is how long a trajectory remains in that state before
transitioning to a different one.
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deforming the DNA into the looped state and EB is the favorable
free energy of binding operator B. The loop formation and break-
down rates are given by transition state theory to be the following:

kβon = kβ0e
−βΔF‡

unloop [2]

and

kβoff = kβ0e
−βΔF‡

loop = kβ0e
−β
�
ΔF‡

unloop−ΔF+EB

�
; [3]

where kβ0 absorbs contributions from diffusivity and the shape
of the free energy pathway. Similar equations can be derived
for kαon and kαoff (SI Appendix, section S2.3.2). Combining these
with the equations given above and in SI Appendix for hτunloopedi
and hτloopedi, we find that the mean unlooped and looped life-
times will scale as follows:

�
τunlooped

�
∝ e βΔF

‡

unloop [4]

and �
τlooped

�
∝ e β

�
ΔF‡

unloop−ΔF+EB

�
: [5]

Given the data in Fig. 3, we must conclude that not only
ΔF‡

unloop, but also ΔF‡

loop, are determined by the DNA de-
formation energy, encapsulated in ΔF. We note that the looped

and unlooped state lifetimes in Fig. 3 C and D scale roughly
linearly with J when plotted in log-log scale, and so we can obtain
an approximate form of the relationship between τ and J
(equivalently, ΔF). We find that hτunloopedi∝ J−0:48± 0:03

loop , and
hτloopedi∝ J0:35± 0:02

loop . This provides some intuition into how far the
unknown transition state is, in terms of the elastic deformation
ΔF, from the looped and unlooped states. Moreover, if the DNA
chain were bent and twisted almost all of the way into the needed
shape before binding of the second operator, the unlooped
lifetime would scale as J−1loop and the looped lifetime would be
independent of Jloop and chain length, a very different kinetic
behavior from what we find here. This change in the Jloop de-
pendence could shift the kinetic lifetimes an order of magnitude
over just one decade in loop length.
It is clear that this is not the case for our system; that is, our

finding that both the looped and unlooped lifetimes are de-
pendent upon Jloop reveal that the process of going from the
unlooped state to the transition state encompasses some, but not
all, of the elastic deformation of the chain. Instead, the scaling
exponents for τ versus J give an indication of the degree of re-
lease in elastic strain when moving from the looped state to the
transition state. This model stands in contrast to previous models
of ring closure that describe the DNA looping process as the
first-passage time of the two ends coming within an approxi-
mately zero distance of separation (16–18).
To explore which elastic energies from the DNA and protein

may be contributing to the reaction landscape of Fig. 2C, we
have developed a molecular-level model for the looping and
unlooping processes. We reason that the free-energy landscape
has contributions from bending and twisting deformations of the
DNA and a binding energy (between the free repressor binding
domain and the empty operator) of finite interaction length, as
described in Fig. 1A. This results in a distance from the looped
state to the transition state, similar to the ideas of finite-scale
chemical bonding in refs. 21 and 22.
The DNA loop region is modeled as a worm-like chain, which

describes the polymer as an elastic thread that is subjected to
thermal fluctuations (31). Although there is still considerable
debate about the elastic nature of DNA at short lengths (32, 33),
the worm-like chain model has a clear physical basis and its
application resulted in reasonable value for the persistence
length. The bending energy for a specific conformation is given
by the following:

βEbend =
Lp

2

ZL
0

dsκðsÞ2; [6]

which depends on the square of the local curvature κðsÞ. For
a specific polymer conformation, the local curvature is equiva-
lent to the inverse of the radius of a circle that is tangent to the
curve (e.g., a straight chain segment has zero curvature and
a tangent circle with infinite radius). This quadratic bending
energy is consistent with linear elasticity theory of a thin elastic
beam with a bending modulus kBTLp (where Lp is the persistence
length). The polymer conformational free energy Fconf ðrÞ gives
the free energy for fixing the end-to-end distance of the two
operators to be r, incorporating both the bending deformation
energy and the entropy of different DNA conformations. We
show some example configurations from a Monte Carlo simula-
tion in Fig. 4A. To determine Fconf ðrÞ, we find the Green func-
tion GðrÞ, which gives the probability of the two ends being
a distance r apart, by summing over all possible paths and weight-
ing each by e−βEbend . We have previously derived the exact result
for the Green function (34) and use this result to calculate the
conformational free energy βFconf ðrÞ=−log½r2GðrÞ�.
The binding of the operators to the Lac repressor requires

proper orientational alignment between the binding face of the
operators and the Lac binding domains. The intervening DNA

C

A B

Fig. 2. Kinetic framework of protein-mediated looping. (A) Repressor as-
sociation with operator B is a pseudo–first-order reaction with rate ½R�kB

on.
Dissociation is a zeroth-order reaction with rate kB

off . (B) Association of the
repressor bound at operator Awith the unbound operator B has a rate kβ

on, and
dissociation from operator B has a rate kβ

off . Note that here we are dis-
tinguishing between the binding/unbinding of the first repressor head (rate
constants kA

on,k
A
off ,k

B
on,k

B
off ) and the binding/unbinding of the second repressor

head to the same DNA (rate constants kα
on,k

α
off ,k

β
on,k

β
off ). (C) The reaction curve

(magenta) shows a hypothetical transition state, with unknown free energy,
controls both the forward the reverse reactions.What is known from equilibrium
measurements is the difference between the unlooped and looped states,
−EB +ΔF (binding energy plus the penalty for looping deformation).
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length determines the undeformed orientation of the DNA helix
at the operator, and proper alignment for binding incurs ener-
getically costly twist deformation upon rotating the DNA into its
proper orientation (which is in fact the origin of the modulation
of J with loop length, noted in the text accompanying Fig. 3A).
We define the twist angle θ to be the angle of rotation about the
DNA axis at the unbound operator away from the ground-state
untwisted angle (i.e., θ= 0 is untwisted). We consider a simple
model for the twist free energy βFtwistðθÞ= ðLt=2LÞθ2, which is
quadratic in the local twist deformation and evenly distributes
the twist deformation over the length of the DNA between the
operators. The twist persistence length Lt represents the re-
sistance to twist deformation. This model neglects the geometric
coupling between twist and writhe of the chain, which becomes
more relevant at longer chain lengths where out-of-plane con-
formations are not prohibited by the bending deformation en-
ergy (34, 35).
The binding free energy, which drives the formation of the

looped state, is modeled as a potential well with depth e0 and
an interaction length scale δ. The separation of the two
operators at the surface of the DNA strands is given by

raðr; θÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr− aÞ2 + a2 − 2ðr− aÞa cosðθ− θopÞ

q
, where r is the

end-to-end distance of the DNA strands and θ is the twist angle
at the unbound operator (see SI Appendix, Fig. S5, for an illus-
tration). The preferred twist angle θop = 2πðL=LturnÞ+ θ0 gives
the twist angle that orients the empty operator to face the Lac
repressor binding domain, where θ0 defines the twist angle
necessary for docking DNA into Lac repressor even at integer
DNA helical repeats. The representative images in Fig. 4A show
how the DNA twists to orient the Lac repressor with the un-
bound operator as the ends are brought together. The DNA
structure dictates the cross-sectional radius a (assumed to be
a = 1 nm) (36) and the helical length Lturn (assumed to be
Lturn = 10:46  bp× 0:34  nm) (34). The binding free energy Fbind is
then given by the following:

βFbindðr; θÞ=

8>><
>>:

−2e0

1+ exp
�
raðr; θÞ

δ

�; r> 2a;

∞; r≤ 2a;

[7]

which includes a steric cutoff at r= 2a to account for the overlap
of DNA backbone segments. This simple binding model aims to
model the basic interaction between the DNA operator and Lac
repressor by introducing only the binding affinity e0 and the in-
teraction length δ to capture the physical interaction. More de-
tailed models of interaction could include more molecular detail,
but our goal is to give the simplest representation of binding
without introducing additional parameters that do not have
well-defined values.
The three thermodynamic contributions Fconf ðrÞ, FtwistðθÞ,

and Fbindðr; θÞ combine to give the total free-energy landscape
Ftotalðr; θÞ, as shown in Fig. 4A for L= 101  bp and parameters
e0 = 23:5 (in kBT units), δ= 1:3  nm, Lp = 48  nm, Lt = 15  nm, and
θ0 = 0:003  π. We find the minimum free-energy path from the
looped state X, over the transition state Y, to the unlooped state
Z, and plot each of the three free energy contributions, as well as
the total free energy along this path, in Fig. 4B. From transition
state theory, the looped lifetime is simply proportional to
e−βΔF

‡

loop , and the unlooped lifetime is proportional to e−βΔF
‡

unloop ,
as given in Eqs. 4 and 5 above. We use the more sophisticated
Fokker–Planck formalism and treat the reaction from the looped
to unlooped state (and vice versa) as diffusion on a one-dimensional
potential-energy landscape, given by FtotalðrÞ along the minimum
free-energy path shown in Fig. 4B. Twist angle relaxation is much
faster than changes in the end-to-end distance (37), and we avoid
introducing an additional, poorly characterized parameter for
the twist angle diffusivity by reducing the problem down to one
dimension. We calculate the mean looped lifetime as the average
first passage time from anywhere in r< rY to leaving the transi-
tion state at r= rY , and similarly for the mean unlooped lifetime.
The looping J factor is calculated from the polymer free energy
difference:

Jloop = ð1 MÞe−βΔF = ð1 MÞexp
h
−β
	
F loop
poly −F unloop

poly


i
: [8]

Here, F loop
poly and F unloop

poly are calculated by averaging only the
polymer elastic energies ðFconf +FtwistÞ (i.e., excluding the bind-
ing energy) over the end-to-end distance r smaller and larger
than r= rY , respectively, with a Boltzmann weight given by
e−βFtotalðrÞ. We refer the reader to SI Appendix, section S2.4,
for more details.
To compare these theoretical results with the experimental

results of Fig. 3, we find model parameters for the elastic
parameters Lp, Lt, which could vary with DNA sequence, and the
binding parameters e0, δ, and θ0, which should be consistent
across all sequences with the same operators. We obtain
θ0 = 0:003  π by looking at the peaks in the Jloop data (see figure 2
in ref. 14), which occur when the twist-free orientation 2πL=Lturn
is aligned with θ0. The model is able to reproduce the basic
qualitative features of the data across a range of parameters, and
we chose values of e0 = 23:5 (in kBT units), and δ= 1:3  nm as
representative of a good fit to the data across all five sequences
for the set of operators used here. These parameters are within
the expected range, given the size of the Lac repressor arm
(around 3–4 nm from the crystal structure) (8) and the binding
energy of the repressor to DNA of approximately 16  kBT (38).
We then varied the elastic parameters to find the best fit for each
sequence, obtaining values of the persistence length Lp ranging
from 48 to 51 nm and the twist persistence length Lt ranging
from 10 to 70  nm. The values for Lp are close to the canonical
value for dsDNA of Lp = 53  nm (39). Although our twist per-
sistence differs from the canonical value of Lt = 110  nm (37), we
note that our twist model is much simplified. We do not include

A

C D

B

Fig. 3. Experimentally measured state lifetimes. (A) Looping J factor (black),
mean unlooped lifetime (blue), and mean looped lifetime (red), for one
helical period of the “dA” sequence. (B) The same data as in A, but with
lifetimes plotted versus the J factor and the loop length (in base pairs)
marked for the looped lifetime curve. (C) Mean looped state lifetime and (D)
mean unlooped state lifetime versus Jloop, for one helical repeat each for
three sequences (“dA,” “5S,” “CG”), and two helical repeats for two
sequences (“E8,” “TA”).
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the details of the end orientations, twist angle entropic effects,
and twist–writhe coupling, all of which could lead to the lower
value of Lt that we determined.
Theoretical predictions for the unlooped and looped mean

lifetimes are shown in Fig. 4 C and D, using the same values as in
Fig. 4A, and a full comparison with each sequence is given in SI
Appendix (SI Appendix, Fig. S6). The theoretical lifetimes (black
curves) exhibit an approximate power-law trend with Jloop for
the lengths ranging from 89 to 115 bp. Notably, the value of
Jloop exhibits both oscillations and an average increase as the
length is increased from 89 to 115 bp. In this regard, the quan-
tity Jloop serves as a critical determinant of the looped and
unlooped lifetimes.
One usually unrecognized feature introduced in our molecular

model for looping is the treatment of the protein binding energy
that has a well depth of e0 and an interaction radius of δ. These
parameters are specifically dependent upon the properties of the
protein and the operator binding interface. In addition to the
data shown in Fig. 3, we also analyzed TPM trajectories with
a different set of operators, specifically with the O1 operator
replaced by the slightly weaker O2. These data are plotted as
blue dots in Fig. 5. We have previously determined the energetic
difference between these two operators to be 1:5  kBT (38). Be-
cause only one operator’s affinity was changed, we would expect
the resulting value of e0 to be reduced by 0:75  kBT. (We note
that in these operator-swap experiments, the sequence of the
loop was somewhat altered as well, but not its total length, and
as such we expect most or all of the change to be due to the

difference in the binding well depth e0). Our model prediction,
given in black in Fig. 5, clearly agrees well with the experimental
results when e0 is reduced by 0:75kBT and all other parameters
are kept the same as in Fig. 4.
Consistent with our theory, only the looped lifetimes are af-

fected by the change of operator. In the free-energy plot in Fig.
4B, we see that the binding energy (blue) only begins to affect the
total free-energy curve (black) once the configuration is to the
left of the transition state; i.e., it is in the looped state. Likewise,
we see that the twist energy (red) only begins at end-to-end
distances less than the transition state end-to-end distance rY .
Thus, our molecular-level model has given us clear insight into
the elastic deformation present at the transition state, and this
agrees well with our experimental measurements.
The other major parameter introduced for the binding energy

was a finite length scale for the DNA–protein interaction. This
parameter is critical to explain our findings that both the looped
and unlooped lifetimes depend upon the J factor. The finite
length scale of interaction δ affects the transition state Y by
changing the end-to-end distance and twist angle at which this
state occurs. For large δ, the transition state would occur at a
farther end-to-end distance and thus exhibit a notable release of
deformation energy compared with the looped state X, leading
to a dependence of the looped lifetime on Jloop. This parameter δ
phenomenologically models both the size (8) and flexibility (40) of
the protein mediating the loop, and could also account for other
effects such as electrostatic interactions or nonspecific binding
leading to sliding along the DNA chain (41). Thus, in experi-
ments with proteins of smaller size or flexibility than Lac re-
pressor, we would expect a decreased scaling exponent and hence
decreased dependence of the looped lifetime on Jloop. We will
explore the effect of this interaction distance further in an
upcoming manuscript.

Conclusion
Using the single-molecule technique of tethered particle motion
to examine looping and unlooping lifetimes by the classic Lac
repressor looping protein, we have shown here that both the
looped and unlooped lifetimes depend upon the J factor, in-
dicating that the dissociation rate is dependent upon the DNA
and protein elasticity. These findings are unexpected based on
the common treatment of the J factor as an effective protein
concentration, and have been ignored by previous studies of
DNA looping. We also note that the J factor-modulated state
lifetimes, having a 1- to 10-min dynamical range, are comparable
to E. coli’s cell division time. The state lifetimes are sensitive to

A B

C D

Fig. 4. Molecular model for DNA looping. (A) Total free-energy surface
versus end-to-end distance r and twist angle θ. In this plot, L= 101  bp and
the parameters are e0 = 23:5 (in kBT units), δ= 1:3  nm, Lp = 48  nm, Lt =15 
nm, and θ0 = 0:003  π. The black curve indicates the minimum free-energy
path between the looped state (X) and the unlooped state (Z ), passing
through the transition state (Y ). Representative DNA conformations (as
predicted by Monte Carlo simulation) at five different end-to-end separa-
tions are shown to the right of the free-energy surface, where the degree of
twisting is indicated by the DNA coloration ranging from blue for θ= 0 to red
for θ= 0:678  π. (B) Free energy along the minimum free-energy path. The
total free energy (black) is a combination of the polymer free energy
(green), the twisting free energy (red), and the binding free energy (blue).
The free-energy barriers to leave the looped and unlooped states are ΔF‡loop
and ΔF‡unloop, respectively. (C) Unlooped lifetime behavior. The experimen-
tally determined unlooped lifetimes (red dots) are plotted versus Jloop, with
the black line corresponding to the theoretical prediction as L is varied from
89 to 115 bp. (D) Looped lifetime behavior. The looped lifetimes from the
experiments (red dots) and theory (black line) are plotted using the same
parameters as in C.

A B

Fig. 5. Changing operator affinity shifts looped lifetimes. (A) Looped life-
time behavior. The experimentally determined looped lifetimes (blue) for all
five sequences with Oid and O2 operators, instead of Oid and O1 as in Fig. 3,
are plotted versus Jloop, with the black line corresponding to the theoretical
prediction as L is varied from 89 to 115 bp. All of the model parameters are
the same as in Fig. 4 except e0 has been reduced to 22:75  kBT . For reference,
the light gray dots are the data from the Oid and O1 operators, and the dark
gray line is the theory curve from Fig. 4. (B) Unlooped lifetime behavior. The
unlooped lifetimes for the Oid and O2 operators (blue) and theory (black
line) are plotted, the same as in A.
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how they scale with J, and within a decade of loop length vari-
ation the response times can change an order of magnitude. It is
therefore interesting to explore how DNA mechanics modulates
the in vivo looping and unlooping rates and assess its influence
on how individual cells respond to nutrient fluctuations. To ex-
plain our experimental results, we have developed a molecular-
level model that accounts for the role of both the polymer and
protein deformation in DNA looping and unlooping kinetics.
This model includes a simple but straightforward and physically
derived picture for the three energies necessary to explain
looping in short, stiff chains: bending, twisting, and binding. The
binding energy used allows us to incorporate the protein elas-
ticity through the introduction of a finite length scale of in-
teraction that modulates the degree of favorable binding de-
pending upon the end-to-end distance. We find the lifetimes
calculated from this model to be in good agreement with our
experimental results with realistic physical parameters, and that
the model provides additional insights into the properties of the
transition state and how the elastic energy changes during the
course of the looping reaction. Finally, we note that long-range
ordering of opening and closing kinetics by the system’s free
energy landscape should be a general framework that goes be-
yond the DNA or repressor-specific variables, and can be applied
to other elastic systems such as ligand–receptor reaction (42) or
protein assembly (43), where flexible tethers are important for
the biological functions.

Materials and Methods
TPM experiments were performed as previously described (12, 14). Briefly,
a micrometer-sized bead is tethered to one end of a linear DNA, with the
other end attached to a microscope coverslip. The motion of the bead
depends on the effective length of the DNA such that loop formation in-
duced by the binding of the Lac repressor to its two operators results in
a quantifiable change of the bead’s motion. We record the trajectory of
looping and unlooping for each DNA molecule, under various experimental
conditions such as Lac repressor concentration and DNA sequence. We use
a thresholding procedure to quantify the looped and unlooped lifetimes
from the recorded trajectories. Details of our implementation of the half-
amplitude thresholding procedure are given in SI Appendix, section S1, and
a comparison of our results to those in previous studies using TPM to mea-
sure Lac repressor looping and unlooping rates, showing good agreement
between our results and these previous studies, is given in SI Appendix,
section S3.2. Experimental errors are reported as SEs on the means, calcu-
lated according to the bootstrapping method described in SI Appendix,
section S1.
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