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ABSTRACT Glycolysis is a conserved metabolic pathway that produces ATP and biosynthetic precursors. It is not well under-
stood how the control of mammalian glycolytic enzymes through allosteric feedback and mass action accomplishes various
tasks of ATP homeostasis, such as controlling the rate of ATP production, maintaining high and stable ATP levels, ensuring
that ATP hydrolysis generates a net excess of energy, and maintaining glycolytic intermediate concentrations within physiolog-
ical levels. To investigate these questions, we developed a biophysical model of glycolysis based on enzyme rate equations
derived from in vitro kinetic data. This is the first biophysical model of human glycolysis that successfully recapitulates the above
tasks of ATP homeostasis and predicts absolute concentrations of glycolytic intermediates and isotope tracing kinetics that align
with experimental measurements in human cells. We use the model to show that mass action alone is sufficient to control
the ATP production rate and maintain the high energy of ATP hydrolysis. Meanwhile, allosteric regulation of hexokinase and
phosphofructokinase by ATP, ADP, inorganic phosphate, and glucose-6-phosphate is required to maintain high ATP levels
and to prevent uncontrolled accumulation of phosphorylated intermediates of glycolysis. Allosteric feedback achieves the latter
by maintaining hexokinase and phosphofructokinase enzyme activity at one-half of ATP demand and, thus, inhibiting the reac-
tion of Harden and Young, which otherwise converts glucose to supraphysiological levels of phosphorylated glycolytic interme-
diates at the expense of ATP. Our methodology provides a roadmap for a quantitative understanding of how metabolic
homeostasis emerges from the activities of individual enzymes.
SIGNIFICANCE Metabolic homeostasis maintains appropriate levels of energy and biosynthetic precursors under
variable conditions. To achieve this, metabolic pathways are regulated by a combination of mass action and allosteric
feedback. We have extensive knowledge of the molecular details of the allosteric regulation of many individual enzymes,
but our understanding of how metabolic homeostasis emerges from the activities of individual enzymes is incomplete, and
the number of allosteric regulators that remain to be discovered is unknown. Here, we use a combination of theory and
experiments to identify the function of several conserved allosteric regulators of the glycolysis pathway. Our methodology
can be applied to any other metabolic pathway and provide a framework for quantitative understanding of cellular metabolic
homeostasis.
INTRODUCTION

Glycolysis is conserved across all domains of life. This key
pathway harnesses the breakdown of glucose to produce en-
ergy in the form of ATP and precursors for the biosynthesis
of amino acids, nucleotides, carbohydrates, and lipids.
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Glycolysis produces ATP both directly by a process referred
to as fermentation or aerobic glycolysis (Fig. 1 A) and
indirectly by producing pyruvate, which is used as a sub-
strate for ATP generation by respiration. The net reaction
of mammalian aerobic glycolysis converts extracellular
glucose to extracellular lactic acid, while the only net intra-
cellular reaction is the production of ATP from ADP and
inorganic phosphate (Fig. 1 A). Aerobic glycolysis is the
most active metabolic pathway in proliferating mammalian
cells (an observation known as the Warburg effect (1)), able
to satisfy all the ATP demand even in the absence of
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respiration (2,3). The reliance of proliferating mammalian
cells on aerobic glycolysis for ATP production and the
lack of intracellular products except for ATP makes glycol-
ysis a convenient self-contained system for studying ATP
homeostasis.

To maintain ATP homeostasis, the glycolysis pathway
must simultaneously achieve several tasks, such as regu-
lating the rate of ATP production, ensuring that the ATP
hydrolysis reaction generates a net excess of energy, main-
taining most of the adenine nucleotide pool in the form of
ATP, balancing the activity of glycolysis with other meta-
bolic pathways, and maintaining intermediate concentra-
tions within a physiological range. These tasks must be
achieved at a wide range of ATP demands and be robust
to small variations in enzyme concentrations and kinetic pa-
rameters that are observed due to the stochasticity of gene
expression or physiological changes in temperature or pH.
The impressive capabilities of the glycolysis control system
are evident in its ability to maintain ATP and glycolytic in-
termediate concentrations within a narrow 2- to 3-fold range
in response to a more than 100-fold change in ATP demand
(4–6).

Glycolytic ATP homeostasis is an emergent property of
the activities of individual enzymes that are controlled
by a combination of mass action and allosteric regulation.
Mass action involves the regulation of enzyme rate in
response to changes in substrate and product concentrations.
Allosteric regulation (7–11) refers to the modulation
of enzyme kinetic properties by metabolite binding or
posttranslational modifications, allowing for feedback
regulation to achieve the desired properties of homeostasis
by modifying the mass action trends of biochemical
reactions (12–14). Decades of biochemical studies with pu-
rified enzymes have uncovered that four glycolytic
enzymes—hexokinase (HK), phosphofructokinase (PFK),
glyceraldehyde-3-dehydrogenase (GAPDH), pyruvate ki-
nase (PK)—are allosterically regulated by a constellation
of metabolites such as ATP, ADP, AMP, inorganic phos-
phate, and other regulators (Fig. 1, A and B). To date, the
consequences of disrupting these allosteric interactions on
the glycolytic pathway activity have not been experimen-
tally investigated. This is likely due to the practical diffi-
culty of simultaneously deleting or mutating a minimum
of 10 genes encoding various human isoforms of HK,
PFK, GAPDH, and PK. Therefore, the roles of mass action
and allostery in the control of specific tasks of glycolytic
ATP homeostasis are unknown.

Due to the complexity of ATP homeostasis and the chal-
lenges in experimentally disabling allosteric feedback,
much of the understanding of how allostery and mass action
regulate glycolytic activity has come from mathematical
models. These studies typically employed simplified models
of glycolysis involving two to three enzymes to enable the
use of analytical techniques. They provided three key in-
sights into the role of mass action and allostery in control-
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ling glycolysis. First, mass action alone can, in principle,
regulate several aspects of glycolysis without the need for
allosteric regulators, such as controlling the ATP production
rate, maintaining high ATP levels in response to varying de-
mands, and even enabling oscillations of intermediates (15).
One study suggested that glycolysis, in isolation, might not
require allosteric regulation to maintain ATP homeostasis,
and that allostery may have evolved primarily to coordinate
glycolysis with other metabolic pathways (16). Second, the
structure of glycolysis—where ATP is consumed initially
and later produced in greater amounts—could result in over-
active ATP hydrolysis by HK and PFK reactions and the
accumulation of phosphorylated intermediates (17), as
observed in cell-free systems (18,19) and perturbed living
cells (20–22). Investigation of the three-enzyme model of
glycolysis revealed that feedback inhibition of HK by G6P
can prevent this issue (17), but reducing HK levels could
also achieve a similar effect, suggesting that feedback inhi-
bition of HK by G6P may only be necessary under high
glucose conditions (17). Third, allosteric activation of
PFK by F16BP or AMPmight be required for generating os-
cillations of glycolytic intermediates (23–25), which have
been observed experimentally after perturbations (26,27).
However, it remains unclear whether these oscillations are
physiologically relevant or simply a byproduct of allosteric
feedback serving other roles (25). Despite the progress made
in exploring the potential roles of allosteric regulators of
glycolytic enzymes, their precise function remains unclear.
Importantly, while coarse-grained models allow the use
of powerful analytical techniques, they may omit the
very components that necessitate allosteric feedback.
More detailed models of glycolysis, which include all rele-
vant enzymes and utilize experimentally derived kinetic and
thermodynamic parameters, have been developed (28–31),
but their behavior with and without allosteric regulation
has not been investigated.

Here, we investigated the role of mass action and allostery
in controlling various tasks of glycolytic ATP homeostasis us-
ing a combination of theory and experiments. The core of our
approach is amathematicalmodel that uses enzyme rate equa-
tions to simulate the activity of all glycolytic enzymes using a
system of ordinary differential equations (ODEs). The model
uses enzyme isoforms, enzyme concentrations, and cofactor
pool concentrations observed in proliferating normal and can-
cer human cell lines. The key components of our model are
the newly derived rate equations for allosterically regulated
enzymes HK, PFK, GAPDH, and PK based on decades
of in vitro kinetic data. To the best of our knowledge, we
compiled the largest dataset ofmammalian glycolytic enzyme
kinetic data reported to date, comprising about 3000measure-
ments (Data S2). We used the Monod-Wyman-Changeux
(MWC)model (9–11,32,33) in combinationwith rigorous sta-
tistical approaches to identify the relevant rate equations and
estimate the kinetic constants using amanually curated dataset
of thousands of data points from dozens of publications. We
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solved a difficult problem of parameter estimation of a
large mechanistic model by fully constraining our model
with 172 parameters estimated independently based on
proteomics, metabolomics, and in vitro kinetics data from
dozens of datasets. Our model robustly performed the key
tasks of glycolytic ATP homeostasis and predicted absolute
concentrations of glycolytic intermediates, reaction disequi-
librium ratios, and isotope tracing consistent with measure-
ments in living cells. Analysis of our model showed that
allosteric regulation of HK and PFK is required to maintain
high ATP levels and to prevent uncontrolled accumulation of
phosphorylated intermediates of upper glycolysis. Allosteric
feedback achieves the latter by maintaining HK and PFK
enzyme activity at one-half of ATP demand and, thus, inhibit-
ing the reaction of Harden and Young (18,19), which other-
wise converts glucose to supraphysiological levels of
phosphorylated glycolytic intermediates at the expense of
ATP.Mass action performed other tasks of glycolytic ATP ho-
meostasis previously attributed to allostery, such as control-
ling the rate of ATP production to match ATP supply and
demand, andmaintaining ATP, ADP, and inorganic phosphate
levels such that ATP hydrolysis reaction generates energy.
MATERIALS AND METHODS

Estimation of intracellular concentrations of
glycolytic enzymes

We estimated the abundance of glycolytic enzymes in mammalian cell lines

using publicly available proteomics data (34). We first used proteomics data

to calculate the fraction a specific glycolytic enzyme occupies compared

with total proteome size as a ratio of peptide intensities for the specific

glycolytic enzyme to total peptide intensity for all proteins. This approach

has been shown to produce good estimates of absolute protein amounts

(35). Values of mg protein per mg total protein were then converted to con-

centration using the molecular weight of each enzyme and the cellular pro-

tein density of �200 mg/mL (36). The resulting dataset of glycolytic

enzyme concentrations is reported in Data S1. In the model simulations,

we further converted whole-cell enzyme concentrations from Data S1 to

cytosolic enzyme concentrations as glycolytic enzymes are localized to

the cytosol. We estimated that the enzymes of glycolysis are concentrated

in a volume that is�50% of cellular volume, as�70% of the cell is cytosol

(37) and �70% of the cytosol is water (38,39).
Measurement of intracellular glycolytic
intermediate concentrations using LC-MS

LC-MS was used to profile and quantify the polar metabolite contents of

whole-cell samples. The metabolite extraction buffer was composed of

40% methanol (Fisher Scientific [Waltham, MA], cat. no. A456-4) and

40% acetonitrile (Fisher Scientific, cat. no. A9554) in water (Fisher Scien-

tific, cat. no. W64) containing 0.1 M formic acid (Fisher Scientific, cat. no.

A11750), supplemented with a mixture of 8 isotope-labeled chemicals at 1

mM (ATP [Sigma, Burlington, MA, cat. no. 710695], AMP [Sigma, cat. no.

900382], glucose-6-phosphate [Cambridge Isotope Laboratories [Cam-

bridge, MA], cat. no. CLM-8367), and fructose-6-phosphate (F6P) (Cam-

bridge Isotope Laboratories, cat. no. CLM-8616]), 10 mM (lactate

[Sigma, cat. no. 490040], pyruvate [Sigma, cat. no. 490709], and

fructose-1,6-bisphosphate [Cambridge Isotope Laboratories, cat. no.
CLM-3398]) or 20 mM (glucose [Sigma, cat. no. 389374]), which were

used as internal standards.

Metabolite analysis was performed on an Agilent (Santa Clara, CA) 6430

Triple Quad interfaced with an Agilent 1260 Infinity II LC system. Five mi-

croliters of each metabolite sample was injected onto a SeQuant ZIC-

pHILIC column 5 mm polymer 150 � 2.1 mm (Millipore/Sigma, cat. no.

1504600001). Buffer A was 100% acetonitrile; buffer B was 20 mM

ammonium carbonate, 0.1% ammonium hydroxide. The chromatographic

gradient was run at a flow rate of 0.150 mL/min as follows: 0–0.5 min:

hold at 80% A; 0.5–30.5 min: linear gradient from 80 to 20% A; 30.5–

30.8 min: hold at 20% A; 30.8–31 min: linear gradient from 20 to 80%

A; 31–60 min: hold at 80% A.

The MS settings were kept consistent regardless of the chromatographic

separation being tested. MS parameters were as follows: gas, 350�C at

11 L/min; nebulizer, 35 psi at 4000 V. The MS was operated in negative

ionization mode for all samples analyzed.

All experiments were performed in replicates of five (n ¼ 5) per sam-

ple group. Metabolite identification and quantification were performed

with the Agilent MassHunter Qualitative Analysis software (version

B.06.00). To confirm metabolite identities and to enable quantification,

the pools of metabolite standards were used. To accurately quantify

target metabolites, the final concentrations of standards were 100, 50,

25, 12.5, 6.25, 3.125, and 1.56 mM, 781, 390, 195, 97, and 49 nM. In

each sample, the raw peak area of each metabolite was divided by the

raw peak area of the relevant isotope-labeled internal standard to calcu-

late the absolute concentration. ATP, AMP, glucose-6-phosphate,

fructose-1,6-bisphosphate, pyruvate, and lactate were normalized with

their isotope-labeled counterparts. For determining the absolute concen-

trations of all other metabolites, the peak areas were normalized with

two isotope-labeled internal standards that have the closest retention

time. The raw peak area values were fit to a linear fitting curve equation,

typically with r2 > 0.99, which was then used to calculate the concentra-

tion of the metabolite in each extract. The final intracellular concentra-

tions of target metabolites were then calculated from the sample

dilution-fold and the corresponding cell volume, which was estimated

using the Beckman Z2 Coulter Counter.

Two sets of isomers, F6P/glucose-1-phosphate (G1P) and

3-phosphoglycerate/2-phosphoglycerate were not separated under our

chromatographic conditions. We took advantage of the different ratios

of the signal from two transition states for each of the isomers to decon-

volve the peaks. For example, F6P and G1P generate different signal ra-

tios from two transition states with product ion values of 78.96 or 96.97.

We used F6P and G1P standards to determine the ratios of signal from

78.96 product ion to that of 96.97 product ion and used these values

to deconvolve the peaks containing the mixture of the two compounds.

One million C2C12 or HeLa cells were seeded on 6-well plates in 2 mL

of DMEM without pyruvate (US Biological [Salem, MA], cat. no. D9802-

25L), supplemented with 25 mM glucose, 3.7 g/L NaHCO3, and 10% FBS

(Gibco, cat. no. 10437028). Twenty-four hours later, the medium was

exchanged to 2 mL of DMEM medium without pyruvate, supplemented

with 25 mM glucose, 3.7 g/L NaHCO3, 10% FBS, and 1 mM oligomycin

(MP Biomedicals [Santa Ana, CA], cat. no. 151786). Metabolite extraction

was performed on ice. After 2 h incubation, the cell culture plate was placed

on ice and the medium was aspirated. One hundred and fifty microliters of

ice-chilled extraction buffer (40:40:20, methanol/acetonitrile/water) con-

taining 0.1 M formic acid and 8 isotope-labeled internal standards was

added and cells were scraped with a cell lifter for 10 s. The lysate was trans-

ferred to a 1.5-mL tube on ice. Five minutes later, cells were centrifuged at

17,000 � g at 4�C for 10 min. Supernatants were collected and neutralized

by adding ammonium bicarbonate (final concentration of 100 mM). These

samples were analyzed with LC-MS as described above to determine intra-

cellular concentrations of metabolites.

For each experiment, a replicate set of cells was treated identically in par-

allel and used for measuring cell number and volume. The contents of each

well were trypsinized, and cell number and volume were measured using a
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Beckman Z2 Coulter Counter with a size setting of 492.8–23620 fL. Intra-

cellular concentrations were calculated using the total number of cells per

sample and the volume of each cell.
Estimates of glycolytic intermediate
concentrations from the literature

In addition to our own measurements of glycolytic intermediate concentra-

tions, we have compiled a dataset of mammalian glycolytic concentrations

measured under different conditions from eight publications (29,31,40–45).

The resulting dataset combined with our own measurement is reported

in Fig. 2 E and provided in Data S1. In Fig. 2 E, we further converted

whole-cell metabolite concentrations from Data S1 to cytosolic metabolite

concentrations as glycolysis is localized to the cytosol. We estimated that

the metabolites of glycolysis are concentrated in a volume that is �50%

of cellular volume, as �70% of the cell is cytosol (37) and �70% of the

cytosol is water (38,39).
Measurement of glycolytic fluxes using [13C]
glucose and [13C]lactate

C2C12 or HeLa cells (1 million) were seeded on 6-well plates in 2 mL of

DMEM without pyruvate, supplemented with 25 mM glucose, 3.7 g/L

NaHCO3, and 10% FBS. Twenty-four hours later, the medium was

exchanged to 2 mL of DMEM medium without pyruvate, supplemented

with 25 mM glucose, 3.7 g/L NaHCO3, 10% FBS, and 1 mM oligomycin.

After 2 h incubation, the medium was exchanged to 2 mL of DMEM

medium without pyruvate, supplemented with 25 mM [13C6]glucose

(Sigma [Burlington, MA], cat. no. 389274-1G), 3.7 g/L NaHCO3, 10%

dialyzed FBS (ThermoFisher [Waltham, MA], cat. no. 26400044), and

1 mM oligomycin or 2 mL of DMEM medium without pyruvate, supple-

mented with 25 mM glucose, 5 mM [13C3]lactate (Cambridge Isotope

Laboratories [Cambridge, MA], cat. no. CLM-1579-N-0.1MG), 3.7 g/L

NaHCO3, 10% dialyzed FBS, and 1 mM oligomycin. After 1, 3, 10,

and 30 min, cell culture plates were placed on ice and medium was aspi-

rated. Cells were rinsed with 2 mL of ice-cold 100 mM ammonium bi-

carbonate for no more than 10 s and metabolites were extracted as

described above using extraction buffer (40:40:20, methanol/acetoni-

trile/water) containing 0.1 M formic acid and 1 mM isotopic AMP. In

each sample, the raw peak area of each metabolite was divided by the

raw peak area of isotope-labeled AMP internal standard to calculate

the relative abundance.
Numerical simulations of differential equations
constituting the glycolysis model

The glycolysis model is a system of ODEs. The number of equations is

equal to the number of metabolites, and each equation consists of a deriv-

ative of metabolite concentration with respect to time being equal to the

sum of enzyme rates producing the metabolite minus the sum of enzyme

rates consuming the metabolite:

d½Glucosemedia�
dt

¼ 0

d½Glucose� GLUT HK1
dt
¼ V � V

d½G6P� HK1 GPI
dt
¼ V � V
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d½F6P�

dt

¼ VGPI � VPFKP

d½F16P�

dt

¼ VPFKP � VALDO

d½GAP� ALDO TPI GAPDH
dt
¼ V þ V � V

d½DHAP� ALDO TPI
dt
¼ V � V

d½BPG� GAPDH PGK
dt
¼ V � V

d½3PG� PGK PGAM
dt
¼ V � V

d½2PG� PGAM ENO
dt
¼ V � V (1)

d½PEP� ENO PKM2
dt
¼ V � V

d½Pyruvate� PKM2 LDH
dt
¼ V � V

d½Lactate� LDH MCT
dt
¼ V � V

d½Lactatemedia�

dt

¼ 0

d½ATP� HK1 PFKP PGK PKM2 AK
dt
¼ �V � V þ V þ V þ V

�VATPase

d½ADP�

dt

¼ VHK1 þ VPFKP � VPGK � VPKM2 � 2VAK

þVATPase

d½AMP� AK
dt
¼ V

d½Phosphate� ATPase GAPDH
dt
¼ V � V

d½NADH� GAPDH LDH
dt
¼ V � V
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d½NAD�

dt

¼ VLDH � VGAPDH

The ODE model can also be represented in the form of the stoichiometric

matrix.
GLUT HK1 GPI PFKP ALDO TPI GAPDH PGK PGM ENO PKM2 LDH MCT ATPase AK

Media Glucose 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Glucose 1 �1 0 0 0 0 0 0 0 0 0 0 0 0 0

G6P 0 1 �1 0 0 0 0 0 0 0 0 0 0 0 0

F6P 0 0 1 �1 0 0 0 0 0 0 0 0 0 0 0

F16BP 0 0 0 1 �1 0 0 0 0 0 0 0 0 0 0

GAP 0 0 0 0 1 1 �1 0 0 0 0 0 0 0 0

DHAP 0 0 0 0 1 �1 0 0 0 0 0 0 0 0 0

BPG 0 0 0 0 0 0 1 �1 0 0 0 0 0 0 0

3PG 0 0 0 0 0 0 0 1 �1 0 0 0 0 0 0

2PG 0 0 0 0 0 0 0 0 1 �1 0 0 0 0 0

PEP 0 0 0 0 0 0 0 0 0 1 �1 0 0 0 0

Pyruvate 0 0 0 0 0 0 0 0 0 0 1 �1 0 0 0

Lactate 0 0 0 0 0 0 0 0 0 0 0 1 �1 0 0

Media Lactate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ATP 0 �1 0 �1 0 0 0 1 0 0 1 0 0 �1 1

ADP 0 1 0 1 0 0 0 �1 0 0 �1 0 0 1 �2

AMP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Phosphate 0 0 0 0 0 0 �1 0 0 0 0 0 0 1 0

NAD 0 0 0 0 0 0 �1 0 0 0 0 1 0 0 0

NADH 0 0 0 0 0 0 1 0 0 0 0 �1 0 0 0
The stoichiometric matrix allows us to calculate the number of conserved

moieties and identify them using chemical reactions network theory. The

number of conserved moieties is the number of metabolites (i.e., rows) minus

the rank of the stoichiometric matrix, and the conserved moieties are the left

null space of the stoichiometric matrix. The six conserved moieties are.

1) adenine pool: ATP þ ADP þAMP

2) NAD(H) pool: NAD þ NADH

3) media glucose

4) media lactate

5) total phosphate pool: PEP þ 2PG þ DHAP þ phosphate þ GAP þ
2.0F16BP þADP þ 3PG þ F6P þ G6P þ 2.0BPG þ 2.0ATP

6) redox state of intermediates: NADH – pyruvate – PEP – 2PG – 3PG –

BPG

We numerically simulated Eq. 13 using the DifferentialEquations.jl

library (46) and plotted the result using Makie.jl library (47). We used Ro-

das5P solver for stiff differential equations with 10�15 absolute tolerance

and 10�8 relative tolerance for most simulations and RadauIIA5 solver for

simulations with constant phosphate and simulations where rate equations

for HK1 and PFKP were substituted for one-half of ATPase rate equations.

Tolerances were chosen to provide minimal numerical errors estimated by

Uncertainty Quantification callback AdaptiveProbIntsUncertainty from the

DiffEqCallbacks.jl library. Numerical simulation of ODEs requires an initial

condition consisting ofmetabolite concentration at time 0.Weused estimates

of intracellular concentrations of glycolytic intermediates as initial condi-

tions (see Data S1) or a steady-state solution for dynamic simulations with

step responses to changes in ATPase rate. A large range of initial conditions,

including all metabolites being zero except for ATP, NAD, and extracellular

glucose, produced similar steady-state solutions as shown in Fig. S1,G–I.We

simulated differential equations for 108 s (�3.2 years) to find the steady-state

concentrations of metabolites. Typically, the solution was close to steady

state after only several seconds in accordance with a rapid rate of glycolysis
observed in live cells. DifferentialEquations.jl has callback capabilities,

which allowed us to change any parameter of the model (e.g., ATPase rate

or concentration of any metabolite) at any time during the simulation. A

typical simulation took2–20ms on a single core ofAppleM1Maxprocessor,

which allowed us to test many different conditions in a short period of time

using a personal computer.
Calculation of ATP turnover, energy released by
ATP hydrolysis, bound and free metabolite
concentrations

The output of the simulation of Eq. 1 is the free concentrations of metabolites

at every time point starting from initial conditions. This output can be used to

calculate many properties of the glycolysis pathway, such as rates of any re-

action or concentrations of bound metabolites, by plugging metabolite con-

centration into enzyme rate equations described in the supporting material.

Consumption and production of ATP was calculated using the following

equations:

ATP consumption ¼ VATPase (2)

ATP production ¼ VPGKþVPKM2þVAK � VHK1 � VPFKP
(3)

Energy released by ATP hydrolysis in units of kBT was calculated using

the following equation:

EATPase ¼ � ln

�
G

Keq

�
¼ � ln

0
BB@
½ADP�½Phosphate�

½ATP�
Keq

1
CCA (4)

where G is the mass action ratio of ATP hydrolysis and Keq is the equilib-

rium constant of ATP hydrolysis.
The concentration of enzyme-boundmetabolites was calculated using bind-

ing equations described in the supporting material. Accounting for enzyme-

bound metabolites is essential to ensure an accurate comparison of model

prediction to whole-cell measurements as the latter represents a sum of

enzyme-bound and free metabolites. Intracellular concentrations of glycolytic
Biophysical Journal 124, 1–25, May 6, 2025 5
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enzymesare1–10mM,which is comparablewith intracellular concentrationsof

some glycolytic intermediates. Therefore, some of the metabolites are mostly

present in an enzyme-bound state, and their concentrations will be underesti-

mated by the model without accounting for the enzyme-bound fraction.
Estimation of uncertainty of model predictions

Outputs of the glycolysis model have uncertainty due to uncertainty of es-

timates of model parameters such as kinetic constants, thermodynamic con-

stants, and enzyme concentrations. Understanding the uncertainty of model

predictions is important for quantitative comparisons of model predictions

to data and for understanding the robustness of model predictions. We used

bootstrapping to calculate the uncertainty of glycolysis model predictions.

We rerun the model 10,000 times using different sets of parameter values,

where each parameter value is generated by randomly drawing a value from

a normal distribution with a mean and standard deviation corresponding to

the mean and standard deviation of that parameter estimate. We bootstrap-

ped all the parameters except we kept the kinetic parameters of ATPase and

adenylate kinase unchanged during bootstrapping as these enzymes are not

part of glycolysis and we set Vmax of ATPase to be equal to a fraction of

Vmax of HK1 or Vmax PFKP, whichever was smaller in a particular bootstrap-

ped parameter set. In most analyses, we only reported the data from boot-

strapped simulations that could match ATP supply and demand as indicated

in relevant figure legends because including simulations that come to equi-

librium due to the inability to produce ATP fast enough is not informative as

they represent a completely different state of the glycolysis system akin to

a dead cell. In summary, this general bootstrapping approach allows us to

estimate the uncertainty of any output of our model.
Global sensitivity analysis

Sensitivity analysis is a set of powerful approaches aimed to systemati-

cally explore the role of specific parameters of an ODE model in control-

ling specific outputs of the model, such as maintenance of high ATP level

at a range of ATP turnovers, prediction of metabolite concentration, speed

of the response to perturbation, etc. Sensitivity analysis can be broadly

subdivided into local sensitivity analysis and global sensitivity analysis

methods. Local sensitivity analysis methods using partial derivates were

historically more popular, especially for simple models where analytical

derivatives can be calculated. When applied to models of metabolic path-

ways, local sensitivity analysis is sometimes referred to as metabolic con-

trol analysis (48,49). The limitations of local sensitivity analysis are that it

only considers the effect of one parameter at a time (i.e., ignores interac-

tions between parameters) and only estimates the role of the parameter at a

specific value of that parameter and every other parameter (i.e., local). To

overcome these limitations, global sensitivity analysis methods were

developed that allow systematic evaluation of parameter importance at a

large range of parameter values (i.e., global) and that can estimate the ef-

fect of interactions between parameters. The only limitation of variance

decomposition methods is that they are much more computationally inten-

sive than local sensitivity analysis methods, which limited their use before

the early 2000s when the computational power caught up to the demands

of these methods.

We used a global sensitivity analysis method called variance decom-

position to learn about the role of specific model parameters in control-

ling specific outputs of our model. Here, we briefly describe the idea

behind this method and refer the reader to several excellent books that

have been written about global sensitivity analysis for more in-depth dis-

cussion (50,51). First, we chose a scalar output Y of the model that we

want to investigate. We focused on investigating the model parameters

required to maintain high ATP concentration, high energy of ATP hydro-

lysis, and the ability of model to match ATP production and ATP con-

sumption rates. Then we perform repeated simulations of the model

using different starting parameters drawn from a log-uniform distribu-

tion with values threefold lower to threefold higher than the model
6 Biophysical Journal 124, 1–25, May 6, 2025
values. We then calculated how much each parameter or combination

of parameters contributes to the variance of output Y observed during

repeated simulations. A parameter that is important for controlling Y

will have a large contribution, and the parameter that is not important

will have small or no contributions. The variance of output Y that de-

pends on k input parameters P could be uniquely decomposed into the

following terms:

VarðYÞ ¼ P
i

Vi þ
X
i

X
j > i

Vij þ
X
i

X
j > i

X
l > j

Vijl þ.

þV1;2.k

(5)
where
Vi ¼ VarðEðYjPiÞÞ

Vi;j ¼ Var
�
E
�
Y
��Pi;Pj

�� � Vi � Vj
Vi;j;l ¼ Var
�
E
�
Y
��Pi;Pj;Pl

�� � Vi � Vj � Vl � Vi;j
�Vi;l � Vj;l

Two types of sensitivity indexes, Si and STi , are useful in analyzing the

contribution of input parameters. Si is called sensitivity index, importance

measure or first-order effect:

Si ¼ Vi

VarðYÞ (6)

Another way to understand Si is that it is a fraction of the variance of Y

that would disappear if we fixed parameter Pi at some value. Parameter

Pi would be considered important for controlling output Y if fixing its

value would lead to a large reduction of the variance of Y (i.e., Si is

large). Si has several nice properties where for an additive modelP
Si ¼ 1 and for any model with independent input parametersP
Si % 1. For example, a large value of 1 � P

Si indicates that interac-

tions between parameters are important for controlling a specific output

of the model. More generally, for any model with independent input

parameters:X
i

Si þ
X
i

X
j > i

Sij þ
X
i

X
j > i

X
l > j

Sijl þ.þ S1;2.k ¼ 1

(7)

STi is called the total-order effect and contains all terms in Eq. 7 that

contain i:

STi ¼ 1 � VarðEðYjP� iÞÞ
VarðYÞ ¼ EðVarðYjP� iÞÞ

VarðYÞ

¼ Si þ
X
jsi

Sij þ
X
lsi;j

X
jsi

Sijl þ.

(8)

Another way to understand STi is that it is a fraction of the variance

of Y that would be left if we fixed all parameters except parameter Pi

at some value. Parameter Pi would be considered important for control-

ling output Y if fixing all the parameters except Pi at some value

would still leave a large fraction of variance of Y (i.e., STi is large). Un-

like Si,
P

STi can be larger or smaller than 1 and Eq. 7 does not hold

for STi because STi and STj would have one or several overlapping terms

(e.g., Sij).

We have calculated Si and STi for various outputs of the model using the

Sobol method of the GlobalSensitivity.jl package (52).
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Adoption of the glycolysis model for simulation of
[U-13C]glucose and [U-13C]lactate tracing

Glycolysismodel can be used to predict the results of heavy isotope tracing ex-

periments. To predict tracing patterns, we decompose each rate equation into

enzyme activity part and mass action part as described previously (12,53,54):

V ¼ Enzyme Activity$

�
½S1�$½S2� � ½P1�$½P2�

Keq

�
(9)

Enzyme activity depends on the total concentration of metabolites (i.e.,

sumof all isotopomers),while themass action part is responsible for the prop-

agation of the isotope label. Therefore, for modeling isotope tracing, we

modify all kinetic equations to be able to use heavy and light isotope-labeled

metabolites that we incorporate in the mass action part of all the equations,

and we double the number of ODEs to account for time-dependent changes

of both heavy and light isomers (i.e., we have one ODE for each isotope).
Kinetic equations and numerical simulation of
differential equations constituting the two-
enzyme model

We described the kinetics of enzyme 1, enzyme 2, and ATPase using simpli-

fied rate equations. We started from reversible Michaelis-Menten equations

(54) for enzyme 2 and ATPase. For enzyme 1, we used the MWC model to

add allosteric activation by ADP and phosphate and allosteric inhibition by

ATP. We assumed that ADP and phosphate only bind to active conforma-

tion, ATP only binds to inactive conformation, inactive MWC conformation

of enzyme 1 is catalytically inactive. The resulting complete rate equations

for enzyme 1, enzyme 2, and ATPase are:
VEnz 1 ¼ VEnz 1
max

1þ
L

�
1þ ½ATP�

KATP
I

�n

�
1þ ½ADP�

KADP
A

�n
 
1þ ½Phosphate�

KPhosphate
A

!n

0
BBB@
1þ ½

VEnz 2 ¼ VEnz 2
max

½XP�½ADP�2½Phosphate�
KXP

M

�
KADP

M

�2
KPhosphate

M

1þ ½XP�½ADP�2½Phosphate�
KXP

M

�
KADP

M

�2
KPhosphate

M

þ ½L�
KL

M

�

VATPase ¼ VATPase
max

½ATP�
KATP

M

1þ ½ATP�
KATP

M

þ ½Phosphate�½
KPhosphate

M K
We then assumed that catalytic sites are saturated with substrates and reg-

ulatory sites are saturated with regulators simplifying the rate equations to

Eqs. 16, 17, and 18.

The two-enzyme model is a system of ODEs. The number of equations is

equal to the number of metabolites, and each equation consists of a deriv-

ative of metabolite concentration with respect to time being equal to the

sum of enzyme rates producing the metabolite minus the sum of enzyme

rates consuming the metabolite:

d½G�
dt

¼ 0

d½XP� Enzyme 1 Enzyme 2
dt
¼ V � V

d½L�

dt

¼ 0 (13)

d½ATP� Enzyme 1 Enzyme 2 ATPase
dt
¼ �V þ 2V � V

d½ADP� Enzyme 1 Enzyme 2 ATPase
dt
¼ V � 2V þ V

d½Phosphate� ATPase Enzyme 2
dt
¼ V � V
½G�½ATP�
KG

MK
ATP
M

G�½ATP�
KG

MK
ATP
M

þ ½XP�½ADP�
KXP

M KADP
M

1
CCCA
 
1 � 1

KEnz 1
eq

½XP�½ADP�
½G�½ATP�

!
(10)

½ATP�2
KATP

M

�2
 
1 � 1

KEnz 2
eq

½L�½ATP�2
½XP�½ADP�2½Phosphate�

!
(11)

ADP�
ADP
M

 
1 � 1

KATPase
eq

½ADP�½Phosphate�
½ATP�

!
(12)
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We numerically simulated Eq. 1 using the DifferentialEquations.jl library

(46) using Rodas5P solver for stiff differential equations with 10�15 abso-

lute tolerance and 10�8 relative tolerance as for the full model described

above.
RESULTS

Tasks of glycolytic ATP homeostasis

Glycolytic ATP homeostasis performs multiple tasks that
likely require distinct regulation. In this section, we high-
light four tasks of glycolytic ATP homeostasis that we
have investigated (Fig. 1 A):

Task no. 1: matching the rates of ATP production and
consumption. Any mismatch between the ATP consump-
tion rate by intracellular processes and the ATP production
rate by glycolysis and respiration must only be short-lived
due to the �1–100 s turnover time of intracellular
ATP (55).

Task no. 2: ensuring that ATP hydrolysis generates en-
ergy. The energy of ATP hydrolysis is set by the extent to
which ATP hydrolysis reaction is maintained far from equi-
librium, which, in turn, is determined by the relative levels
of ATP, ADP, and inorganic phosphate. Inside the cell, ATP
hydrolysis reaction is maintained 109- to 1011-fold away
from equilibrium or 20–25 kBT of energy (55).

Task no. 3: maintaining most of the adenine nucleotide
pool in the form of ATP (56,57). One function of main-
taining high and stable ATP levels could be to ensure
that ATP-consuming enzymes are not kinetically limited
for ATP. For example, the KM values for ATP of kinases
A B C

FIGURE 1 Overview of the biophysical model of mammalian glycolysis. (A)

tion to transform glucose into ATP and listing the tasks of glycolytic ATP homeo

(allosterically regulated enzymes in teal and the other enzymes in black) that

inhibitors (red) that are included in the model are highlighted. (C) Schematic of th

are shown for GPI and PFK, and plots are actual GPI and PFK rates calculated b

allosteric activation of the PFK rate in the presence of inorganic phosphate (Pi)

derivation.
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(58), myosin (59), and Naþ/Kþ-ATPase (60) are in the
1–400 mM range, indicating that these enzymes are mostly
saturated with ATP given the 1–10 mM range of intracel-
lular ATP levels. We note that we deliberately did not
refer to task no. 3 by the frequently used term ‘‘energy
charge of the adenylate pool’’ (61) to highlight that task
no. 3 is unrelated to the energy of ATP hydrolysis and
is distinct from task no. 2 as the ATP hydrolysis reaction
can generate the same amount of energy at a wide range
of ATP/ADP ratios due to the offsetting effect of inor-
ganic phosphate.

Task no. 4: maintaining glycolytic intermediate concen-
tration within a physiological range. Intracellular metabolite
concentrations must be maintained within a finite range (62)
bounded by a total intracellular concentration of molecules
(<200 mM) and by the necessity of having more than one
molecule of a metabolite per cell (>1 pM for a HeLa
cell). Equilibrium constants of glycolytic reactions range
from 10�6 to 104, making this a nontrivial task for mass ac-
tion-based regulation.

In addition, glycolysis performs the tasks above at a wide
range of ATP demands, responds quickly to changes in ATP
demand, and coordinates its activity with branching path-
ways such as respiration and pentose phosphate pathway.
The ability of glycolysis to perform these tasks must be
robust to the physiological variability of enzyme levels,
cofactor pool sizes, extracellular glucose, and lactate con-
centrations, as well as kinetic constants that can change
with temperature or pH. Such robustness is an important
property of the homeostasis (63,64). Finally, there might
D

Coarse-grained description of aerobic glycolysis highlighting its main func-

stasis. (B) Qualitative schematic of glycolysis showing the chain of enzymes

convert substrates into products (gray). Allosteric activators (green) and

e glycolysis model, including inputs and outputs. (D) Kinetic rate equations

y the respective equations with rates normalized to Vmax. Note the dramatic

and ADP. See also supporting material for details on enzyme rate equation
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be other tasks of ATP homeostasis that we are not yet
aware of.
Kinetic model of glycolytic ATP homeostasis

To investigate the regulation of ATP homeostasis, we have
developed a comprehensive mathematical model of mamma-
lian glycolysis. In this section, we provide an overview of the
model development while most of the technical details are
described in materials and methods, as well as
a comprehensive supporting material that contains all
the enzyme rate derivations. Ourmodel includes key allosteric
regulators based on a thorough literature review. Most
human glycolytic enzymes are encoded by several
homologous genes that produce enzyme isoforms with tis-
sue-specific expression and distinct kinetic and allosteric
properties. To facilitate experimental testing, we focused on
glycolytic enzyme isoforms that aremost abundant in prolifer-
ating cell lines (i.e., HK1, PFKP, and PKM2 isoforms of HK,
PFK, and PK) based on proteomics data (34) (see Data S1 for
enzymeconcentrations).We sought to develop a coremodel of
mammalian glycolysis that supports ATP homeostasis in the
absence of input from other pathways, and hence we only
included allosteric regulators that are products or substrates
of glycolytic enzymes. Our model converts a qualitative sche-
matic of allosteric regulation (Fig. 1 B) into a precise mathe-
matical language. As input, the model uses 1) the
extracellular concentrations of glucose and lactate, 2) cellular
concentrations of cofactor pools and glycolytic enzymes, and
3) the rate of cellular ATP consumption (Fig. 1 C). We high-
light these inputs separately from the model as these inputs
are not controlled by glycolysis but depend on the cell type
or experimental conditions and thus cannot be predicted by
a glycolysis model. The model takes these inputs and uses
enzyme rate equations assembled into a system of coupled
ODEs to calculate the concentration of every glycolytic inter-
mediate and the rate of every reaction. Materials and methods
contain a detailed description of the model, including ODE
equations, stoichiometric matrix, ODE solvers, conserved
moieties, simulation setting, etc. Our model can calculate
both steady-state behavior and dynamical responses to pertur-
bations. In effect, our model uses in vitro enzyme kinetics to
predict anymeasurable property of glycolysis andmany prop-
erties that cannot currently be measured.

In total, our model contains 172 parameters, including ki-
netic and thermodynamic constants and estimates of enzyme
and cofactor pool concentrations, yet all these parameters
are tightly constrained by experimental data.Kinetic constants
were estimated from in vitro enzyme kinetics data (Data S2)
as described briefly below and in full detail in supporting
material. Thermodynamic constants are taken from the
eQuilibrator database (65). Enzyme and cofactor pool concen-
trations are estimated from proteomics and metabolomics
data, respectively, as described in materials and methods and
reported inData S1.We numerically simulate themodel using
the DifferentialEquations.jl library (46) written in the Julia
Programming Language (66). Our code is heavily optimized
so that it takes�10ms to calculate the results of themodel un-
der given conditions using a single core of amodern computer
processor. Optimized code allows us to run the model under
millions of different conditions to systematically explore the
regulation of glycolytic ATP homeostasis.

The defining feature of our model is the use of newly
derived kinetic rate equations to describe the activity of
four allosterically regulated enzymes (i.e., HK1, PFKP,
GAPDH, PKM2) using the MWC model. MWC is a power-
ful model for describing the activity of allosterically regu-
lated enzymes (9–11,32,33), which assumes that allosteric
enzymes exist in two or more conformations with different
kinetic properties. Both the binding of substrates and allo-
steric regulators can modify the kinetic properties of an
MWC enzyme by stabilizing one conformation over
another. We use statistical learning approaches—regulariza-
tion and cross-validation—to identify the simplest MWC ki-
netic rate equation that adequately describes the available
in vitro kinetic data, allowing us to avoid overfitting and
parameter identifiability issues common for fitting complex
equations to finite data (67). The MWC equation describing
the rate of PFKP in the presence of substrates and regulators
is shown in Fig. 1 D. We described nonallosterically regu-
lated glycolytic enzymes (black in Fig. 1 B) using standard
kinetic rate equations derived from quasisteady-state or
rapid equilibrium approximations. For the eight enzymes
and transporters with one substrate and one product and
for aldolase (ALDO) with two products, we used reversible
Michaelis-Menten equations (see equation describing the
rate of glucose-6-phosphate isomerase [GPI] in Fig. 1 D)
and sequential release equation for ALDO, respectively,
and estimated their kinetic constants by averaging the values
from at least three publications per constant to verify their
consistency and accuracy. For the two remaining enzymes
with more than one substrate or product—phosphoglycerate
kinase (PGK) and lactate dehydrogenase (LDH)—we fitted
their more complex rate equations to manually curated
in vitro kinetics datasets containing 350–700 data points
per enzyme (Data S2). We chose to fit data for PGK and
LDH instead of averaging over published kinetic constants
because many publications describing PGK and LDH
activity used different rate equations, and hence the pub-
lished kinetic constants are not directly comparable. A
comprehensive description of the derivations and fitting of
all the enzyme rate equations is reported in supporting ma-
terial and in vitro kinetic data is compiled in Data S2, and
we hope this compendium of information will serve as a
great resource for future investigations of these enzymes.

Our model uses several assumptions that must be consid-
ered when interpreting its predictions. First, the model as-
sumes that the activity of enzymes in living cells is
accurately described using in vitro activity of purified en-
zymes. Second, the model assumes that enzymes and
Biophysical Journal 124, 1–25, May 6, 2025 9
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metabolites are well mixed in the cytosol of the cell. Third,
the model only describes the effect of regulators that are
included in the model. Fourth, the model assumes that other
pathways (e.g., pentose phosphate pathway, mitochondrial
pyruvate consumption) do not affect the concentration of
glycolytic intermediates or glycolytic reaction rates. Finally,
the model does not consider the effect of glycolysis on pH
and the resulting modification of enzyme activity. Devia-
tions between the model and experimental observations
could be due to any number of these assumptions not being
valid under the conditions of a particular experiment. On the
other hand, if the model accurately predicts experimental
data, it suggests that these assumptions are valid under given
experimental conditions.
Glycolysis model robustly performs the key tasks
of glycolytic ATP homeostasis

After constructing the model, we first performed simula-
tions to determine whether the glycolysis model can
perform the key tasks of ATP homeostasis described above
(Fig. 1 A). To simulate ATP consumption by intracellular
processes, we included an ATPase enzyme in the model.
Glycolysis cannot proceed faster than the maximal rate of
its slowest enzyme, so we report all ATPase rates in percent
of the maximal activity of HK1—the slowest enzyme of
glycolysis based on the product of intracellular enzyme con-
centration and Vmax. First, we found that the glycolysis
model produces as much ATP as is consumed and rapidly
adjusts to stepwise increase or decrease of ATP consump-
tion, as is necessary under physiological conditions
(Fig. 2 A). Second, we showed that >>90% of the adenine
nucleotide pool was maintained as ATP and ATP concentra-
tions varied by <<10% when we introduced physiologi-
cally relevant twofold stepwise changes in ATP
consumption rate (Fig. 2 B). Thus, as has been observed
in vivo (56,57), our model maintains nearly constant ATP
levels in response to large changes in ATP turnover. Finally,
we showed that the glycolysis model maintains ATP, ADP,
and inorganic phosphate concentrations such that the ATP
hydrolysis reaction is �109-fold away from equilibrium,
equivalent to �20–25 kBT (Fig. 2 C), which is similar to
what has been measured in cells (55).

We next tested whether the ability of the model to perform
the relevant tasks of ATP homeostasis is robust to changes in
glycolytic enzyme levels that are variable from cell to cell
and to uncertainty in our estimates of biochemical constants,
cofactor pool concentrations, and initial concentrations of in-
termediates. To demonstrate robustness, we reran our model
10,000 times using random values of enzyme levels taken
from a log-uniform distribution spanning a ninefold range
around the model estimates based on proteomics data
(Fig. S1, A–C) as well as random values of model parameters
(Fig. S1, D–F) and initial condition value (Fig. S1, G–K)
taken from a normal distribution with mean and standard er-
10 Biophysical Journal 124, 1–25, May 6, 2025
ror corresponding to experimental estimates of corresponding
values (see Data S1 for model estimates on enzyme levels
and initial conditions and supporting material for mean and
standard error of kinetic constants). Our simulations showed
that 95% confidence intervals of model prediction are largely
independent of glycolytic enzyme levels, model parameters,
and initial conditions, as would be expected for the model
that captures the robust endogenous regulatory circuit of
glycolytic ATP homeostasis.
Glycolysis model predicts several metrics of
glycolysis activity that are consistent with
measurements in proliferating mammalian cell
lines

Given that our model could reproduce the wealth of mea-
surements of each glycolytic enzyme in vitro and perform
the key tasks of ATP homeostasis, we set out to evaluate
how the model’s predictions compare to the results of exper-
iments in proliferating mammalian cell lines.

First, we briefly discuss our expectations for comparing
model predictions and data, given the many differences be-
tween the model and living cells. The model is based on
in vitro kinetic measurements and focuses solely on the
glycolysis pathway, so we do not expect that the model pre-
dictions will perfectly align with cellular measurements due
to different conditions in vitro and within cells, as well as
the presence of additional metabolic pathways branching
off from glycolysis. However, given that the model robustly
maintains ATP homeostasis at a wide range of parameter
values (Figs. 2, A–C and S1) and glycolysis is the most
active metabolic pathway in proliferating mammalian cells,
we expect the predictions to agree with experimental data
within an order of magnitude. Specifically, we will consider
the model predictions to be consistent with the measure-
ments when the 95% confidence intervals of the predictions
and experimental measurements overlap.

We first compared the range of glycolytic fluxes where
the model supports the tasks of ATP homeostasis to the
range of glycolytic fluxes measured in proliferating
mammalian cells. The model could support a range of
glycolytic rates �0.0003–0.010 mmol glucose/min/mg
cellular protein (Fig. 2 D), which overlaps with glycolytic
flux measurements from two dozen proliferating cells
(68). Several cell lines exhibit higher glycolytic fluxes
than our model can support. The latter is likely driven by
higher glycolytic enzyme expression in those cell lines, as
we have observed a 10-fold range of HK expression in pro-
teomics data (see Fig. 6, A and B below).

We next compared the model predictions with measure-
ments of absolute intracellular metabolite concentrations.
To test if our model can recapitulate the vast range of glyco-
lytic activities seen in prior experiments, we not only
compiled data from nine publications analyzing whole-cell
absolute intracellular glycolytic intermediate concentrations
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FIGURE 2 Glycolysis model recapitulates glycolysis activity observed in live cells. (A–C) Model simulations showing changes in (A) ATP production rate,

(B) ATP concentration (total adenine pool size is labeled with a dashed gray line), and (C) energy released during ATP hydrolysis in response to a twofold

stepwise increase or decrease of ATPase rate. Starting ATPase rate ¼ 5% of glycolysis Vmax was used for (A)–(C). ATPase energy is calculated as a natural

logarithm of the disequilibrium ratio for the ATPase reaction (i.e., mass-action ratio divided by the equilibrium constant) for the ATPase reaction. (D) Range

of glycolysis rates supported by the model (blue shaded area) compared with rates measured in living cells (open circles). (E) Comparison of model pre-

dictions with measured glycolytic intermediate concentrations from multiple cell lines and experimental conditions. Black empty circles indicate the exper-

imentally determined metabolite concentrations. Colored lines with ribbon indicate the median and 95% CI of model predictions. The shift from left to right

for each metabolite level prediction corresponds to increasing rates of ATP consumption from 2 to 20% of glycolysis Vmax (see inset for ATP) to highlight the

effect of ATP consumption on metabolite concentrations. Note that data points are displayed with pseudorandom jitter and do not have shifts corresponding to

ATP consumption rate. Model predictions represent the concentration of boundþ free metabolites in the whole-cell analogous to whole-cell metabolite mea-

surements, while in all other figures, model output is the free concentration of metabolites in the cytosol. (F) Comparison of model predictions with disequi-

librium ratios (i.e., ratio of mass action balance to equilibrium constant) for each glycolysis reaction estimated using the experimental estimates. The range of

experimental disequilibrium ratios displayed in the box and whiskers plot is calculated using 1000 bootstraps of metabolite concentration values from (E).

Whiskers are 1.5 times interquartile range. (G) Comparison of model prediction with [U-13C6]glucose and [U-13C3]lactate tracing data averaged for C2C12

and HeLa cells. Points are data (error bars are SD), and lines are model predictions (ribbons are 95% CI). ATPase rate¼ 15% of glycolysis Vmax was chosen

for model predictions. Model predictions in (D) and (E) are from simulations where bootstrapped model parameter combinations could match ATP supply

and demand, which were>97 and>95% of simulations for (E and F) and (G), respectively. See also Fig. S1. Julia code to reproduce this figure is available at

https://github.com/DenisTitovLab/CellMetabolism.jl.
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using LC-MS, but also supplemented these data with our
measurements in four cell lines (see Data S1). Our model
predicts free metabolite concentration in the cytosol, while
LC-MS measures the sum of free and enzyme-bound metab-
olite concentrations in whole cells. To directly compare
model predictions to data from bulk cell measurements,
we adjusted the model predictions to report the sum of
enzyme-bound and free metabolite concentration and the
whole-cell measurements to report cytosolic metabolite
concentrations (see materials and methods for additional de-
tails of the adjustments). In addition, we reported model pre-
dictions at a range of cellular ATP demands observed in
proliferating cell lines (see Fig. 2 D), as the corresponding
ATP demand was not measured for most of the LC-MS
data. We observed that 95% confidence intervals of model
predictions of most of the glycolytic intermediate concen-
trations overlapped with experimental measurements
(Fig. 2 E). The latter result is notable given that our model
contains no direct information about intracellular metabolite
levels and is free to predict concentrations from 0 to þN
and even below zero if the model is implemented incor-
rectly. The only metabolite where confidence intervals of
Biophysical Journal 124, 1–25, May 6, 2025 11
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model predictions do not overlap with experimental values
is NADH. A large fraction of cellular NADH is inside
of mitochondria (69) and most of the intracellular NADH
exists in protein-bound form in complex with various dehy-
drogenases (69). Mitochondria and nonglycolytic dehydro-
genases are not included in our model, which might
explain the discrepancy in predicted NADH levels and ex-
periments. The NADþ/NADH ratio of �1000 predicted by
the model at high ATP demand is similar to estimates of
�1000 for cytosolic NADþ/NADH ratios (69,70). The
model also tends to predict higher average levels of G6P,
F6P, and pyruvate and lower average levels of lactate and
ADP than corresponding experimental values.

Another way to compare model prediction and metabo-
lite levels is to look at the disequilibrium ratios of each
glycolytic reaction. The disequilibrium ratio r denotes
the reaction’s distance from equilibrium and is calculated
using the ratio of mass action ratio and equilibrium
constant:

r ¼ 1

Keq

Q
i

½Producti�Q
i

½Substratei� (14)

The 95% confidence interval of model predictions of
disequilibrium ratios overlaps with experimental estimates
for most glycolytic reactions (Fig. 2 F). The main quantita-
tive differences are that the model predicts PFKP to be
further away from equilibrium and PKM2 closer to equilib-
rium than is observed in the data.

Next, we compared [U-13C6]glucose- and [U-13C3]
lactate-labeling kinetics predicted by the model to cellular
measurements. For these measurements, we exchanged
normal media for media containing [U-13C6]glucose or
[U-13C3]lactate and then lysed cells at different time inter-
vals to estimate the rate and fraction at which 13C from
[U-13C6]glucose or [U-13C3]lactate is incorporated into
glycolytic intermediates. Once again, we observed that the
95% confidence intervals of glycolysis model prediction
overlapped with the measurements of the 13C labeling frac-
tion of intermediates after switching to [U-13C6]glucose- or
[U-13C3]lactate-containing media (Fig. 2 G). It is note-
worthy that the model can recapitulate labeling from
[U-13C3]lactate where only intracellular lactate and pyru-
vate are labeled. The 13C label from [U-13C3]lactate can
propagate in the opposite direction of the net flux using re-
action reversibility. Our experimental data and model pre-
dictions show that the 13C label from [U-13C3]lactate
appears only in intracellular lactate and pyruvate, indicating
that the lactate transporter (MCT) and LDH—but not PK—
are near equilibrium and, thus, highly reversible. The agree-
ment between model predictions and experimental results
validates the model’s ability to quantify reaction revers-
ibility within this segment of the glycolytic pathway. The
main quantitative difference between 13C-labeling experi-
12 Biophysical Journal 124, 1–25, May 6, 2025
ments and model predictions is that the model predicts
slower average labeling kinetics from [U-13C6]glucose for
metabolites starting with G6P but not glucose.

In summary, our model predicts several orthogonal mea-
surements of glycolysis activity that are consistent with
measurements in living cells. To the best of our knowledge,
this is the first example of a biophysical model of mamma-
lian glycolysis based exclusively on in vitro enzyme kinetic
data that are capable of accurately predicting various esti-
mates of glycolysis activity in living cells.
Allosteric regulation is required to maintain high
ATP levels while mass action performs other
tasks of glycolytic ATP homeostasis

Having established that the model recapitulates the key
tasks of ATP homeostasis and makes predictions that are
consistent with measurements in proliferating mammalian
cells, we next used the model to investigate the function
of allosteric regulation and mass action in maintaining
ATP homeostasis.

We first removed all allosteric regulators to see if the re-
sulting pathway remained functional. Specifically, we made
the HK1, PFKP, GAPDH, and PKM2 enzymes behave as
Michaelis-Menten-like enzymes with kinetic parameters
corresponding to their active MWC conformation. We also
removed inhibition of the HK catalytic site by G6P, which
proceeds through standard nonallosteric competitive inhibi-
tion. Surprisingly, the model without allosteric feedback
could match ATP supply and demand and maintain the
high energy of ATP hydrolysis with only minor quantitative
differences compared with the model with allostery (Fig. 3,
A–D and F). However, we observed a complete breakdown
of high ATP level maintenance without allosteric regulation,
where ATP levels were >100-fold lower, and a small 2-fold
increase and decrease in ATPase rate led to an almost
10-fold change in ATP concentration compared with
<<10% change in ATP concentration for the complete
model (Fig. 3, B and E). Systematic investigation of
steady-state model behavior at different ATPase rates
showed that the model without allosteric feedback is not
capable of maintaining most of the adenine nucleotide
pool in the form of ATP at any ATPase rate, which is con-
trary to the constant ATP concentrations observed both
in vivo (56,57) and in the model with allosteric feedback
(Fig. 3 E, vertical drop-off indicates where the ATP produc-
tion by the model cannot match ATPase rate anymore).
Beyond ATP, removing allostery caused dramatic shifts in
levels of most glycolytic intermediates (Fig. S2). Metabo-
lites significantly affected by the removal of allosteric regu-
lation—such as F6P, G6P, F16BP, 3PG, 2PG, PEP, ATP, and
phosphate—deviated further from experimental values than
the model with allostery, providing additional evidence that
our model accurately captures glycolytic regulation,
including allosteric interactions (Fig. S2). Finally, we note
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FIGURE 3 Allosteric regulation is required for the maintenance of high ATP levels. (A–C) Model simulations showing the effect of removal of allosteric

regulation of HK1, PFKP, GAPDH, and PKM2 on dynamic changes in (A) ATP production rate, (B) ATP concentration, and (C) energy released during ATP

hydrolysis (left axes) in response to a twofold stepwise increase or decrease of ATPase rate (right axes). Starting ATPase rate ¼ 3% of glycolysis Vmax was

used for (A)–(C). Energy is calculated as a natural logarithm of the disequilibrium ratio (i.e., mass-action ratio divided by the equilibrium constant) for the

ATPase reaction. (D–F) Model simulations showing the effect of removal of allosteric regulation of HK1, PFKP, GAPDH, and PKM2 on steady-state (D)

ATP production rate, (E) ATP concentration, and (F) energy released during ATP hydrolysis at a 100-fold range of ATPase rates. Dashed gray lines in (B) and

(E) indicate the total adenine pool size (i.e., ATP þADP þAMP). See also Figs. S2 and S3. Julia code to reproduce this figure is available at https://github.

com/DenisTitovLab/CellMetabolism.jl.

Function of allostery in glycolysis

Please cite this article in press as: Choe et al., Glycolysis model shows that allostery maintains high ATP and limits accumulation of intermediates, Biophysical
Journal (2025), https://doi.org/10.1016/j.bpj.2025.03.037
that the full model fails to maintain most of the adenine pool
in the form of ATP at high ATPase rate—an expected conse-
quence of ATPase rate being higher than the maximal activ-
ity of glycolytic enzymes—and low ATPase rate—an
unexpected observation that we will explore below as it con-
nects to the function of allosteric regulation of glycolysis
(Fig. 3 E, vertical drop-offs at high and low ATPase rates).
Comparison of the model to published glycolysis
models

Several kinetics models of glycolysis have been reported
over the past several decades (28–31), yet none of these re-
ports investigated whether those models can recapitulate the
tasks of ATP homeostasis that we identified (Fig. 1 A). Most
of the published models either did not include ATP, ADP, or
Pi or kept them constant, making it difficult to investigate
ATP homeostasis using those models. We performed head-
to-head comparisons of our model with three mechanistic
models of glycolysis that we will refer to as the Mulquiney
model (29), the van Heerden model (30), and the Shestov
model (31). To the best of our knowledge, these are the
only three mechanistic models of glycolysis that use
in vitro enzyme kinetics and include variable ATP, ADP,
and Pi. However, even in these models, Pi levels are linked
to extracellular or vacuolar pools with rapid reactions,
rendering them practically constant. Mulquiney and Shestov
models simulate mammalian glycolysis and the van Heer-
den model simulates S. cerevisiae glycolysis. All three
models incorporate allosteric regulation of HK, PFK, and
PK enzymes, but each model only contains a subset of allo-
steric regulators included in our model, and none of the
models were previously used to investigate the function of
allosteric regulation of glycolysis. We repeated the simula-
tions in Fig. 3, D–F using the kinetic rate equations for
glycolytic enzymes from the Mulquiney, Shestov, and van
Heerden models (Fig. S3). All three models could match
ATP supply and demand and maintain the high energy of
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ATP hydrolysis (Fig. S3, A, C, D, F, G, and I). Note that the
Mulquiney, van Heerden, and our model could match ATP
supply and demand at similar ATPase rates up to about
10–30% of the respective pathway Vmax, while the Shestov
model could only support much lower ATPase rates up to
0.003% of its Vmax. The Mulquiney and Shestov models
could maintain most of the adenine pool in the form of
ATP at a 2.8- and 2.2-fold range of ATPase values compared
with a 38-fold range for our model, while the van Heerden
model could not maintain high ATP under any ATPase rates
(Fig. S3, B, E, and H). The ability of our model to maintain
high ATP levels at a wider range of ATPase rates compared
with these published models is likely the result of incorpo-
rating more allosteric regulators and fitting MWC rate equa-
tion to kinetic data from multiple publications. Importantly,
as for our model, the Mulquiney and Shestov models main-
tained high ATP levels only in the presence of allosteric
feedback (Fig. S3, B, E, and H). Comparison with previ-
ously published models further confirms our observations
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FIGURE 4 Redundant allosteric regulators of HK and PFK are required to ma

ATPase rates of the glycolysis model with and without (A–D) allosteric regulat

Dashed gray line indicates the total adenine pool size (i.e., ATP þ ADP þ A

https://github.com/DenisTitovLab/CellMetabolism.jl.
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that the maintenance of high ATP levels requires allosteric
regulation. In contrast, mass action is sufficient for glycol-
ysis to match ATP supply and demand and maintain the
high energy of ATP hydrolysis.
Redundant allosteric regulators of HK1 and PFKP
maintain high and stable ATP levels

To identify the role of specific allosteric regulators in main-
taining high and stable ATP levels, we computationally
dissected the pathway by removing the allosteric regulation
of enzymes one by one (Fig. 4). Specifically, we removed a
particular allosteric regulator from the relevant kinetic rate
equations by setting its binding constant for both active
and inactive MWC conformation to N and setting the con-
stant L that determines the ratio of inactive to active MWC
conformations to zero. We found that the allosteric regula-
tion of HK1 and PFKP is responsible for maintaining high
and stable ATP levels, whereas removing the allosteric
D

H

L

intain high ATP levels. (A–L) Steady-state ATP concentrations at a range of

ion of enzymes, (E–H) allosteric inhibitors, and (I–L) allosteric activators.

MP). See also Fig. S4. Julia code to reproduce this figure is available at

https://github.com/DenisTitovLab/CellMetabolism.jl
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regulation of GAPDH and PKM2 had no discernable effect
(Fig. 4, A–D). Digging further, we removed each of the allo-
steric activators and inhibitors of HK1 and PFKP and found
that these regulators work together to ensure the robust
maintenance of ATP levels since removing any single regu-
lator only led to a partial loss of ATP maintenance capacity.
In general, removing inhibitors—G6P for HK1 and ATP for
PFKP—led to worse ATP maintenance at low ATPase rates
(Fig. 4, E–H), while removing activators—phosphate for
both HK1 and PFKP and ADP for PFKP—led to poorer
ATP maintenance at high ATPase rates (Fig. 4, I–L).
Global sensitivity analysis of the model confirms
the role of allostery in maintaining high ATP
levels

We next performed a global sensitivity analysis of our
model to systematically explore the role of all model param-
eters in matching ATP supply and demand, maintaining high
ATP levels, and maintaining high energy of ATP hydrolysis.
The goal of global sensitivity analysis is to estimate the
contribution of each model parameter and parameter inter-
actions to the variance of a specific model output (50).
Global sensitivity analysis is conceptually similar to a local
sensitivity analysis technique called metabolic control anal-
ysis (48,49), but is more powerful as it allows for interaction
between model parameters and investigates the global
model behavior at any range of parameter values as opposed
to local model behavior at infinitely small changes around a
specific parameter value. We used the average ratio of ATP
production to ATP consumption, average ratio of ATP con-
centration to adenine pool size, and average energy of ATP
hydrolysis at a log range of ATPase values as proxies for the
model’s ability to match ATP supply and demand, maintain
high ATP levels, and maintain high energy of ATP hydroly-
sis, respectively. We first estimated the variance of the prox-
ies by randomly varying each parameter of the model
independently from a log-uniform distribution spanning a
ninefold range from three times lower to three times higher
than its value in the model. The coefficient of variation for
all three proxies was in the narrow range of 0.15–0.34 in
response to random changes in parameter values spanning
ninefold, indicating that these are robust properties of the
model (Fig. S4, A–C). The coefficient of variation for main-
taining high ATP levels was about twofold higher than for
maintaining high energy of ATP hydrolysis or for matching
ATP supply and demand, suggesting that the former is more
sensitive to changes in specific enzyme kinetic parameters
as would be expected for a task that depends on allosteric
regulation and not just mass action. Two metrics for each
model parameter are typically reported for variance-based
global sensitivity analysis. The first-order effect sensitivity
index S1 reports the fraction of variance of the model output
that will be removed if the corresponding parameter is fixed.
The total-order sensitivity index ST reports the variance that
will be left if values of all other parameters are fixed. Larger
values of S1 and ST indicate that a given parameter is impor-
tant. Global sensitivity analysis showed that kinetic param-
eters for HK1, PFKP, and GAPDH had the highest S1 and ST
for all three model outputs. We subdivided kinetic parame-
ters for HK1 and PFK into allosteric parameters that are
different for active and inactive states of the enzyme and
nonallosteric parameters. Nonallosteric kinetic parameters
of HK1 and PFKP had the highest S1 and ST for matching
ATP supply in demand (Fig. S4 D), as would be expected,
given that HK1 and PFK are the slowest enzymes in the
pathway, while allosteric parameters of HK1 and PFKP
had the highest S1 and ST for maintaining high ATP levels
(Fig. S4 E). Kinetic parameters for GAPDH had the highest
S1 and ST for maintaining the energy of ATP hydrolysis, sug-
gesting a role for GAPDH in the latter (Fig. S4 F). Thus,
global sensitivity analysis confirmed the importance of allo-
steric regulation of HK1 and PFKP in maintaining high ATP
levels, as shown in Fig. 3.
Allosteric regulation maintains high ATP levels
and prevents uncontrolled accumulation of
phosphorylated intermediates by inhibiting the
reaction of Harden and Young

We next investigated the mechanism that allows allosteric
regulators of HK1 and PFKP to maintain high and stable
ATP levels. Here, we first describe the side reaction that pre-
vents the mass action-driven glycolysis pathway from main-
taining high ATP levels and then explain how allosteric
regulation inhibits this side reaction. Glycolysis has an un-
usual organization where upper glycolysis enzymes—from
HK1 to ALDO—consume ATP, while lower glycolysis en-
zymes—from GAPDH to LDH—consume inorganic phos-
phate and produce ATP. Such an organization leads to the
reaction of Harden and Young (18,19,71), where two mole-
cules of ATP produced by the conversion of glucose to lactic
acid are used to phosphorylate another molecule of glucose
without a net change in ATP levels (Fig. 5 A). The net reac-
tion of Harden and Young is:

2Glucoseþ2Phosphate % F16BPþ2Lactic acidþ2H2O

(15)

As the name suggests, the analogous reaction from yeast
alcohol fermentation producing ethanol and carbon dioxide
instead of lactic acid was first observed by Harden and Young
in 1906 in cell-free yeast extracts (18), which predates the
discovery of the physiological ATP-producing reaction of
glycolysis by several decades. The reaction of Harden and
Young is extremely thermodynamically favorable with an
estimated Keqz3$1030 and DrG

0�z � 170 kJ=mol (65), re-
sulting in the sequestration of inorganic phosphate in phos-
phorylated intermediates of upper glycolysis. Importantly,
as the reaction of Harden and Young does not involve net
consumption or production of ATP, it will occur as long as
Biophysical Journal 124, 1–25, May 6, 2025 15
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FIGURE 5 Allosteric regulation of HK and PFKmaintains ATP levels and prevents accumulation of intermediates by inhibiting the reaction of Harden and

Young. (A) Schematic of the reaction of Harden and Young and its inhibition by allosteric feedback control of HK1 and PFKP. (B and C) Phosphorylated

metabolite level changes upon an instantaneous removal of allostery at 30 min in the (B) absence and (C) presence of cellular phosphate uptake. ATPase

rate ¼ 10% of glycolysis Vmax was used for model predictions. (D–F) Steady-state ATP concentrations at a range of ATPase rate of the glycolysis model

with (D) constant [phosphate] ¼ 1 mM, (E) Keq
HK1 ¼ 0.05 (model value 2700), Keq

PFKP ¼ 0.05 (model value 760), Keq
GAPDH ¼ 0.5 (model value 16),

and Keq
PGK ¼ 5 (model value 2000), (F) Rate equations for HK1 and PFKP substituted for one-half of ATPase rate equations. Julia code to reproduce

this figure is available at https://github.com/DenisTitovLab/CellMetabolism.jl.
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glucose uptake and phosphorylation are not regulated. In the
presence of exogenous glucose and phosphate uptake (e.g.,
uptake from the extracellular media), the reaction of Harden
and Young causes uncontrolled accumulation of phosphory-
lated intermediates of upper glycolysis to >>200 mM con-
centrations that will explode cells. In the presence of
glucose uptake but not phosphate uptake, this reaction causes
low levels of ATP, as all the inorganic phosphate produced
from ATP hydrolysis is trapped in phosphorylated intermedi-
ates of upper glycolysis at the expense of ATP levels.

We propose that the function of allosteric regulation of
HK1 and PFKP is to inhibit the reaction of Harden and
Young by restricting the rates of HK1 and PFKP reactions
to half of the ATPase rate. The latter prevents the reaction
of Harden and Young from occurring due to the lack of
excess HK1 and PFKP capacity necessary to catalyze
this side reaction (Fig. 5 A). We performed simulations to
support the role of allostery in inhibiting the reaction of
Harden and Young. Removal of allosteric regulation of
HK1 and PFKP in the absence of cellular phosphate uptake
16 Biophysical Journal 124, 1–25, May 6, 2025
leads to upregulation of phosphorylated metabolites up-
stream of the GAPDH reaction except for phosphate and
downregulation of phosphorylated metabolites down-
stream of the GAPDH reaction, showing that the disap-
pearance of inorganic phosphate blocks the GAPDH step
in the absence of allosteric control of HK1 and PFKP
(Fig. 5 B). Removal of allosteric regulation of HK1 and
PFKP in the presence of constant phosphate levels (e.g.,
through uptake across plasma membrane) leads to contin-
uous accumulation of F16BP due to the reaction of Harden
and Young (Fig. 5 C). The level of F16BP quickly increases
past 200 mM—the estimate of total small molecule con-
centration in a cell—and its continued accumulation will
eventually explode cells. Constant levels of inorganic
phosphate abrogated the requirement for allostery to main-
tain ATP levels, showing that allostery maintains ATP
levels by preventing the disappearance of phosphate due
to the reaction of Harden and Young (Fig. 5 D). A large
decrease in equilibrium constants of HK1, PFKP,
GAPDH, and PGK that makes the reaction of Harden
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and Young less thermodynamically favorable also removed
the requirement for allostery for high ATP maintenance
(Fig. 5 E). Finally, directly making the HK1 and PFKP
rates equal to one-half of the ATPase rate abolished the
requirement for allostery for both high ATP maintenance
and uncontrolled accumulation of F16BP, suggesting that
allostery works by tying HK1 and PFKP rates to the
ATPase rate (Fig. 5 F).

The described function of allosteric regulation of HK and
PFK explains why the model predicts a collapse at low
ATPase rates (Fig. 3 E, vertical drop-off of ATP level at
ATPase rates of �1% pathway Vmax). According to the pro-
posed function, when ATP consumption is near zero, allo-
steric feedback must reduce HK and PFK activity to nearly
zero. However, completely stopping HK and PFK reactions
is not feasible as it would require infinite levels of allosteric
inhibitors. Thus, allosteric regulation can only inhibit the re-
action of Harden and Young within certain upper and lower
limits of ATP consumption rates. This theoretical prediction
is supported by experimental observations (19,71) showing
that the reaction of Harden and Young is observed in yeast
extracts in the absence of ATPase but not in the presence
of ATPase, in agreement with simulations in Fig. 3 E.

Extensive published experimental evidence supports the
existence of the reaction of Harden and Young, as discussed
further in the discussion.
Excessactivity of glycolytic enzymes relative toHK
and PFK is required to maintain high ATP levels

We next explored whether attributes of the glycolysis
pathway other than allosteric regulation of HK1 and PFKP
might be required for maintaining most of the adenine pool
in the form of ATP. During model construction, we noted
that proteomics data show that most mammalian glycolytic
enzymes are expressed in large excess compared with
HK1, PFKP, glucose transporter, and lactate transporter
A B

FIGURE 6 Excess activity of glycolytic enzymes relative to HK and PFK is re

the model estimated from proteomics data. (B) Maximal cytosolic enzyme activ

together. The dashed line indicates the activity for each enzyme that matches the

of reactions. (C) Steady-state ATP concentrations at a range of ATPase rates of th

TPI, GAPDH, PGK, PGAM, ENO, PK, and LDH. Julia code to reproduce this
(Fig. 6 A). After accounting for the specific activity of en-
zymes, the maximal cellular activity of most enzymes is
10- to 100-fold higher than is required for the maximal activ-
ity of the glycolysis pathway that is limited by HK1 (Fig. 6
B). Allosteric inhibition of HK1 and PFKP by G6P and
ATP, respectively, further increases the differential between
the activity of HK1 and PFKP and the rest of the enzymes.
We used our model to understand the rationale for this seem-
ingly wasteful enzyme expression pattern, given that the pro-
duction of excess glycolytic enzymes represents a significant
investment of resources by the cell, with enzymes such as
GAPDH and PKM2 approaching 1% of the proteome.
Increasing the concentrations of enzymes from TPI to LDH
by 10-fold led to no changes in ATP maintenance (Fig. 6
C). Decreasing the concentrations of these enzymes by 10-
and 50-fold led to a small decrease and complete collapse
of ATP level maintenance, respectively, with <2-fold effect
on the ability of the model to produce ATP (Fig. 6 C). We
propose that the high expression of glycolytic enzymes in
relation to HK1 and PFKP works together with allosteric
regulation to inhibit the reaction of Harden and Young by
ensuring that HK1 and PFKP remain far from equilibrium.
The reasoning behind this is that if another enzyme matches
the activity of HK or PFK in the presence of allosteric effec-
tors, the HK and PFK reactions cannot remain far from equi-
librium, causing the reaction of Harden and Young to resume
operating. Our results provide a mechanistic explanation for
the seemingly wasteful large excess expression of glycolysis
enzymes relative to HK1 and PFKP.
Coarse-grained model of glycolysis recapitulates
key tasks of ATP homeostasis

To gain a better understanding of the tasks of ATP homeo-
stasis that can be achieved by mass action alone and which
might require allostery, we used a simplified model of
glycolysis, referred to as the two-enzyme model, containing
C

quired to maintain high ATP levels. (A) Cytosolic enzyme concentrations in

ities in the model. Activities of all isoforms for each enzyme were summed

maximal activity of the slowest enzyme HK1 corrected for the stoichiometry

e glycolysis model with scaled concentrations of lower glycolysis enzymes

figure is available at https://github.com/DenisTitovLab/CellMetabolism.jl.
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ATP-consuming enzyme 1, ATP-producing enzyme 2, and
ATPase, which represents upper glycolysis from HK to
ALDO, lower glycolysis from GAPDH to LDH, and cellular
ATPase activity, respectively (Fig. 7 A):

Enzyme 1: Gþ ATP %XPþ ADP
Enzyme 2: XPþ Phosphateþ 2ADP %Lþ 2ATP
ATPase: ATPþ H2O%Phosphateþ ADP
Note that metabolite XP, which represents all intracellular

glycolysis intermediates, is phosphorylated to conserve
phosphate in each step.

To simplify the analysis, we described the kinetics
of enzyme 2 and ATPase using modified reversible
A B C

E F G

FIGURE 7 Coarse-grained model of glycolysis recapitulates key tasks of AT

taining two enzymes with feedback on Enzyme 1. (B–D) Simulation of the tw

pathway showing the ability to (B) match ATP supply and demand, (C) main

ATP hydrolysis. Random values for parameters were taken from log-uniform

and [101, 104] forKeq. Parameters controlling ATPase were not varied, and nwas

with best-performing parameters from (C) showing maintenance of steady-state A

allostery, (F) constant inorganic phosphate levels, (G) different Keq for enzyme 1

this figure is available at https://github.com/DenisTitovLab/CellMetabolism.jl.
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Michaelis-Menten equations, assuming that enzyme 2 and
ATPase are saturated with substrates (54). For enzyme 1,
we used the MWC model to add allosteric activation by
ADP and phosphate and allosteric inhibition by ATP. We
assumed that ADP and phosphate only bind to active confor-
mation, ATP only binds to inactive conformation, inactive
MWC conformation of enzyme 1 is catalytically inactive,
and regulatory and catalytic sites are saturated with regula-
tors and substrates. The resulting two-enzyme model is
described using the following rate equations (see materials
and methods for additional detail on the derivation of the
two-enzyme model rate equations):
D

H

P homeostasis. (A) Schematic of a simplified glycolysis-like pathway con-

o-enzyme model at random values of the six parameters controlling this

tain ATP levels in relation to ATPþADP, and (D) generate energy from

distributions in the interval of [10�5, 10�1] for L, [10�3, 10�1] for Vmax,

randomly chosen from a set [1, 2, 3, 4]. (E–H) Simulation of the two-enzyme

TP levels at a 100� range of ATPase rates with (E) presence and absence of

and (H) rate of enzyme 1 equal to rate of ATPase. Julia code to reproduce

�
�n�

 
1 � 1

KEnz 1
eq

½XP�½ADP�
½G�½ATP�

!
(16)

https://github.com/DenisTitovLab/CellMetabolism.jl


Function of allostery in glycolysis

Please cite this article in press as: Choe et al., Glycolysis model shows that allostery maintains high ATP and limits accumulation of intermediates, Biophysical
Journal (2025), https://doi.org/10.1016/j.bpj.2025.03.037
VEnz 2 ¼ VEnz 2
max

 
1 � 1

KEnz 2
eq

½L�½ATP�2
½XP�½ADP�2½Phosphate�

!

(17)

 !

VATPase ¼ VATPase

max 1 � 1

KATPase
eq

½ADP�½Phosphate�
½ATP�
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Two-enzyme model reduces the number of parameters
from >150 for the full model to only 8 for the two-enzyme
model, including only two parameters—L and n—respon-
sible for allosteric regulation. L represents the ratio of active
to inactive conformation of enzyme 1 in absence of regula-
tors and n–oligomeric state of enzyme 1.

We searched for values of the parameters of the two-
enzyme model that would support the tasks of ATP homeo-
stasis. We performed 10,000 simulations using random
values of two-enzyme model parameters with or without
allostery to see which combinations of parameters can sup-
port the tasks at a range of ATPase values (Fig. 7, B–D).
All the parameter combinations could match ATP supply
and demand and maintain the energy of ATP hydrolysis
>9 kBT in the presence or absence of allostery, confirming
that mass action alone is fully capable of supporting these
two tasks (Fig. 7, B and D). By contrast, only a small frac-
tion of simulations in the presence of allostery and none of
the simulations in the absence of allostery could maintain
ATP > ADP (Fig. 7 C). As for the full model (Fig. 5 C),
keeping the phosphate level constant abrogated the require-
ment for allostery for maintaining high ATP levels, confirm-
ing that maintenance of ATP >ADP is a nontrivial task that
requires allostery to inhibit the reaction of Harden and
Young (Fig. 7, C and F).

We next performed simulations of the two-enzyme model
with the parameters that supported the highest level of ATP
at a range of ATPase values. We found that removing allo-
stery by setting L ¼ 0 completely abrogated while
decreasing n from 4 to 1 attenuated ATP level maintenance
(Fig. 7 E). The effect of n suggests an important physiolog-
ical role for the oligomeric structure of allosteric enzymes
such as PFKP. As for the full model (Fig. 5 D), decreasing
the equilibrium constant of enzyme 1 abrogated the require-
ment for allostery as the trapping of phosphate in XP is less
thermodynamically favorable under these conditions (Fig. 7
G). It is noteworthy that the two-enzyme model without
allostery could maintain ATP >ADP under one exact con-

dition when the VEnz 1
max ¼ VATPase

max (red line in Fig. 7 E at

100% ATPase rate)—a condition when the trapping of phos-
phate is impossible as all of the enzyme 1 capacity is used to
satisfy ATP demand with no spare capacity to catalyze the
trapping reaction. Finally, as for the full model (Fig. 5 E),

making VEnz 1
max ¼ VATPase

max abrogated the requirement for
allostery (Fig. 7 H). The latter again highlights that allostery

prevents the trapping of phosphate by adjusting VEnz 1
max such

that VEnz 1
max ¼ VATPase

max at a large range of VATPase
max .

It is noteworthy that a higher Hill coefficient allows
allosteric regulators to inhibit enzymes to a much greater
extent in the presence of high levels of inhibitor due to

the 1=½Inhibitor=KInhibitor�4 term, while simultaneously mini-
mizing the effect of low concentrations of inhibitor. The iden-
tical effectwould be observed for activators but in the opposite
direction. Thus, higher Hill coefficient extends the range
where allosteric regulation can match HK and PFK rate to
one-half of ATPase, perhaps explaining why many allosteri-
cally regulatedenzymes evolved tohave highHill coefficients.

Overall, our analysis of the two-enzyme model confirms
the results of the full model that allosteric regulation is
required to maintain high ATP levels, while mass action
alone is sufficient to match ATP supply and demand and
to ensure that ATP hydrolysis generates energy.
DISCUSSION

Metabolic homeostasis is an emergent property of the activ-
ities of many individual enzymes. Regulation of metabolic
pathways has historically been studied by rigorously charac-
terizing enzymes in isolation. While this has greatly
advanced our understanding of the key regulatory enzymes,
many emergent functions of metabolic networks are difficult
to understand by focusing on one enzyme at a time. Ap-
proaches that combine theory and experiments can explore
how the activities of individual enzymes give rise to meta-
bolic homeostasis. Here, we developed a biophysical model
of glycolysis that uses enzyme rate equations to describe the
activity of the whole glycolysis pathway and applied it to
identify the regulatory mechanisms that allow glycolysis
to perform the tasks of ATP homeostasis (Fig. 1 A). The re-
sulting model can quantitatively predict the output of
glycolysis in response to perturbations of metabolite levels
and kinetic properties of enzymes, such as changes in media
conditions, enzyme expression, drug treatment, and expres-
sion of enzyme mutants. Nevertheless, the current model
only describes glycolysis of rapidly proliferating cells
in the absence of branching pathways, so its predictions
outside these conditions should be interpreted cautiously.

One of the remarkable properties of ATP homeostasis is
that it can maintain stable ATP levels even when a cell’s de-
mand increases by up to 100-fold, while concentrations of
intermediates change only 2- to -3-fold (4–6). Given that a
classical Michaelis-Menten enzyme rate equation would
require a >100-fold change in substrate concentration in
the absence of product to achieve 100-fold change in rate,
it has been debated whether ATP homeostasis is achieved
through feedback sensing of changes in ATP, ADP, and
phosphate levels that result from ATP consumption or
whether additional mechanisms such as feedforward
Biophysical Journal 124, 1–25, May 6, 2025 19
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activation of ATP-producing enzymes by Ca2þ are required
(72,73). The ability of our model to maintain stable ATP
levels at >30-fold changes in the ATP demand, suggests
that known in vitro enzyme kinetic properties of glycolytic
enzymes are already sufficient to maintain ATP homeostasis
in response to changes in ATP, ADP, and phosphate concen-
trations due to ATP hydrolysis.

Glycolysis is regulated by a combination of mass action
and allostery, but it is not fully understood which tasks of
ATP homeostasis (Fig. 1 A) require mass action versus allo-
stery. We showed that mass action alone is sufficient to
match ATP supply and demand, as well as to maintain
ATP, ADP, and inorganic phosphate concentrations so that
ATP hydrolysis generates energy (Figs. 3 and 7). The capac-
ity of coarse-grained models of glycolysis with only two to
three reactions to respond to changes in ATP demand and
maintain a high ATP/ADP ratio without allosteric feedback
has previously been reported (15), and we confirm these
findings using a full-scale model of glycolysis. The key
role of mass action can be seen in the stoichiometry of the
net reaction of glycolysis:

Glucoseþ 2ADPþ 2Phosphate % 2Lactic Acid þ 2ATP

(19)

An increase in ATP consumption rate would push this reac-
tion forward by mass action due to a decrease in the product
(ATP) and an increase in substrate levels (ADP and phos-
phate) resulting from ATP hydrolysis. Likewise, the ATP
hydrolysis reaction will be maintained far from equilibrium
as long as the net reaction of glycolysis is thermodynami-
cally favorable and can proceed faster than ATP hydrolysis.
Thus, the ability of glycolysis to match ATP supply and de-
mand and maintain ATP hydrolysis far from equilibrium is
built into the glycolytic pathway, and it is largely indepen-
dent of the kinetic properties of individual enzymes.

Mass action alone is not sufficient to perform all tasks of
ATP homeostasis. We showed that the allosteric regulation
of HK1 and PFKP by G6P, ATP, ADP, and Pi is required to
maintain most of the adenine nucleotide pool in the form of
ATP and prevent the uncontrolled accumulation of phosphor-
ylated intermediates in upper glycolysis (Figs. 3, 5, and 7).
The latter is an especially difficult task due to the structure
of the glycolysis pathway that gives rise to the thermodynam-
ically favorable reaction of Harden and Young (Fig. 5 A and
Reaction in Eq. 15), which converts glucose and phosphate
into F16BP without a net change in ATP levels. This reaction
presents the cellwith an impossible choice. If the cell stops the
uptake of extracellular phosphate, then cells cannot maintain
high ATP levels as phosphate produced by ATP hydrolysis
due to normal cellular functions will be trapped in phosphor-
ylated intermediates of glycolysis. Conversely, if the cell con-
tinues to uptake extracellular phosphate, then F16BP would
accumulate to levels well above the estimated total concerta-
tion of intracellular small molecules of 200 mM. Neither op-
tion is likely to be compatible with a living cell. We have
20 Biophysical Journal 124, 1–25, May 6, 2025
demonstrated that the allosteric regulation works by reducing
HK1 and PFKP reaction rates to the minimal levels necessary
to meet ATP demand. This regulation ensures that there is no
excess catalytic activity of HK1 and PFKP available to cata-
lyze the reaction of Harden and Young (Fig. 5 A).

Multiple experimental observations support the existence
of the reaction of Harden and Young and the requirement of
allosteric feedback to inhibit it. The reaction was directly
observed in 1906 in cell-free alcoholic fermentation of yeast
extracts (18), predating the discovery of ATP and the physio-
logically relevant ATP-producing glycolysis reaction. Meyer-
hof later demonstrated that the reaction of Harden and Young
only occurs in the absence of ATPases (19,71). At the same
time, in the presence of ATPases, the same yeast extract starts
to catalyze the physiologically relevant ATP-producing reac-
tion of glycolysis. This experimental observation mirrors our
model predictions that, even in the presence of allostery, the
phosphate trap reaction is predicted to occur if ATPase rate
is very low (Fig. 3 E, vertical drop-off of ATP levels at
ATPase rates <1% of glycolysis Vmax). The mechanistic
explanation for the latter phenomenon is that, at very low
ATPase rates, unrealistically high levels of allosteric inhibitors
ATP andG6Pwill be required to set HK and PFK rates to one-
half of the ATPase rate, so the allostery will stop working at
low enoughATPase rates. These results also suggest the phys-
iological role of PFK being a tetramer and having a high Hill
coefficient as it would allow allosteric regulators to set the rate
of PFK to one-half of ATPase at a wider range of ATP de-
mands, as discussed in the results and shown in Fig. 7 E.
The reaction of Harden and Young has also been observed
in living cells under some conditions, although it was not
referred to by its original name. It has long been known that
S. cerevisiae mutant Dtps1 lacking trehalose-6-phosphate
(T6P) synthase is defective for growth on glucose (20). In
the presence of glucose,Dtps1 stops growing and accumulates
large amounts of phosphorylated glycolytic intermediates up-
stream of GAPDH while having depleted levels of ATP, inor-
ganic phosphate, and phosphorylated glycolytic intermediates
downstream of GAPDH (20), mimicking our model predic-
tions in the absence of allostery (Fig. 5, B and C). It turns
out that S. cerevisiae HK is feedback inhibited by T6P (74)
instead of G6P and, thus, the Dtps1 mutant is likely defective
in HK feedback inhibition. Our results show that the lack of
HK feedback inhibition is sufficient to break the maintenance
of ATP levels and lead to trapping of inorganic phosphate,
which would explain the unusual phenotype ofDtps1 mutant.
In T. brucei, it has been observed that the first seven glycolytic
enzymes are compartmentalized in peroxisome-like organ-
elles called glycosomes (75), while HK and PFK enzymes
are not allosterically regulated (76). Glycosome membranes
are not permeable to smallmolecules, so such compartmental-
ization would be predicted to break up the reaction of Harden
andYoungand remove the need for allosteric regulation. In the
T. bruceimutants, where glycolytic enzymes are not targeted
to glycosomes, glucose becomes toxic (77) and leads to the
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accumulation of glycolytic intermediates (21,78). Finally,
overexpression of HK2 in proliferating mouse cell line and
glucokinase in pancreatic b cells leads to a decrease in ATP
levels and an increase in phosphorylated glycolytic intermedi-
ates (22,79), once again mimicking our model prediction
(Figs. 5 C and 6 C).

Our work clarifies the function of some of the most well-
known allosteric regulators of a metabolic pathway. To our
knowledge, this is the first study to implicate the allosteric
regulation of HK and PFK by ATP, ADP, Pi, and G6P in in-
hibiting the reaction of Harden and Young, despite both be-
ing known for over 50 years. Previous research utilizing a
coarse-grained model of glycolysis with three enzymes
(17) suggested that feedback inhibition of HK by G6P (or
T6P in S. cerevisiae) may protect cells from an overly active
ATP-consuming upper part of glycolysis, which leads to
the accumulation of phosphorylated intermediates at the
expanse of ATP, as is observed in the Dtps1 mutant. The au-
thors noted that lowering HK expression might achieve a
similar outcome, implying that allosteric regulation may
only be required under specific conditions, such as high
glucose concentrations. Building upon this work, our anal-
ysis using a model of all glycolytic enzymes shows that
the reaction of Harden and Young drives the accumulation
of phosphorylated intermediates at the expense of ATP,
rather than solely the overactivity of HK and PFK. More-
over, we demonstrate that the reaction of Harden and Young
is unavoidable in the absence of regulation and cannot be
mitigated by lowering HK expression levels (Fig. 3 E).
Additionally, we show that allosteric regulation of HK and
PFK by ATP, ADP, and Pi—not just G6P—redundantly in-
hibits the reaction of Harden and Young (Fig. 4).

Glycolytic enzymes are expressed at unusual levels, with
GLUT, HK1, PFKP, and MCT having 10–100� less activity
than most of the other enzymes (Fig. 6, A and B). Such an
expression pattern is puzzling given that glycolysis cannot
proceed faster than its slowest enzymes, so this 10–100�
higher expression seems wasteful. Our results provide a
mechanistic explanation for this unusual expression pattern
by showing that it is required to maintain high and stable
ATP levels and to prevent phosphate trapping (Fig. 6 C).

Beyond the applications described in this report, our
model of glycolysis can be used for a variety of applications.
The model can be used to predict the effect of enzyme mu-
tants or simulate the effects of glycolysis-targeting drugs by
changing the corresponding kinetic parameters. Global
sensitivity analysis (Fig. S4) can be used to identify key ki-
netic parameters that control the output of glycolysis, such
as the tasks of ATP homeostasis or a concentration of a spe-
cific metabolite. The rate equations for glycolytic enzymes
can be used to simulate reaction-diffusion systems and
investigate the effect of the 3D distribution of glycolytic en-
zymes. The existence of novel regulators not included in the
current model can be inferred by investigating the quantita-
tive differences between model prediction and data.
Our framework to combine theory and experiments can
be readily applied to other metabolic pathways. Enzyme
rate equations can be derived from the vast literature of
in vitro kinetics data, threading together the individual
enzyme behaviors to generate the system’s behavior. Our
approaches for simulations, global sensitivity analysis, and
error propagation of systems of ODEs can be directly
applied to other pathways without modification. As with
glycolysis, we anticipate that such work will lead to a better
understanding of the functions of mass action and allostery
in the regulation of metabolic homeostasis.
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