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Standard Candle Calibration10

To estimate the single-cell MscL abundance via microscopy, we needed to determine a calibration factor11

that could translate arbitrary fluorescence units to protein copy number. To compute this calibration12

factor, we relied on a priori knowledge of the mean copy number of MscL-sfGFP for a particular bacterial13

strain in specific growth conditions. In Bialecka-Fornal et al. 2012 (1), the average MscL copy number14

for a population of cells expressing an MscL-sfGFP fusion (E. coli K-12 MG1655 φ(mscL-sfGFP)) cells was15

measured using quantitative Western blotting and single-molecule photobleaching assays. By growing16

this strain in identical growth and imaging conditions, we can make an approximate measure of this17

calibration factor. In this section, we derive a statistical model for estimating the most-likely value of18

this calibration factor and its associated error.19

Definition of a calibration factor20

We assume that all detected fluorescence signal from a particular cell is derived from the MscL-21

sfGFP protein, after background subtraction and correction for autofluorescence. The arbitrary units of22

fluorescence can be directly related to the protein copy number via a calibration factor α,23

Itot = αNtot, (S1)

where Itot is the total cell fluorescence and Ntot is the total number of MscL proteins per cell. Bialecka-24

Fornal et al. report the average cell Mscl copy number for the population rather than the distribution.25
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Knowing only the mean, we can rewrite Eq. S1 as26

〈Itot〉 = α〈Ntot〉, (S2)

assuming that α is a constant value that does not change from cell to cell or fluorophore to fluorophore.27

The experiments presented in this work were performed using non-synchronously growing cultures.28

As there is a uniform distribution of growth phases in the culture, the cell size distribution is broad29

the the extremes being small, newborn cells and large cells in the process of division. As described in30

the main text, the cell size distribution of a population is broadened further by modulating the MscL31

copy number with low copy numbers resulting in aberrant cell morphology. To speak in the terms of an32

effective channel copy number, we relate the average areal intensity of the population to the average33

cell size,34

〈Itot〉 = 〈IA〉〈A〉 = α〈Ntot〉, (S3)

where 〈IA〉 is the average areal intensity in arbitrary units per pixel of the population and 〈A〉 is the35

average area of a segmented cell. As only one focal plane was imaged in these experiments, we could36

not compute an appropriate volume for each cell given the highly aberrant morphology. We therefore37

opted to use the projected two-dimensional area of each cell as a proxy for cell size. Given this set of38

measurements, the calibration factor can be computed as39

α =
〈IA〉〈A〉
〈Ntot〉

. (S4)

While it is tempting to use Eq. S4 directly, there are multiple sources of error that are important to40

propagate through the final calculation. The most obvious error to include is the measurement error41

reported in Bialecka-Fornal et al. 2012 for the average MscL channel count (1). There are also slight42

variations in expression across biological replicates that arise from a myriad of day-to-day differences.43

Rather than abstracting all sources of error away into a systematic error budget, we used an inferential44

model derived from Bayes’ theorem that allows for the computation of the probability distribution of α.45

Estimation of α for a single biological replicate46

A single data set consists of several hundred single-cell measurements of intensity, area of the47

segmentation mask, and other morphological quantities. The areal density IA is computed by dividing48

the total cell fluorescence by the cell area A. We are interested in computing the probability distributions49

for the calibration factor α, the average cell area 〈A〉, and the mean number of channels per cell 〈Ntot〉50

for the data set as a whole given only IA and A. Using Bayes’ theorem, the probability distribution for51

these parameters given a single cell measurement, hereafter called the posterior distribution, can be52
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written as53

g(α, 〈A〉, 〈Ntot〉 | A, IA) =
f (A, IA | α, 〈A〉, 〈Ntot〉)g(α, 〈A〉, 〈Ntot〉)

f (α, IA)
, (S5)

where g and f represent probability density functions over parameters and data, respectively. The54

term f (A, IA | α, 〈A〉, 〈Ntot〉) in the numerator represents the likelihood of observing the areal intensity55

IA and area A of a cell for a given values of α, 〈A〉, and 〈Ntot〉. The second term in the numerator56

g(α, 〈A〉, 〈Ntot〉) captures all prior knowledge we have regarding the possible values of these parameters57

knowing nothing about the measured data. The denominator, f (IA, A) captures the probability of58

observing the data knowing nothing about the parameter values. This term, in our case, serves simply59

as a normalization constant and is neglected for the remainder of this section.60

To determine the appropriate functional form for the likelihood and prior, we must make some61

assumptions regarding the biological processes that generate them. As there are many independent62

processes that regulate the timing of cell division and cell growth, such as DNA replication and63

peptidoglycan synthesis, it is reasonable to assume that for a given culture the distribution of cell size64

would be normally distributed with a mean of 〈A〉 and a variance σ〈A〉. Mathematically, we can write65

this as66

f (A | 〈A〉, σ〈A〉) ∝
1

σ〈A〉
exp

[
− (A− 〈A〉)2

2σ2
〈A〉

]
, (S6)

where the proportionality results from dropping normalization constants for notational simplicity.67

While total cell intensity is intrinsically dependent on the cell area the areal intensity IA is independent68

of cell size. The myriad processes leading to the detected fluorescence, such as translation and proper69

protein folding, are largely independent, allowing us to assume a normal distribution for IA as well70

with a mean 〈IA〉 and a variance σ2
IA

. However, we do not have knowledge of the average areal intensity71

for the standard candle strain a priori. This can be calculated knowing the calibration factor, total MscL72

channel copy number, and the average cell area as73

IA =
α〈Ntot〉
〈A〉 . (S7)

Using Eq. S7 to calculate the expected areal intensity for the population, we can write the likelihood as a74

Gaussian distribution,75

f (IA | α, 〈A〉, 〈Ntot〉, σIA) ∝
1

σIA

exp

−
(

IA − α〈Ntot〉
〈A〉

)2

2σ2
IA

 . (S8)

With these two likelihoods in hand, we are tasked with determining the appropriate priors. As we76

have assumed normal distributions for the likelihoods of 〈A〉 and IA, we have included two additional77

parameters, σ〈A〉 and σIA , each requiring their own prior probability distribution. It is common practice78
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to assume maximum ignorance for these variances and use a Jeffreys prior (2),79

g(σ〈A〉, σIA) =
1

σ〈A〉σIA

. (S9)

The next obvious prior to consider is for the average channel copy number 〈Ntot〉, which comes from80

Bialecka-Fornal et al. 2012. In this work, they report a mean µN and variance σ2
N , allowing us to assume81

a normal distribution for the prior,82

g(〈Ntot〉 | µN , σN) ∝
1

σN
exp

[
− (〈Ntot〉 − µN)

2

2σ2
N

]
. (S10)

For α and 〈A〉, we have some knowledge of what these parameters can and cannot be. For example,83

we know that neither of these parameters can be negative. As we have been careful to not overexpose84

the microscopy images, we can say that the maximum value of α would be the bit-depth of our85

camera. Similarly, it is impossible to segment a single cell with an area larger than our camera’s field86

of view (although there are biological limitations to size below this extreme). To remain maximally87

uninformative, we can assume that the parameter values are uniformly distributed between these88

bounds, allowing us to state89

g(α) =


1

αmax−αmin
αmin ≤ α ≤ αmax

0 otherwise
, (S11)

for α and90

g(〈A〉) =


1

〈A〉max−〈A〉min
〈A〉min ≤ 〈A〉 ≤ 〈A〉max

0 otherwise
(S12)

for 〈A〉.91

Piecing Eq. S6 through Eq. S12 together generates a complete posterior probability distribution for92

the parameters given a single cell measurement. This can be generalized to a set of k single cell93

measurements as94

g(α, 〈A〉, 〈Ntot〉, σIA , σ〈A〉 | [IA, A], µN , σN) ∝
1

(αmax − αmin)(〈A〉max − 〈A〉min)

1
(σIA σ〈A〉)k+1 ×

1
σN

exp

[
− (〈Ntot〉 − µN)

2

2σ2
N

]
k

∏
i

exp

− (A(i) − 〈A〉)2

2σ2
〈A〉

−

(
I(i)A −

α〈Ntot〉
〈A〉

)2

2σ2
IA

,

(S13)

where [IA, A] represents the set of k single-cell measurements.95

As small variations in the day-to-day details of cell growth and sample preparation can alter the final96

channel count of the standard candle strain, it is imperative to perform more than a single biological97

replicate. However, properly propagating the error across replicates is non trivial. One option would be98
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to pool together all measurements of n biological replicates and evaluate the posterior given in Eq. S13.99

However, this by definition assumes that there is no difference between replicates. Another option100

would be to perform this analysis on each biological replicate individually and then compute a mean101

and standard deviation of the resulting most-likely parameter estimates for α and 〈A〉. While this is a102

better approach than simply pooling all data together, it suffers a bias from giving each replicate equal103

weight, skewing the estimate of the most-likely parameter value if one replicate is markedly brighter or104

dimmer than the others. Given this type of data and a limited number of biological replicates (n = 6 in105

this work), we chose to extend the Bayesian analysis presented in this section to model the posterior106

probability distribution for α and 〈A〉 as a hierarchical process in which α and 〈A〉 for each replicate is107

drawn from the same distribution.108

A hierarchical model for estimating α109

In the previous section, we assumed maximally uninformative priors for the most-likely values of110

α and 〈A〉. While this is a fair approach to take, we are not completely ignorant with regard to how111

these values are distributed across biological replicates. A major assumption of our model is that the112

most-likely value of α and 〈A〉 for each biological replicate are comparable, so long as the experimental113

error between them is minimized. In other words, we are assuming that the most-likely value for each114

parameter for each replicate is drawn from the same distribution. While each replicate may have a115

unique value, they are all related to one another. Unfortunately, proper sampling of this distribution116

requires an extensive amount of experimental work, making inferential approaches more attractive.117

This approach, often called a multi-level or hierarchical model, is schematized in Fig. S1. Here, we118

use an informative prior for α and 〈A〉 for each biological replicate. This informative prior probability119

distribution can be described by summary statistics, often called hyper-parameters, which are then120

treated as the “true” value and are used to calculate the channel copy number. As this approach allows121

us to get a picture of the probability distribution of the hyper-parameters, we are able to report a point122

estimate for the most-likely value along with an error estimate that captures all known sources of123

variation.124

The choice for the functional form for the informative prior is often not obvious and can require125

other experimental approaches or back-of-the-envelope estimates to approximate. Each experiment in126

this work was carefully constructed to minimize the day-to-day variation. This involved adhering to127

well-controlled growth temperatures and media composition, harvesting of cells at comparable optical128

densities, and ensuring identical imaging parameters. As the experimental variation is minimized, we129

can use our knowledge of the underlying biological processes to guess at the approximate functional130

form. For similar reasons presented in the previous section, cell size is controlled by a myriad of131
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FIG S1 Schematic of hierarchical model structure. The hyper-parameter probability distributions (top

panel) are used as an informative prior for the most-likely parameter values for each biological replicate

(middle panel). The single-cell measurements of cell area and areal intensity (bottom panel) are used as

data in the evaluation of the likelihood.

independent processes. As each replicate is independent of another, it is reasonable to assume a normal132

distribution for the average cell area for each replicate. This normal distribution is described by a mean133

˜〈A〉 and variance σ̃〈A〉. Therefore, the prior for 〈A〉 for n biological replicates can be written as134

g(〈A〉 | ˜〈A〉, σ̃〈A〉) ∝
1

σ̃n
〈A〉

n

∏
j=1

exp

[
−
(〈A〉j − ˜〈A〉)2

2σ̃2
〈A〉

]
. (S14)

In a similar manner, we can assume that the calibration factor for each replicate is normally distributed135

with a mean α̃ and variance σ̃α,136

g(α | α̃, σ̃α) ∝
1

σ̃n
α

n

∏
j=1

exp

[
−
(αj − α̃)2

2σ̃2
α

]
. (S15)

With the inclusion of two more normal distributions, we have introduced four new parameters,137

each of which needing their own prior. However, our knowledge of the reasonable values for the138

hyper-parameters has not changed from those described for a single replicate. We can therefore use139

the same maximally uninformative Jeffreys priors given in Eq. S9 for the variances and the uniform140

distributions given in Eq. S11 and Eq. S12 for the means. Stitching all of this work together generates141

the full posterior probability distribution for the best-estimate of α̃ and ˜〈A〉 shown in Eq. S2 given n142
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replicates of k single cell measurements,143

g(α̃, σ̃α, ˜〈A〉, σ̃〈A〉,{〈Ntot〉, 〈A〉, α, σIA} | [IA, A], µN , σN) ∝

1
(α̃max − α̃min)( ˜〈A〉max − ˜〈A〉min)σ

n
N(σ̃ασ̃〈A〉)n+1

×

n

∏
j=1

exp

− (〈N〉(i)j − µN)
2

2σ2
N

−
(αj − α̃)2

2σ̃2
α
−

(〈A〉j − ˜〈A〉)2

2σ̃2
〈A〉

 ×
1

(σIA j
σ〈A〉j)

kj+1

kj

∏
i=1

exp

− (A(i)
j − 〈A〉j)

2

2σ
(i)2
〈A〉j

−

(
IA

(i)
j −

αj〈Ntot〉j
〈A〉j

)
2σ

(i)2
IA j



, (S16)

where the braces {. . . } represent the set of parameters for biological replicates and the brackets [. . . ]144

correspond to the set of single-cell measurements for a given replicate.145

While Eq. S16 is not analytically solvable, it can be easily sampled using Markov chain Monte Carlo146

(MCMC). The results of the MCMC sampling for α̃ and ˜〈A〉 can be seen in Fig. S2. From this approach,147

we found the most-likely parameter values of 3300+700
−700 a.u. per MscL channel and 5.4+0.4

−0.5 µm2 for α̃148

and ˜〈A〉, respectively. Here, we’ve reported the median value of the posterior distribution for each149

parameter with the upper and lower bound of the 95% credible region as superscript and subscript,150

respectively. These values and associated errors were used in the calculation of channel copy number.151
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FIG S2 Posterior distributions for hyper-parameters and replicate parameters. (A) The posterior

probability distribution for α̃ and ˜〈A〉. Probability increases from light to dark red. The replicate

parameter (blue) and hyper-parameter (red) marginalized posterior probability distributions for α (B)

and 〈A〉 (C).
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Effect of correction152

The posterior distributions for α and 〈A〉 shown in Fig. S2 were used directly to compute the most-153

likely channel copy number for each measurement of the Shine-Dalgarno mutant strains, as is described154

in the coming section (Logistic Regression). The importance of this correction can be seen in Fig. S3. Cells155

with low abundance of MscL channels exhibit notable morphological defects, as illustrated in Fig. S3A.156

While these would all be considered single cells, the two-dimensional area of each may be comparable157

to two or three wild-type cells. For all of the Shine-Dalgarno mutants, the distribution of projected cell158

area has a long tail, with the extremes reaching 35 µm2 per cell (Fig. S3B). Calcuating the total number of159

channels per cell does nothing to decouple this correlation between cell area and measured cell intensity.160

Fig. S3C shows the correlation between cell area and the total number of channels without normalizing161

to an average cell size 〈A〉 differentiated by their survival after an osmotic down-shock. This correlation162

is removed by calculating an effective channel copy number shown in Fig. S3D.163

Shock Classification164

Its been previously shown that the rate of hypo-osmotic shock dictates the survival probability (3). To165

investigate how a single channel contributes to survival, we queried survival at several shock rates with166

varying MscL copy number. In the main text of this work, we separated our experiments into arbitrary167

bins of “fast” (≥ 1.0 Hz) and “slow” (< 1.0 Hz) shock rates. In this section, we discuss our rationale for168

coarse graining our data into these two groupings.169

As is discussed in the main text and in the supplemental section Logistic Regression, we used a bin-free170

method of estimating the survival probability given the MscL channel copy number as a predictor171

variable. While this method requires no binning of the data, it requires a data set that sufficiently172

covers the physiological range of channel copy number to accurately allow prediction of survivability.173

Fig. S4 shows the results of the logistic regression treating each shock rate as an individual data set.174

The most striking feature of the plots shown in Fig. S4 is the inconsistent behavior of the predicted175

survivability from shock rate to shock rate. The appearance of bottle necks in the credible regions for176

some shock rates (0.2Hz, 0.5Hz, 2.00Hz, and 2.20 Hz) appear due to a high density of measurements177

within a narrow range of the channel copy number at the narrowest point in the bottle neck. While178

this results in a seemingly accurate prediction of the survival probability at that point, the lack of data179

in other copy number regimes severely limits our extrapolation outside of the copy number range of180

that data set. Other shock rates (0.018 Hz, 0.04 Hz, and 1.00 Hz) demonstrate completely pathological181

survival probability curves due to either complete survival or complete death of the population.182

Ideally, we would like to have a wide range of MscL channel copy numbers at each shock rate shown183
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5 µm

FIG S3 Influence of area correction for Shine-Dalgarno mutants. (A) Representative images of

aberrant cell morphologies found in low-expressing Shine-Dalgarno mutants. (B) Empirical cumulative

distribution of two-dimensional projected cell area for the standard candle strain MLG910 (gray line)

and for all Shine-Dalgarno mutants (red line). (C) The correlation between channel copy number and

cell area without the area correction. (D) The correlation between effective channel copy number and

cell area with the area correction applied.
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in Fig. S4. However, the low-throughput nature of these single-cell measurements prohibits completion184

of this within a reasonable time frame. It is also unlikely that thoroughly dissecting the shock rate185

dependence will change the overall finding from our work that several hundred MscL channels are186

needed to convey survival under hypo-osmotic stress.187

FIG S4 Binning by individual shock rates. Survival probability estimates from logistic regression (red

lines) and the computed survival probability for all SD mutants subjected to that shock rate (blue points).

Black points at top and bottom of each plot correspond to single cell measurements of survival (top) and

death (bottom). Red shaded regions signify the 95% credible region of the logistic regression. Horizontal

error bars of blue points are the standard error of the mean channel copy number. Vertical error bars of

blue points correspond to the uncertainty in survival probability by observing n survival events from N

single-cell measurements.

Given the data shown in Fig. S4, we can try to combine the data sets into several bins. Fig. S5 shows188

the data presented in Fig. S4 separated into “slow” (< 0.5 Hz, A), “intermediate” (0.5 - 1.0 Hz, B), and189

“fast” (> 1.0 Hz, C) shock groups. Using these groupings, the full range of MscL channel copy numbers190

are covered for each case, with the intermediate shock rate sparsely sampling copy numbers greater191

than 200 channels per cell. In all three of these cases, the same qualitative story is told – several hundred192

channels per cell are necessary for an appreciable level of survival when subjected to an osmotic shock.193

This argument is strengthened when examining the predicted survival probability by considering all194
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shock rates as a single group, shown in Fig. S5D. This treatment tells nearly the same quantitative and195

qualitative story as the three rate grouping shown in this section and the two rate grouping presented196

in the main text. While there does appear to be a dependence on the shock rate for survival when197

only MscL is expressed, the effect is relatively weak with overlapping credible regions for the logistic198

regression across the all curves. To account for the sparse sampling of high copy numbers observed in199

the intermediate shock group, we split this set and partitioned the measurements into either the “slow”200

(< 1.0 Hz) or “fast” (≥ 1.0 Hz) groups presented in the main text of this work.201

FIG S5 Coarse graining shock rates into different groups. Estimated survival probability curve for slow

(A), intermediate (B), and fast (C) shock rates. (D) Estimated survival probability curve from pooling all

data together, ignoring varying shock rates. Red shaded regions correspond to the 95% credible region

of the survival probability estimated via logistic regression. Black points at top and bottom of each

plot represent single-cell measurements of cells which survived and died, respectively. Black points

and error bars represent survival probability calculations from bins of 50 channels per cell. Blue points

represent the survival probability for a given Shine-Dalgarno mutant. Horizontal error bars are the

standard error of the mean with at least 25 measurements and vertical error bars signifies the uncertainty

in the survival probability from observing n survival events out of N total measurements.
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Logistic Regression202

In this work, we were interested in computing the survival probability under a large hypo-osmotic203

shock as a function of MscL channel number. As the channel copy number distributions for each Shine-204

Dalgarno sequence mutant were broad and overlapping, we chose to calculate the survival probability205

through logistic regression – a method that requires no binning of the data providing the least biased206

estimate of survival probability. Logistic regression is a technique that has been used in medical statistics207

since the late 1950’s to describe diverse phenomena such as dose response curves, criminal recidivism,208

and survival probabilities for patients after treatment (4–6). It has also found much use in machine209

learning to tune a binary or categorical response given a continuous input (7–9).210

In this section, we derive a statistical model for estimating the most-likely values for the coefficients211

β0 and β1 and use Bayes’ theorem to provide an interpretation for the statistical meaning.212

Bayesian parameter estimation of β0 and β1213

The central challenge of this work is to estimate the probability of survival ps given only a measure of214

the total number of MscL channels in that cell. In other words, for a given measurement of Nc channels,215

we want to know likelihood that a cell would survive an osmotic shock. Using Bayes’ theorem, we can216

write a statistical model for the survival probability as217

g(ps |Nc) =
f (Nc | ps)g(ps)

f (Nc)
, (S17)

where g and f represent probability density functions over parameters and data, respectively. The218

posterior probability distribution g(ps |Nc) describes the probability of ps given a specific number of219

channels Nc. This distribution is dependent on the likelihood of observing Nc channels assuming a220

value of ps multiplied by all prior knowledge we have about knowing nothing about the data, g(s).221

The denominator f (Nc) in Eq. S17 captures all knowledge we have about the available values of Nc,222

knowing nothing about the true survival probability. As this term acts as a normalization constant, we223

will neglect it in the following calculations for convenience.224

To begin, we must come up with a statistical model that describes the experimental measurable in our225

experiment – survival or death. As this is a binary response, we can consider each measurement as a226

Bernoulli trial with a probability of success matching our probability of survival ps,227

f (s | ps) = ps
s(1− ps)

1−s, (S18)

where s is the binary response of 1 or 0 for survival and death, respectively. As is stated in the228

introduction to this section, we decided to use a logistic function to describe the survival probability. We229
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assume that the log-odds of survival is linear with respect to the effective channel copy number Nc as230

log
ps

1− ps
= β0 + β1Nc, (S19)

where β0 and β1 are coefficients which describe the survival probability in the absence of channels231

and the increase in log-odds of survival conveyed by a single channel. The rationale behind this232

interpretation is presented in the following section, A Bayesian interpretation of β0 and β1. Using this233

assumption, we can solve for the survival probability ps as,234

ps =
1

1 + e−β0−β1 Nc
. (S20)

With a functional form for the survival probability, the likelihood stated in Eq. S17 can be restated as235

f (Nc, s | β0, β1) =

(
1

1 + e−β0−β1 Nc

)s (
1− 1

1 + e−β0−β1 Nc

)1−s
. (S21)

As we have now introduced two parameters, β0, and β1, we must provide some description of our236

prior knowledge regarding their values. As is typically the case, we know nothing about the values237

for β0 and β1. These parameters are allowed to take any value, so long as it is a real number. Since all238

values are allowable, we can assume a flat distribution where any value has an equally likely probability.239

This value of this constant probability is not necessary for our calculation and is ignored. For a set of k240

single-cell measurements, we can write the posterior probability distribution stated in Eq. S17 as241

g(β0, β1 |Nc, s) =
n

∏
i=1

(
1

1 + e−β0−β1 N(i)
c

)s(i) (
1− 1

1 + e−β0−β1 N(i)
c

)1−s(i)

(S22)

Implicitly stated in Eq. S22 is absolute knowledge of the channel copy number Nc. However, as is242

described in Standard Candle Calibration, we must convert from a measured areal sfGFP intensity IA to a243

effective channel copy number,244

Nc =
IA

˜〈A〉
α̃

, (S23)

where ˜〈A〉 is the average cell area of the standard candle strain and α̃ is the most-likely value for the245

calibration factor between arbitrary units and protein copy number. In Standard Candle Calibration,246

we detailed a process for generating an estimate for the most-likely value of ˜〈A〉 and α̃. Given these247

estimates, we can include an informative prior for each value. From the Markov chain Monte Carlo248

samples shown in Fig. S2, the posterior distribution for each parameter is approximately Gaussian. By249

approximating them as Gaussian distributions, we can assign an informative prior for each as250

g(α | α̃, σ̃α) ∝
1
σ̃k

α

k

∏
i=1

exp
[
− (αi − α̃)2

2σ̃2
α

]
(S24)

for the calibration factor for each cell and251

g(〈A〉 | ˜〈A〉, σ̃〈A〉) =
1

σ̃k
〈A〉

k

∏
i=1

exp

[
− (〈A〉i − ˜〈A〉)2

2σ̃2
〈A〉

]
, (S25)
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where σ̃α and σ̃〈A〉 represent the variance from approximating each posterior as a Gaussian. The252

proportionality for each prior arises from the neglecting of normalization constants for notational253

convenience.254

Given Eq. S21 through Eq. S25, the complete posterior distribution for estimating the most likely255

values of β0 and β1 can be written as256

g(β0,β1 | [IA, s], ˜〈A〉, σ̃〈A〉, α̃, σ̃α) ∝
1

(σ̃ασ̃〈A〉)k

k

∏
i=1

(
1 + exp

[
−β0 − β1

IAi〈A〉i
αi

])−si

×

(
1−

(
1 + exp

[
−β0 − β1

IAi〈A〉i
αi

])−1
)1−si

exp

[
− (〈A〉i − ˜〈A〉)2

2σ̃〈A〉
− (αi − α̃)2

2σ̃2
α

]. (S26)

As this posterior distribution is not solvable analytically, we used Markov chain Monte Carlo to draw257

samples out of this distribution, using the log of the effective channel number as described in the main258

text. The posterior distributions for β0 and β1 for both slow and fast shock rate data can be seen in259

Fig. S6260
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FIG S6 Posterior distributions for logistic regression coefficients evaluated for fast and slow shock rates.

(A) Kernel density estimates of the posterior distribution for β0 for fast (blue) and slow (purple) shock

rates. (B) Kernel density estimates of posterior distribution for β1.

A Bayesian interpretation of β0 and β1261

The assumption of a linear relationship between the log-odds of survival and the predictor variable262

Nc appears to be arbitrary and is presented without justification. However, this relationship is directly263

connected to the manner in which Bayes’ theorem updates the posterior probability distribution upon264

the observation of new data. In following section, we will demonstrate this connection using the265

14



relationship between survival and channel copy number. However, this description is general and can266

be applied to any logistic regression model so long as the response variable is binary. This connection267

was shown briefly by Allen Downey in 2014 and has been expanded upon in this work (10).268

The probability of observing a survival event s given a measurement of Nc channels can be stated269

using Bayes’ theorem as270

g(s |Nc) =
f (Nc | s)g(s)

f (Nc)
. (S27)

where g and f represent probability density functions over parameters and data respectively. The271

posterior distribution g(s |Nc) is the quantity of interest and implicitly related to the probability of272

survival. The likelihood g(Nc | s) tells us the probability of observing Nc channels in this cell given that273

it survives. The quantity g(s) captures all a priori knowledge we have regarding the probability of this274

cell surviving and the denominator f (Nc) tells us the converse – the probability of observing Nc cells275

irrespective of the survival outcome.276

Proper calculation of Eq. S27 requires that we have knowledge of f (Nc), which is difficult to estimate.277

While we are able to give appropriate bounds on this term, such as a requirement of positivity and278

some knowledge of the maximum membrane packing density, it is not so obvious to determine the279

distribution between these bounds. Given this difficulty, it’s easier to compute the odds of survival280

O(s |Nc), the probability of survival s relative to death d,281

O(s |Nc) =
g(s |Nc)

g(d |Nc)
=

f (Nc | s)g(s)
f (Nc | d)g(d)

, (S28)

where f (Nc) is cancelled. The only stipulation on the possible value of the odds is that it must be a282

positive value. As we would like to equally weigh odds less than one as those of several hundred or283

thousand, it is more convenient to compute the log-odds, given as284

logO(s |Nc) = log
g(s)
g(d)

+ log
f (Nc | s)
f (Nc | d)

. (S29)

Computing the log-transform reveals two interesting quantities. The first term is the ratio of the priors285

and tells us the a priori knowledge of the odds of survival irrespective of the number of channels. As we286

have no reason to think that survival is more likely than death, this ratio goes to unity. The second term287

is the log likelihood ratio and tells us how likely we are to observe a given channel copy number Nc288

given the cell survives relative to when it dies.289

For each channel copy number, we can evaluate Eq. S29 to measure the log-odds of survival. If we290

start with zero channels per cell, we can write the log-odds of survival as291

logO(s |Nc = 0) = log
g(s)
g(d)

+ log
f (Nc = 0 | s)
f (Nc = 0 | d) . (S30)

For a channel copy number of one, the odds of survival is292

logO(s |Nc = 1) = log
g(s)
g(d)

+ log
f (Nc = 1 | s)
f (Nc = 1 | d) . (S31)
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In both Eq. S30 and Eq. S31, the log of our a priori knowledge of survival versus death remains. The293

only factor that is changing is log likelihood ratio. We can be more general in our language and say that294

the log-odds of survival is increased by the difference in the log-odds conveyed by addition of a single295

channel. We can rewrite the log likelihood ratio in a more general form as296

log
f (Nc | s)
f (Nc | d)

= log
f (Nc = 0 | s)
f (Nc = 0 | d) + Nc

[
log

f (Nc = 1 | s)
f (Nc = 1 | d) − log

f (Nc = 0 | s)
f (Nc = 0 | d)

]
, (S32)

where we are now only considering the case in which Nc ∈ [0, 1]. The bracketed term in Eq. S32 is the297

log of the odds of survival given a single channel relative to the odds of survival given no channels.298

Mathematically, this odds-ratio can be expressed as299

logORNc(s) = log
f (Nc=1 | s)g(s)
f (Nc=1 | d)g(d)
f (Nc=0 | s)g(s)
f (Nc=0 | d)g(d)

= log
f (Nc = 1 | s)
f (Nc = 1 | d) − log

f (Nc = 0 | s)
f (Nc = 0 | d) . (S33)

Eq. S33 is mathematically equivalent to the bracketed term shown in Eq. S32.300

We can now begin to staple these pieces together to arrive at an expression for the log odds of survival.301

Combining Eq. S32 with Eq. S29 yields302

logO(s |Nc) = log
g(s)
g(d)

+ log
f (Nc = 0 | s)
f (Nc = 0 | d) + Nc

[
f (Nc = 1 | s)
f (Nc = 1 | d) − log

f (Nc = 0 | s)
f (Nc = 0 | d)

]
. (S34)

Using our knowledge that the bracketed term is the log odds-ratio and the first two times represents the303

log-odds of survival with Nc = 0, we conclude with304

logO(s |Nc) = logO(s |Nc = 0) + Nc logORNc(s). (S35)

This result can be directly compared to Eq. 1 presented in the main text,305

log
ps

1− ps
= β0 + β1Nc, (S36)

which allows for an interpretation of the seemingly arbitrary coefficients β0 and β1. The intercept term,306

β0, captures the log-odds of survival with no MscL channels. The slope, β1, describes the log odds-ratio307

of survival which a single channel relative to the odds of survival with no channels at all. While we308

have examined this considering only two possible channel copy numbers (1 and 0), the relationship309

between them is linear. We can therefore generalize this for any MscL copy number as the increase in310

the log-odds of survival is constant for addition of a single channel.311

Other properties as predictor variables312

The previous two sections discuss in detail the logic and practice behind the application of logistic313

regression to cell survival data using only the effective channel copy number as the predictor of survival.314

However, there are a variety of properties that could rightly be used as predictor variables, such as cell315
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area and shock rate. As is stipulated in our standard candle calibration, there should be no correlation316

between survival and cell area. Fig. S7A and B show the logistic regression performed on the cell area.317

We see for both slow and fast shock groups,there is little change in survival probability with changing318

cell area and the wide credible regions allow for both positive and negative correlation between survival319

and area. The appearance of a bottle neck in the notably wide credible regions is a result of a large320

fraction of the measurements being tightly distributed about a mean value. Fig. S7C shows the predicted321

survival probability as a function of the the shock rate. There is a slight decrease in survivability322

as a function of increasing shock rate, however the width of the credible region allows for slightly323

positive or slightly negative correlation. While we have presented logistic regression in this section as a324

one-dimensional method, Eq. S19 can be generalized to n predictor variables x as325

log
ps

1− ps
= β0 +

n

∑
i

βixi. (S37)

Using this generalization, we can use both shock rate and the effective channel copy number as predictor326

variables. The resulting two-dimensional surface of survival probability is shown in Fig. S7D. As is327

suggested by Fig. S7C, the magnitude of change in survivability as the shock rate is increased is smaller328

than that along increasing channel copy number, supporting our conclusion that for MscL alone, the329

copy number is the most important variable in determining survival.330

TABLE 1 Escherichia coli strains used in this work.

Strain name Genotype Reference

MJF641 Frag1, ∆mscL::cm, ∆mscS, ∆mscK::kan, ∆ybdG::apr, ∆ynaI, ∆yjeP,

∆ybiO, ycjM::Tn10

(11)

MLG910 MG1655, ∆mscL ::φmscL-sfGFP, ∆galK::kan, ∆lacI, ∆lacZY A (1)

D6LG-Tn10 Frag1, ∆mscL ::φmscL-sfGFP, ∆mscS, ∆mscK::kan, ∆ybdG::apr,

∆ynaI, ∆yjeP, ∆ybiO, ycjM::Tn10

This work

D6LG (SD0) Frag1, ∆mscL ::φmscL-sfGFP, ∆mscS, ∆mscK::kan, ∆ybdG::apr,

∆ynaI, ∆yjeP, ∆ybiO

This work

XTL298 CC4231, araD:: tetA-sacB-amp (12)

D6LTetSac Frag1, mscL-sfGFP:: tetA-sacB, ∆mscS, ∆mscK::kan, ∆ybdG::apr,

∆ynaI, ∆yjeP, ∆ybiO

This work

D6LG (SD1) Frag1, ∆mscL ::φmscL-sfGFP, ∆mscS, ∆mscK::kan, ∆ybdG::apr,

∆ynaI, ∆yjeP, ∆ybiO

This work

D6LG (SD2) Frag1, ∆mscL ::φmscL-sfGFP, ∆mscS, ∆mscK::kan, ∆ybdG::apr,

∆ynaI, ∆yjeP, ∆ybiO

This work
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Strain name Genotype Reference

D6LG (SD4) Frag1, ∆mscL ::φmscL-sfGFP, ∆mscS, ∆mscK::kan, ∆ybdG::apr,

∆ynaI, ∆yjeP, ∆ybiO

This work

D6LG (SD6) Frag1, ∆mscL ::φmscL-sfGFP, ∆mscS, ∆mscK::kan, ∆ybdG::apr,

∆ynaI, ∆yjeP, ∆ybiO

This work

D6LG (12SD2) Frag1, ∆mscL ::φmscL-sfGFP, ∆mscS, ∆mscK::kan, ∆ybdG::apr,

∆ynaI, ∆yjeP, ∆ybiO

This work

D6LG (16SD0) Frag1, ∆mscL ::φmscL-sfGFP, ∆mscS, ∆mscK::kan, ∆ybdG::apr,

∆ynaI, ∆yjeP, ∆ybiO

This work

TABLE 2 Oligonucleotide sequences used in this work. Bold and italics correspond to Shine-Dalgarno

sequence modifications and AT hairpin insertion modifications, respectively. Double bar || indicates a

transposon insertion site.

Primer Name Sequence (5’→ 3’)

Tn10delR taaagccaacggcatccaggcggacatactcagca||

cctttcgcaaggtaacagagtaaaacatccaccat

MscLSPSac gaaaatggcttaacatttgttagacttatggttgtcgg

cttcatagggagTCCTAATTTTTGTTGACACTCTATC

MscLSPSacR accacgttcccgcgcatcgcaaattcgcgaaat

tctttaataatgctcatATCAAAGGGAAAACTGTCCATA

MscL-SD1R atcgcaaattcgcgaaattctttaataatgctcat

gttattctcctcatgaagccgacaaccataagtctaacaaa

MscL-SD2R atcgcaaattcgcgaaattctttaataatgctcatgttatt

tcccctatgaagccgacaaccataagtctaacaaa

MscL-SD4R atcgcaaattcgcgaaattctttaataatgctcat

gttatt cctgctatgaagccgacaaccataagtctaacaaa

MscL-SD6R atcgcaaattcgcgaaattctttaataatgctcat

gttatt gctcgtatgaagccgacaaccataagtctaacaaa

MscL-12SD2R atcgcaaattcgcgaaattctttaataatgctcat

atatatatatat tcccctatgaagccgacaaccataagtctaacaaa

MscL-16SD0R atcgcaaattcgcgaaattctttaataatgctcat

atatatatatatatat

ctccctatgaagccgacaaccataagtctaacaaa
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FIG S7 Survival probability estimation using alternative predictor variables. (A) Estimated survival

probability as a function of cell area for the slow shock group. (B) Estimated survival probability as a

function of cell area for the fast shock group. (C) Estimated survival probability as a function shock

rate. Black points at top and bottom of plots represent single-cell measurements of cells who survived

and perished, respectively. Shaded regions in (A) - (C) represent the 95% credible region. (D) Surface of

estimated survival probability using both shock rate and effective channel number as predictor variables.

Black points at left and right of plot represent single-cell measurements of cells which survived and

died, respectively, sorted by shock rate. Points at top and bottom of plot represent survival and death

sorted by their effective channel copy number. Labeled contours correspond to the survival probability.
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