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Abstract

Allosteric transcription factors undergo binding events at inducer binding sites as well as

at distinct DNA binding domains, and it is difficult to disentangle the structural and func-

tional consequences of these two classes of interactions. We compare the ability of two

statistical mechanical models—the Monod-Wyman-Changeux (MWC) and the Koshland-

Némethy-Filmer (KNF) models of protein conformational change—to characterize the

multi-step activation mechanism of the broadly acting cyclic-AMP receptor protein (CRP).

We first consider the allosteric transition resulting from cyclic-AMP binding to CRP, then

analyze how CRP binds to its operator, and finally investigate the ability of CRP to acti-

vate gene expression. We use these models to examine a beautiful recent experiment

that created a single-chain version of the CRP homodimer, creating six mutants using all

possible combinations of the wild type, D53H, and S62F subunits. We demonstrate that

the MWC model can explain the behavior of all six mutants using a small, self-consistent

set of parameters whose complexity scales with the number of subunits, providing a sig-

nificant benefit over previous models. In comparison, the KNF model not only leads to a

poorer characterization of the available data but also fails to generate parameter values in

line with the available structural knowledge of CRP. In addition, we discuss how the con-

ceptual framework developed here for CRP enables us to not merely analyze data retro-

spectively, but has the predictive power to determine how combinations of mutations will

interact, how double mutants will behave, and how each construct would regulate gene

expression.

Introduction

Transcriptional regulation lies at the heart of cellular decision making, and understanding

how cells modify the myriad of players involved in this process remains challenging. The

cyclic-AMP receptor protein (CRP; also known as the catabolite receptor protein, CAP) is an
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allosteric transcription factor that regulates over 150 genes in Escherichia coli [1–4]. Upon

binding to cyclic-AMP (cAMP), the homodimeric CRP undergoes a conformational change

whereby two alpha helices reorient to open a DNA binding domain [5], allowing CRP to bind

to DNA and affect transcription [6–8]. While much is known about the molecular details of

CRP and how different mutations modify its functionality [9, 10], each new CRP mutant is

routinely analyzed in isolation using phenomenological models. We argue that given the hard-

won structural insights into the conformational changes of proteins like CRP, it is important

to test how well mechanistically motivated models of such proteins can characterize the wealth

of available data.

The picture that has emerged from various domains of biology is that allostery involves the

interplay of a spectrum of dynamically linked states [11–17]. In some systems, it is straightfor-

ward to partition these states into the physiologically relevant categories; for example, CRP

naturally divides into the cAMP unbound, singly bound, and doubly bound states as well as

the DNA bound and unbound states. Nuclear magnetic resonance (NMR) and isothermal

titration calorimetry (ITC) have begun to tease out the precise thermodynamics of the under-

lying interactions between these states [18, 19]. These methods have demonstrated that alloste-

ric regulation in CRP includes both large structural changes as well as entropic modifications

that make the protein more rigid [20, 21]. In this work, we ask whether we can capitalize upon

this detailed knowledge of the system to construct a coarse-grained model of the multi-step

activation cycle of CRP shown in [Fig 1(A) using a compact set of parameters. Specifically, we

investigate variants of the Monod-Wyman-Changeux (MWC) model, which posits that both

CRP subunits fluctuate concurrently between an active and inactive conformational state [22],

and the Koshland-Némethy-Filmer (KNF) model, which proposes that each subunit must

independently transition from an inactive to active state upon ligand binding [23], adapted for

Fig 1. Key parameters governing CRP function. (A) Within the MWC and KNF models, each CRP subunit can assume either an active or

an inactive conformation with a free energy difference � between the two states. cAMP can bind to CRP (with a dissociation constant MA
D in

the active state and MI
D in the inactive state) and promotes the active state (MA

D < MI
D in the MWC model; MI

D !1 in the KNF model).

Active CRP has a higher affinity for the operator (LA
D) than the inactive state (LI

D). When CRP is bound to DNA, it promotes RNA polymerase

binding through an interaction energy �P, thereby enhancing gene expression. (B) Lanfranco et al. constructed a single-chain CRP molecule

whose two subunits could be mutated independently. All possible dimers are shown using five mutant subunits: wild type (WT), D (D53H), S

(S62F), G (G141Q), and L (L148R). Lanfranco et al. constructed the six mutants comprised of WT, D, and S (black and pink boxes) and

analyzed each mutant independently.

https://doi.org/10.1371/journal.pone.0204275.g001
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the CRP system. These two models have been investigated in a wide variety of allosteric sys-

tems, and evidence for both models as well as their shortcomings have been extensively ana-

lyzed [24–28]. Nevertheless, the simple thermodynamic view provided by the MWC and KNF

models provides fertile ground to both verify how well we understand the critical factors gov-

erning CRP behavior as well as to explore hypotheses about mutational perturbations to the

system.

Our paper is inspired by a recent in vitro study of CRP performed by Lanfranco et al. who

engineered a single-chain CRP molecule whose two subunits are tethered together by an

unstructured polypeptide linker [29]. This construct enabled them to mutate each subunit

independently, providing a novel setting within which to analyze the combinatorial effects of

mutations. Specifically, they took three distinct CRP subunits—the wild type (WT) subunit

and the well characterized mutations D53H and S62F (denoted D and S, respectively) origi-

nally chosen to perturb the transcription factor’s cAMP binding domain [30, 31]—and linked

them together in every possible combination to create six CRP mutants as shown in Fig 1(B)

(black and pink boxes). Lanfranco et al. measured the cAMP-binding and DNA-binding capa-

bilities of these mutants, separating these two key components of transcription factor activa-

tion. In this work, we present an analysis of these CRP mutants that demonstrates how their

diverse phenotypes are related by their subunit compositions.

More specifically, the effects of mutations are often difficult to interpret, and indeed the

results from Lanfranco et al. showed no clear pattern. The behavior of each mutant was ana-

lyzed independently by fitting its binding curve to a second order polynomial [29]. In this

work, we propose an alternative framework that bolsters our understanding of the system in

two significant ways: (1) we link the response functions of each CRP construct to its subunit

composition, closing the gap between structure and function and (2) the number of parame-

ters in our model scales linearly with the number of subunits whereas the number of parame-

ters in the original analysis scaled with the number of CRP mutants (i.e. the square of the

number of subunits). The advantage of this scaling behavior grows with the number of sub-

units. For example, this work focuses on the CRP mutants made by Lanfranco et al. using

three subunits (black and pink boxes in Fig 1(B)). If we include two additional well-character-

ized mutants—such as G141Q (G) and L148R (L) [32]—for a total of N = 5 subunits, our

model would only require 2N = 10 parameters to describe the
NðNþ1Þ

2
¼ 15 mutants whereas a

model analyzing each mutant independently would require 30 parameters (2 per mutant).

With N = 10 subunits, we would require 20 parameters to understand 55 mutants while a

model characterizing individual mutants would require 110 parameters.

In addition to analyzing the available in vitro data for these mutants, we consider how each

construct would promote gene expression in vivo. Because CRP is a global activator, its activity

within the cell is tightly regulated by enzymes that produce, degrade, and actively transport

cAMP [7]. We discuss how these processes can either be modeled theoretically or excised

experimentally and calibrate our resulting framework for transcription using gene expression

measurements for wild type CRP. In this manner, we find a small, self-consistent set of param-

eters able to characterize each step of CRP activation shown in Fig 1(A).

The remainder of this paper is organized as follows. First, we characterize the interaction

between cAMP and CRP for the six CRP mutants created by Lanfranco et al. and quantify

the key parameters governing this behavior. Next, we analyze the interaction between CRP

and DNA and discuss how the inferred parameters align with structural knowledge of the

system. Finally, we consider how CRP enhances gene expression and extend the results

from Lanfranco et al. to predict the activation profiles of the CRP mutants within a cellular

environment.
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Results

The interaction between CRP and cAMP

In this section, we examine the cAMP-CRP binding process through the lenses of generalized

MWC and KNF models which tie each mutant’s behavior to its subunit composition. We find

that both frameworks can characterize data from a suite of CRP mutants using a compact set

of parameters, but only the interpretation of the MWC parameters is consistent with structural

knowledge of CRP.

MWC model. We first formulate a description of cAMP-CRP binding using a generalized

form of the MWC model, where the two subunits of each CRP molecule fluctuate concurrently

between an active and inactive state. The different conformations of CRP binding to cAMP

and their corresponding Boltzmann weights are shown in Fig 2(A). We define the free energy

difference between inactive CRP and active CRP as 2� (or � per subunit). � will be large and

negative since the activator is preferentially inactive in the absence of ligand, which will allow

us to simplify the description of the system (see S1 Text Section A). b ¼ 1

kBT where kB is Boltz-

mann’s constant and T represents temperature. The two cAMP binding events are known to

be cooperative [26, 33, 34], where the magnitude and the sign of this cooperativity (whether it

is favorable or unfavorable) strongly depends upon the conditions of the buffer, mutational

perturbations to the system, and whether the full or partial CRP protein is considered [29, 35,

36]. To that end, we introduce two types of cooperativity. First, the classic MWC model is

inherently cooperative, as the binding of each ligand alters the probable conformation and

hence binding affinity of the other binding site; however, this mode of cooperativity can only

be favorable [37]. Because CRP may also exhibit negative cooperativity, we introduce explicit

interaction energies �A
int and �I

int between two ligands in the active and inactive CRP states,

respectively. For simplicity, and because it will enable us to characterize the CRP collectively

rather than requiring a unique parameter for each mutant, we assume that these explicit coop-

erative interactions are the same across all constructs (see S1 Text Section B where we relax

such assumptions).

Fig 2. Macroscopic states and Boltzmann weights for cAMP binding to CRP. (A) Within the MWC model, cAMP (purple circles) may bind

to a CRP subunit in either the active (dark green) or inactive (light green) state. MA
L and MI

L represent the dissociation constants of the left

subunit in the active and inactive states, respectively, while MA
R and MI

R represent the analogous dissociation constants for the right subunit.

[M] denotes the concentration of cAMP and � represents the free energy difference between each subunit’s inactive and active states with

b ¼ 1

kBT. �A
int and �I

int represent a cooperative energy when two cAMP are bound to CRP in the active and inactive states, respectively. (B) The

KNF model assumes that the two CRP subunits are inactive when unbound to cAMP and transition to the active state immediately upon

binding to cAMP. The parameters have the same meaning as in the MWC model, but states where one subunit is active while the other is

inactive are allowed.

https://doi.org/10.1371/journal.pone.0204275.g002
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For each cAMP-CRP dissociation constant MY
X , the subscript denotes which CRP subunit

it describes—either the left (L) or right (R) subunit—while the superscript denotes the active

(A) or inactive (I) state of CRP. Note that the left and right subunits may be different (see

Fig 1(B)). Given a cAMP concentration [M], the fraction of occupied cAMP binding sites is

given by

fractional CRP occupancyð½M�Þ

¼

1

2

½M�
MA

L
þ
½M�
MA

R

� �
þ e� b�Aint

½M�
MA

L

½M�
MA

R
þ e� 2b� 1

2

½M�
MI

L
þ
½M�
MI

R

� �
þ e� b�Iint

½M�
MI

L

½M�
MI

R

� �

1þ
½M�
MA

L
þ
½M�
MA

R
þ e� b�Aint

½M�
MA

L

½M�
MA

R
þ e� 2b� 1þ

½M�
MI

L
þ
½M�
MI

R
þ e� b�Iint

½M�
MI

L

½M�
MI

R

� � : ð1Þ

Here, the fractional occupancy of CRP bound to zero, one, or two cAMP equals 0, ½, and 1,

respectively. Experimentally, the fractional occupancy was measured in vitro in the absence of

DNA using ANS fluorescence which utilizes a fluorescent probe triggered by the conforma-

tional change of cAMP binding to CRP [29].

Lanfranco et al. considered CRP subunits with either the D53H or S62F point mutations

(hereafter denoted by D and S, respectively), with the D subunit binding more strongly to

cAMP than the wild type while the S subunit binds more weakly as shown in Fig 3(A). While

we could characterize the dose-response curves of each CRP mutant independently—for

example, by using Eq (1) to extract a set of parameters for each mutant—such an analysis

lacks a direct connection between the subunit composition and the corresponding binding

behavior. Instead, we assume that the cAMP binding affinity for each subunit should be

uniquely dictated by that subunit’s identity as either the WT, D, or S subunit. To that end, we

represent the fractional occupancy of CRPD/WT using Eq (1) with one D subunit (MA
L ¼ MA

D,

MI
L ¼ MI

D) and one WT subunit (MA
R ¼ MA

WT, MI
R ¼ MI

WT). The equations for the remaining

CRP mutants follow analogously, tying the behavior of each mutant to its subunit composi-

tion. For simplicity, we will assume that the D and S mutations do not alter the cAMP interac-

tion energies �A
int and �I

int.

One difficulty in inferring parameter values from Eq (1) is that degenerate sets of parame-

ters may produce equivalent binding curves. For example, in S1 Text Section A, we demon-

strate how the same cAMP-CRP binding curves can arise from an arbitrarily large and

negative free energy difference (�! −1) provided that the dissociation constants scale

appropriately. In that same supporting information section, we demonstrate how this degener-

acy can be excised so that Eq (1) is well approximated by the following form,

fractional CRP occupancyð½M�Þ �
½M�
~M A

L

½M�
~M A

R
þ 1

2

½M�
MI

L
þ
½M�
MI

R

� �
þ e� b�Iint

½M�
MI

L

½M�
MI

R

½M�
~M A

L

½M�
~M A

R
þ 1þ

½M�
MI

L
þ
½M�
MI

R
þ e� b�Iint

½M�
MI

L

½M�
MI

R

� � ; ð2Þ

where we have neglected the unbound and singly-cAMP-bound active CRP states and defined

the effective dissociation constants

~MA
L ¼ e� b�eb�Aint=2MA

L ð3Þ

and

~MA
R ¼ e� b�eb�Aint=2MA

R : ð4Þ

Using Eq (2), we can extract the set of effective dissociation constants for the WT, D, and S

subunits that determine the behavior of all six CRP mutants. The resulting parameters (shown

in Table 1) give rise to the cAMP-CRP binding curves in Fig 3(A) and 3(B). Note that in
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removing the parameter degeneracy using Eqs (3) and (4), we can no longer determine the

individual values of �, �A
int, and the active state dissociation constants MA

X , but rather only the

parameter combinations ~MA
X . On the other hand, the inactive state cooperativity energy �I

int

can be unambiguously determined to be negligible. The effective dissociation constant of the S

Fig 3. cAMP binding for different CRP mutants. In addition to the wild type CRP subunit (denoted WT), the mutation D53H

(denoted D) and the mutation S62F (denoted S) can be applied to either subunit as indicated by the subscripts in the legend. (A)

Curves were characterized using the MWC model, Eq (1). The D subunit increases CRP’s affinity for cAMP while the S subunit

decreases this affinity. (B) Asymmetrically mutating the two subunits results in distinct cAMP binding curves. The data for the

WT/D mutant lies between the WT/WT and D/D data in Panel A, and analogous statements apply for the WT/S and D/S

mutants. (C) The fraction of CRP in the active state. Within the MWC model, mutants with an S subunit will be inactive even in

the limit of saturating cAMP. (D) The symmetric and (E) asymmetric mutants can also be analyzed using the KNF model, Eq (6),

resulting in curves that are similar to those found by the MWC model. (F) The KNF model predicts that all CRP mutants will be

completely active in the limit of saturating cAMP. The (corrected) sample standard deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Pn
j¼1
ðyðjÞtheory � yðjÞdataÞ

2
q

equals

0.03 for the MWC model and 0.05 for the KNF model, and the best-fit parameters for both models are given in Table 1. Data

reproduced from Ref. [29].

https://doi.org/10.1371/journal.pone.0204275.g003

Table 1. Parameters for cAMP binding to CRP. The data in Fig 3 can be characterized using a single set of dissocia-

tion constants for the WT, D, and S subunits whose values and standard errors are shown. To excise parameter degen-

eracy, the active-inactive free energy difference � and the cAMP interaction energy in the active state �A
int are absorbed

into the active state dissociation constants in the MWC model (Eqs (2) and (3)). Similarly, � is absorbed into the KNF

dissociation constants (Eqs (6) and (7)).

MWC Parameter Best-Fit Value KNF Parameter Best-Fit Value

~M A
WT, MI

WT
{25 ± 1, 40 ± 3} × 10−6 M �M A

WT (30 ± 2) × 10−6 M

~M A
D, MI

D
{10 ± 1, 50 ± 5} × 10−6 M �M A

D (20 ± 1) × 10−6 M

~M A
S , MI

S
{� 1000, 200 ± 10} × 10−6 M �M A

S (350 ± 10) × 10−6 M

�I
int

0.0 ± 0.2kB T �A
int −0.8 ± 0.2kB T

https://doi.org/10.1371/journal.pone.0204275.t001
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subunit in the MWC model can only be bounded from below as ~MA
S � 1000� 10� 6 M. How-

ever, NMR measurements reported that in the limit of saturating cAMP, the S/S mutant will

be inactive state 98% of the time (see Fig 3(C) and S1 Text Section B) which corresponds to a

value of ~MA
S � 1300� 10� 6 M [20].

In S1 Text Section B, we demonstrate that the symmetric CRP mutants in Fig 3(A) provide

sufficient information to approximate the behavior of the asymmetric mutants in Fig 3(B). We

further show that fitting each CRP data set individually to the MWC or KNF models without

constraining the WT, D, and S subunits to a single unified set of dissociation constants results

in only a marginal improvement over the constrained fitting. Finally, we analyze the slope

of each cAMP binding response and explain why they are nearly identical for the six CRP

mutants. In S1 Text Section C, we investigate the effects of the double mutation D+S on a sin-

gle subunit by comparing its CRP occupancy data supposing that the change in free energy

from both mutations is additive and independent. Within this epistasis-free model, we can

similarly predict the behavior of other double mutants including CRPD/D+S, CRPS/D+S, and

CRPD+S/D+S.

Lastly, we reiterate that the MWC model presented here provides a coarse-grained model

of the system. For example, experiments have revealed that the first cAMP binding does not

alter the conformation of the second subunit, although it does drastically diminish its protein

motions [34]. In the MWC model, these effects are captured both by the inherent cooperativity

[37] as well as by the explicit interaction energies �A
int and �I

int, since within this model the bind-

ing of one cAMP can induce the other CRP subunit to change (e.g. changing the unbound

inactive state into the active singly-bound state). In light of these results, we next consider an

alternative model of the system which explicitly assumes that each subunit only becomes active

upon ligand binding.

KNF model. We now turn to a KNF analysis of CRP, where the two subunits are individu-

ally inactive when not bound to cAMP and become active upon binding as shown in Fig 2(B).

Some studies have claimed that cAMP binding to one CRP subunit does not affect the state of

the other subunit, in support of the KNF model [34]. Other studies, meanwhile, have reported

that a fraction of CRP molecules are active even in the absence of cAMP, thereby favoring an

MWC interpretation [9, 38]. To determine whether either model can accurately represent the

system, we explore some of the consequences of a KNF interpretation of CRP.

Using the statistical mechanical states of the system in Fig 2(B), the occupancy of CRP is

given by

fractional CRP occupancyð½M�Þ ¼
e� b�

2

½M�
MA

L
þ
½M�
MA

R

� �
þ e� b�Aint

½M�
MA

L

½M�
MA

R

e� 2b� þ e� b� ½M�
MA

L
þ
½M�
MA

R

� �
þ e� b�Aint

½M�
MA

L

½M�
MA

R

: ð5Þ

where the parameters have the same meaning as in the MWC model. Multiplying the numera-

tor and denominator by e2β�, we obtain the form

fractional CRP occupancyð½M�Þ ¼
1

2

½M�
�M A

L
þ

½M�
�M A

R

� �
þ e� b�Aint

½M�
�M A

L

½M�
�M A

R

1þ
½M�
�M A

L
þ

½M�
�M A

R
þ e� b�Aint

½M�
�M A

L

½M�
�M A

R

ð6Þ

where, similar to the MWC model effective dissociation constants Eqs (3) and (4), we have

defined

�MA
L ¼ e� b�MA

L ð7Þ
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and

�MA
R ¼ e� b�MA

R : ð8Þ

This simplification occurs because within the KNF model, a CRP monomer only switches

from the inactive to active state upon cAMP binding. As a result, the free energy of cAMP

binding to CRP and the free energy of the CRP undergoing its inactive-to-active state confor-

mational always occur concurrently and may be combined into the effective dissociation con-

stants �MA
L and �MA

R .

As shown in Fig 3(D) and 3(E), the KNF model can approximately characterize the six

mutant CRP binding curves, although the S/S and WT/D responses lie slightly below the data

while the D/S curve deviates above the data. These discrepancies could potentially be alleviated

by letting the interaction energy �A
int vary with each mutant, although doing so would signifi-

cantly increase the number of parameters in the model (which would then scale with the num-

ber of mutants rather than the number of subunits). However, a greater failing of the KNF

model is that it predicts that at saturating cAMP concentrations the protein will always be

completely active, even though the S/S mutant is 98% inactive in this limit (Fig 3(F)) [20].

These results suggest that a more complex variant of the KNF model should be used to quanti-

tatively dissect the CRP system.

The interaction between CRP and DNA

We now turn to the second binding interaction experienced by CRP, namely, that between

CRP and DNA. Since the preceding analysis demonstrated that the KNF model considered

here cannot characterize the existing data, we proceed by only analyzing the MWC model.

Consider a concentration [L] of CRP whose subunits either assume an active state (where

they tightly bind to DNA with a dissociation constant LA) or in an inactive state (characterized

by weaker DNA binding with dissociation constant LI satisfying LI > LA). The states and

weights of this system within the generalized MWC model are shown in Fig 4.

Lanfranco et al. fluorescently labeled a short, 32 bp DNA sequence which binds to CRP.

Using a spectrometer, they measured the anisotropy of this fluorescence when different con-

centrations of CRP and cAMP were added in vitro [29]. The data are shown in Fig 5(A) for

CRPD/S for various concentrations of the receptor and effector. When CRP binds, it slows the

random tumbling of the DNA so that over very short time scales the fluorescence is oriented

along a particular axis, resulting in a larger anisotropy readout. Unbound DNA is defined as

having anisotropy equal to 1 while DNA-bound CRP with 0, 1, or 2 bound cAMP have higher

anisotropies of 1 + r0, 1 + r1, and 1 + r2, respectively. Thus, the total anisotropy within the

model is given by the weighted sum of each species [39], namely,

anisotropy ¼ 1þ r0p0 þ r1p1 þ r2p2: ð9Þ

Here, p0, p1, and p2 represent the probabilities that DNA-bound CRP will be bound to 0, 1,

and 2 cAMP molecules, respectively. Using the effective dissociation constants (Eqs (3) and

(4)) and neglecting all terms proportional to the small quantity eβ�, we can write these proba-

bilities as

p0 ¼
e2b� ½L�

LA
þ
½L�
LI

Z
�

½L�
LI

Z
; ð10Þ
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Fig 4. States and weights for CRP binding to DNA. The DNA unbound states from Fig 2 are shown together with the

DNA bound states. The Boltzmann weight of each DNA bound state is proportional to the concentration [L] of CRP

and inversely proportional to the CRP-DNA dissociation constants LA or LI for the active and inactive states,

respectively.

https://doi.org/10.1371/journal.pone.0204275.g004

Fig 5. The interaction between CRP and DNA. Anisotropy of 32-bp fluorescein-labeled lac promoter binding to

CRPD/S at different concentrations of cAMP. An anisotropy of 1 corresponds to unbound DNA while higher values

imply that DNA is bound to CRP. In the presence of cAMP, more CRP subunits will be active, and hence there will be

greater anisotropy for any given concentration of CRP. The sample standard deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Pn
j¼1
ðyðjÞtheory � yðjÞdataÞ

2
q

is

0.01, with the corresponding parameters given in Tables 1 and 2. Data reproduced from Ref. [29].

https://doi.org/10.1371/journal.pone.0204275.g005
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p1 ¼
e2b� ½L�

LA

½M�
MA

L
þ
½M�
MA

R

� �
þ
½L�
LI

½M�
MI

L
þ
½M�
MI

R

� �

Z
�

½L�
LI

½M�
MI

L
þ
½M�
MI

R

� �

Z
;

ð11Þ

and

p2 ¼
e2b�e� b�Aint

½L�
LA

½M�
MA

L

½M�
MA

R
þ e� b�Iint

½L�
LI

½M�
MI

L

½M�
MI

R

Z
�

½L�
LA

½M�
~M A

L

½M�
~M A

R
þ e� b�Iint

½L�
LI

½M�
MI

L

½M�
MI

R

Z
ð12Þ

with

Z ¼ e2b� 1þ
½L�
LA

� �
1þ

½M�
MA

L
þ
½M�
MA

R
þ e� b�Aint

½M�
MA

L

½M�
MA

R

� �

þ ð1þ
½L�
LI
Þ 1þ

½M�
MI

L
þ
½M�
MI

R
þ e� b�Iint

½M�
MI

L

½M�
MI

R

� �

� 1þ
½L�
LA

� �
½M�
~M A

L

½M�
~M A

R
þ 1þ

½L�
LI

� �
1þ

½M�
MI

L
þ
½M�
MI

R
þ e� b�Iint

½M�
MI

L

½M�
MI

R

� �
:

ð13Þ

In making these approximations, we have assumed the stricter conditions e2b� LI
LA
� 1 and

e2b� LI
LA

MI
X

~M A
X
� 1 for the WT, D, and S subunits, all of which are valid assumptions for this system

(see S1 Text Section A).

Fig 5 shows the resulting best-fit curves for the anisotropy data, with the corresponding

CRPD/S DNA dissociation constants given in Table 2. Since 1 + r0� 1, cAMP-unbound CRP

binds poorly to DNA, in accordance with the inactive state crystal structure whose DNA rec-

ognition helices are buried inside the protein [10]. Additionally, the anisotropy 1 + r1 = 1.7 of

the DNA-CRP-cAMP complex is larger than that of both the cAMP-unbound state and the

doubly bound state DNA-CRP-(cAMP)2 with 1 + r2 = 1.4; this suggests that CRP-(cAMP)2

binds more weakly to DNA than CRP-cAMP. However, we note that these results depend

upon the anisotropy values for the three CRP states (rj in Table 2); Lanfranco et al. assumed

that difference between the singly-cAMP-bound CRP state and the unbound CRP state should

be the same as the difference between the doubly- and singly-cAMP-bound states and subse-

quently determined that the singly- and doubly-cAMP bound CRP states bind with roughly

the same affinity to DNA. That said, previous studies have supported the claim that the singly-

cAMP bound state binds tightest to DNA using multiple experimental methods including pro-

teolytic digestion by subtilisin, chemical modification of Cys-178, and fluorescence measure-

ments [40–42]. Given the ability of the MWC model to characterize the cAMP-binding and

DNA-binding data of Lanfranco et al., we next consider the final step in the CRP activation

cycle, namely, how well CRP can enhance gene expression.

Table 2. Parameters for CRP binding to DNA. The anisotropy data for CRPD/S characterized using Eq (9), as shown

in Fig 5. Each value is given as a mean ± standard error. The uncertainty in the ~M A
S parameter (shown in Table 1) leads

to a corresponding uncertainty in the active CRP dissociation constant LA.

MWC Parameter Best-Fit Value

r0, r1, r2 {0.1, 0.8, 0.5} ± 0.1

LA, LI {� 30, 30 ± 10} × 10−9 M

https://doi.org/10.1371/journal.pone.0204275.t002
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Implications of mutations for in vivo systems

Since CRP is a global transcriptional activator that governs many metabolic genes in E. coli
[8], introducing mutations in vivo may vastly change cell behavior. Nevertheless, because the

framework introduced above is very generic, it can be readily applied to other transcriptional

activators that regulate a more limited number of genes. In that spirit, we briefly explore how

the CRP mutants characterized in the Lanfranco et al. experiments would behave in vivo
assuming that they only affect a single gene.

Simple activation. Consider a cell with cAMP concentration [M] and CRP concentration

[L] where the population of CRP is split between an active [LA] and an inactive [LI] conforma-

tion. Suppose the cell has a concentration [P] of RNA polymerase (RNAP) which have a disso-

ciation constant PD with a promoter of interest. The thermodynamic states of the system are

shown in Fig 6, where the activator can bind to and recruit RNAP via an interaction energy

�P;LA
between active CRP and RNAP with a weaker interaction �P;LI

between inactive CRP and

RNAP. Without these two interaction energies (�P;LA
¼ �P;LI

¼ 0), the RNAP and CRP binding

events would be independent and there would be no activation. Moreover, if the two activation

energies were the same (�P;LA
¼ �P;LI

), the system could not exhibit the level of activation seen

in the data (see S1 Text Section B).

We assume that gene expression is equal to the product of the RNAP transcription rate rtrans

and the probability that RNAP is bound to the promoter of interest, namely,

activity ¼ rtrans

½P�
PD

1þ
½LI �
LI

e� b�P;LI þ
½LA�
LA

e� b�P;LA

� �

½P�
PD

1þ
½LI �
LI

e� b�P;LI þ
½LA�
LA

e� b�P;LA

� �
þ 1þ

½LI �
LI
þ
½LA�
LA

: ð14Þ

Several additional factors influence gene expression in vivo. First, cAMP is synthesized

endogenously by cyaA and degraded by cpdA, although both of these genes have been knocked

out for the data set shown in Fig 7(A) (see Methods and Ref. [7]). Furthermore, cAMP is

Fig 6. States and weights for a simple activation motif. Binding of RNAP (blue) to a promoter is facilitated by the

binding of the activator CRP. Simultaneous binding of RNAP and CRP is facilitated by an interaction energy �P;LA
for

active CRP (dark green) and �P;LI
for inactive CRP (light green). cAMP (not drawn) influences the concentration of

active and inactive CRP as shown in Fig 4.

https://doi.org/10.1371/journal.pone.0204275.g006
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actively transported out of a cell leading to a smaller concentration of intracellular cAMP. Fol-

lowing Kuhlman et al., we will assume that the intracellular cAMP concentration is propor-

tional to the extracellular concentration, namely, γ[M] (with 0< γ< 1) [43, 44]. Hence, the

concentration of active CRP satisfies
½LA�
½L� ¼ pL

actðg½M�Þ where the fraction of active CRP pL
act is

given by Fig 2(A) as

pL
actð½M�Þ ¼

1þ
½M�
MA

L
þ
½M�
MA

R
þ e� b�Aint

½M�
MA

L

½M�
MA

R

1þ
½M�
MA

L
þ
½M�
MA

R
þ e� b�Aint

½M�
MA

L

½M�
MA

R
þ e� 2b� 1þ

½M�
MI

L
þ
½M�
MI

R
þ e� b�Iint

½M�
MI

L

½M�
MI

R

� �

�
e� b�Aint

½M�
~M A

L

½M�
~M A

R

e� b�Aint
½M�
~M A

L

½M�
~M A

R
þ 1þ

½M�
MI

L
þ
½M�
MI

R
þ e� b�Iint

½M�
MI

L

½M�
MI

R

� � :

ð15Þ

In the last step, we have again introduced the effective dissociation constants from Eqs (3)

and (4) and dropped any terms proportional to eβ�. In addition to these considerations, pro-

teins in vivo may experience crowding, additional forms of modification, and competition by

other promoters. However, since our primary goal is to understand how CRP mutations will

affect gene expression, we proceed with the simplest model and neglect the effects of crowding,

modification, and competition.

Because of the uncertainty in the dissociation constant LA between active CRP and DNA

(see Table 2), it is impossible to unambiguously determine the transcription parameters from

the single data set for wild type CRP shown in Fig 7(A). Instead, we select one possible set of

parameters (
½P�
PD
¼ 130� 10� 6, rtrans ¼ 5� 105MU

hr , γ = 0.1, �P;LA
¼ � 3 kBT, and �P;LI

¼ 0 kBT)

that is consistent with the wild type data. Next, we inserted the other cAMP-CRP dissociation

constants (given in Table 1) into Eq (14) to predict the gene expression profiles of the CRP

Fig 7. Predicted gene expression profiles for a simple activation architecture. (A) Gene expression for wild type CRP (green dots from Ref. [7]), where 1 Miller Unit

(MU) represents a standardized amount of β-galactosidase activity. This data was used to determine the relevant parameters in Eq (14) for the promoter in the

presence of [L] = 1.5 μM of CRP [45]. The predicted behavior of the CRP mutants is shown using their corresponding cAMP dissociation constants. (B) The spectrum

of possible gene expression profiles can be categorized based upon the cAMP-CRP binding affinity in each subunit. In all cases, we assumed MA
L ¼ MA

R ¼ 3� 10� 6 M
and e� b�Aint ¼ 0. The activation response (blue) was generated using MI

L ¼ MI
R ¼ 6� 10� 6 M. The repression response (orange) used MI

L ¼ MI
R ¼ 10� 7 M. The peaked

response (gold) used MI
L ¼ 10� 7 M and MI

R ¼ 300� 10� 6 M. The flat response used MI
L ¼ MI

R ¼ 3� 10� 6 M. The remaining parameters in both plots were
½P�
PD
¼ 130� 10� 6, rtrans ¼ 5� 105MU

hr , γ = 0.1, �P;LA
¼ � 3 kBT, �P;LI

¼ 0 kBT, � = −3kBT, and those shown in Tables 1 and 2.

https://doi.org/10.1371/journal.pone.0204275.g007
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mutants. Fig 7(A) show the possible behavior of the CRPD/D and CRPWT/D mutants. As

expected, replacing a WT subunit with a D subunit shifts the gene expression profile leftwards

since the D subunit has a higher cAMP affinity (see Fig 3(A)). Interestingly, the substitution

of WT with D subunits comes with a concomitant increase in the maximum gene expression

because at saturating cAMP concentrations, a larger fraction of CRPD/D is active compared

to CRPWT/WT (96% and 68%, respectively) as seen by using Eq (15) and the parameters in

Table 1. Note that we cannot predict the behavior of any of the CRP mutants with S subunits

due to the large uncertainty in ~MA
S .

Lastly, we probe the full spectrum of phenotypes that could arise from the activity function

provided in Eq (14) for any CRP mutant by considering all possible values of the cAMP-CRP

dissociation constants MA
L , MI

L, MA
R , and MI

R in Eq (15). In particular, we relax our assumption

that cAMP binding promotes the CRP’s active state, as a CRP mutation may exist whose inac-

tive state binds more tightly to cAMP than its active state. Fig 7(B) demonstrates that given

such a mutation, a variety of novel phenotypes may arise. The standard sigmoidal activation

response is achieved when cAMP binding promotes the active state in both CRP subunits

(MA
L < MI

L, MA
R < MI

R). A repression phenotype is achieved in the opposite extreme when

cAMP binding favors the inactive CRP state (MA
L > MI

L, MA
R > MI

R); we note that the ability to

switch between a repressing and activating phenotype was achieved in the Lac repressor with

as few as three mutations (see the Rc phenotypes in Ref. [46]). When one subunit is activated

and the other is repressed by cAMP (MA
L < MI

L, MA
R > MI

R or MA
L > MI

L, MA
R < MI

R), a peaked

response can form. If the CRP subunits have the same affinity for cAMP in the active and inac-

tive states (MA
L ¼ MI

L ¼ MA
R ¼ MI

R), then CRP will behave identically for all concentrations of

CRP, generating a flat-line response. It will be interesting to see whether these phenotypes can

be achieved experimentally.

Discussion

The recent work of Lanfranco et al. provides a window into the different facets of gene regula-

tion through activation [29]. Using insights from their in vitro experiments, we can break

down the process of activation into its key steps, namely: (1) the binding of cAMP to make the

activator CRP competent to bind DNA (Fig 3); (2) the binding of CRP to DNA (Fig 5); and (3)

the recruitment of RNAP to promote gene expression (Fig 7(A)). In this work, we generalized

the classic MWC and KNF models to include a cAMP interaction energy as well as different

DNA-binding affinities for the various cAMP-CRP bound states, allowing us to globally ana-

lyze the CRP binding data. Whereas biological research relishes the unique nuances in each

system, the physical sciences suggest that common motifs—such as the prevalence of systems

adopting an MWC-like description – lead to equally profound insights into the underlying

principles governing systems.

By concurrently modeling the multi-step process of activation, we begin to unravel relation-

ships and set strict limits for the binding energies and dissociation constants governing these

systems. One hurdle to precisely fixing these values for CRP has been that many different sets

of parameters produce the same degenerate responses (see S1 Text Section A). This parameter

degeneracy is surprisingly common when modeling biological systems [47, 48], and we discuss

how to account for it within the MWC and KNF models of CRP. A key feature of our analysis

is that it permits us to identify the relevant parameter combinations for the system, quantify

how well we can infer their values, and suggest which future experiments should be pursued to

best constrain the behavior of the system.

Lanfranco et al. further explored how mutations in one or both subunits of CRP would

influence its behavior. Specifically, they used three distinct subunits (WT, D, and S) to create
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the six CRP mutants shown in Fig 1(B) (black and pink boxes). In this work, we showed that

the effects of these mutations can be naturally understood through simple thermodynamic

models so that each mutation need not be analyzed individually as if it had no relation to any

other mutant. Instead, a compact set of parameters characterizing each subunit (see Table 1)

could self-consistently characterize the cAMP-binding of all six mutants. The MWC model

was shown to successfully describe the CRP activation data for all mutants whereas the KNF

model led to a poorer characterization of the data and moreover incorrectly predicted the

inhomogeneous population of CRP in the absence and presence of saturating cAMP. Even

though an MWC description of the system was sufficient for the data set considered here,

the full CRP system exhibits richer behavior that may require more generalized models that

include the ensemble of different states seen by NMR [34, 49]. Nevertheless, it remains a useful

exercise to understand how much of a system’s behavior can be successfully captured by such

simple models [50].

The models presented here suggest several avenues to further our understanding of CRP.

First, we note that both the MWC and KNF models can serve as a springboard for more com-

plex descriptions of CRP or other regulatory architectures [51]. However, a key advantage of

simple frameworks lies in their ability to predict how different CRP subunits combine. For

example, in S1 Text Section B we demonstrate how the data from the three symmetric CRP

mutants in Fig 3(A) can be used to coarsely predict the asymmetric mutant responses in Fig

3(B). It would be interesting to see whether such predictions continue to hold as more mutant

subunits are characterized, such as for the expanded suite of mutants shown in Fig 1(B). This

framework has the potential to harness the combinatorial complexity of oligomeric proteins

and presents a possible step towards systematically probing the space of mutations. In addi-

tion, any deviations in these predictions will provide further information on how allostery

propagates in this system.

Second, several groups have proposed that multiple CRP mutations (K52N, T127, S128,

G141K, G141Q, A144T, L148K, H159L from Refs. [9, 32, 52]) only affect the free energy differ-

ence � between the CRP subunit’s active and inactive states while leaving the cAMP-CRP dis-

sociation constants unchanged. Our model predicts a narrow spectrum of phenotypes for such

mutants, since the dependence of the � parameter is solely confined to the effective dissociation

constants (see Eqs (3) and (4)).

Finally, the framework considered here can be used to predict how the CRP mutants gener-

ated by Lanfranco et al. would behave in vivo. We calibrated the CRPWT/WT gene expression

profile using data from Ref. [7] and suggested how the remaining CRP mutants may function

within a simple activation regulatory architecture given the currently available data (see Fig 7).

It would be interesting to measure such constructs—or better yet, similar activators that regu-

late very few genes – within the cell and test the intersection of our in vivo and in vitro under-

standing both in the realm of the multi-step binding events of transcription factors as well as

in quantifying the effects of mutations.

Methods

As described in Ref. [29], the fractional CRP occupancy data in Fig 3 was measured in vitro
using 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescence which is triggered by the con-

formational change of cAMP binding to CRP. Experiments were conducted in 20mM Tris,

50mM NaCl, 1mM EDTA, pH 7.8, and at 25˚C. The CRP-DNA anisotropy data in Fig 5 was

measured in vitro by tagging the end of a 32bp lac promoter with a fluorescein molecule and

measuring its anisotropy with a spectrometer. When CRP is bound to DNA, anisotropy arises

from two sources: the fast bending of the flanking DNA sequence and the slower rotation of
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the CRP-DNA complex. Sources of error include oligomerization of CRP, the bending of the

flanking DNA, and nonspecific binding of CRP to the DNA.

The in vivo gene expression data was taken from Kuhlman et al. using the lac operon E. coli
strain TK310 [7]. This strain had two genes knocked out: cyaA (a gene encoding adenylate

cyclase, which endogenously synthesizes cAMP) and cpdA (encoding cAMP-phosphodiester-

ase, which degrades cAMP within the cell). Experiments were done at saturating concentra-

tions of inducer ([IPTG] = 1mM) so that Lac repressor negligibly binds to the operator [53].

In this limit, the only transcription factor affecting gene expression is the activator CRP. Gene

expression was measured using β-galactosidase activity.
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